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Abstract. The classic NFL theorems are invariably cast in terms of single ob-
jective optimization problems. We confirm that the classic NFL theorem holds
for general multiobjective fitness spaces, and show how this follows from a
‘single-objective’ NFL theorem. We also show that, given any particular Pareto
Front, an NFL theorem holds for the set of all multiobjective problems which
have that Pareto Front. It follows that, given any ‘shape’ or class of Pareto
fronts, an NFL theorem holds for the set of all multiobjective problems in that
class. These findings have salience in test function design. Such NFL results are
cast in the typical context of absolute performance, assuming a performance
metric which returns a value based on the result produced by a single algorithm.
But, in multiobjective search we commonly use comparative metrics, which re-
turn performance measures based non-trivially on the results from two (or
more) algorithms. Closely related to but extending the observations in the
seminal NFL work concerning minimax distinctions between algorithms, we
provide a ‘Free Leftovers’ theorem for comparative performance of algorithms
over permutation functions; in words: over the space of permutation problems,
every algorithm has some companion algorithm(s) which it outperforms, ac-
cording to a certain well-behaved metric, when comparative performance is
summed over all problems in the space.


1 Introduction


The so-called ‘No Free Lunch’ theorem (NFL) is a class of theorems concerning the
average behaviour of ‘black-box’ optimization algorithms over given spaces of opti-
misation problems. The primary such theorems were proved in [15], and disseminated
to the evolutionary computation community in [16], showing that, when averaged over
all possible optimization problems defined over some search space X, no algorithm
has a performance advantage over any other. A considerable debate has grown over
the importance and applicability of these theorems, and the consequences for the field
of optimization in general are much discussed in [16], and other work reviewed briefly
below. Perhaps the main consequence for the majority of researchers in optimization,
particularly those investigating generic algorithms rather than those focused on par-
ticular problems, is that the NFL result denies any claim of the form ‘algorithm A is







better than algorithm B’, for any pair of algorithms A and B. For example, the state-
ment ‘Genetic Programming outperforms random search’ is false. NFL points out that
any such statement must be carefully qualified in terms of the set of problems under
consideration. As we see later in a brief review, it has been shown that NFL does not
hold over certain subsets of problems, and proofs in this vein are a growing area. In
fact, of course, this is easy to show (at least empirically), when the set of problems
under consideration is small, such as, perhaps, three particular test problems on which
well-designed comparative experiments are performed. However, generalization of
any such ‘A is better than B’ statement to all problems in a large class of problems is
always unwise without convincing argumentation.


In this paper we are concerned with NFL on spaces of multiobjective problems. We
will confirm that NFL results hold over such spaces, and in particular we will show
that NFL holds over spaces of problems which share a particular (or particular class
of) Pareto front(s). We also prove a ‘Free Leftovers’ theorem for comparative metrics;
these are technically distinct from the straightforward ‘absolute’ metrics typically
assumed in NFL work, and are the most commonly applied metrics when comparing
the performance of multiobjective algorithms..


The remainder is set out as follows. In section 2 we briefly review NFL-related re-
search in (largely) the evolutionary computation community to date, and then start to
discuss the question of NFL in the context of multiobjective search. Section 3 then
provides some standard preliminaries and notation, and in section 4 we confirm the
standard NFL result in multiobjective problem spaces, via showing how it would fol-
low from a ‘single-objective’ NFL theorem. Section 5 then proves NFL results for
interesting subsets of multiobjective spaces: those with particular (or particular classes
of) Pareto fronts; this section also notes that a more general (than shown in section 4)
NFL result holds, where we allow the range of fitnesses in each objective to be differ-
ent. Section 6 brings up the issue of comparative metrics, which are of particular in-
terest in multiobjective optimization. We show, with our ‘Free Leftovers’ theorem,
that the spirit of NFL does not hold in general when we use comparative metrics; this
is consistent and closely linked to the observations concerning ‘minimax distinctions’
in the seminal NFL work. We briefly discuss and conclude in section 7.


2 About NFL and the Multiobjective Case


Work on NFL since the seminal papers has broadly concerned two themes; one theme
is new proofs of NFL/and or interesting subclasses of problems for which NFL holds;
the other theme concerns classes of problems for which NFL doesn’t hold (i.e. proofs
of ‘Free Lunch’ theorems). We first briefly review some work on NFL since [15],
covering first theme one and then theme two.


Regarding theme one, quick on the heels of [15], [10] provided another proof of
NFL, and reviewed the implications of NFL with a focus on representation issues. In
particular, suggestions for representation/operator performance measures were pro-
posed, given any well-defined set over which NFL does not hold. More recently, [14]
showed that a general NFL result holds over the set of permutation functions, that is,







problems in which every point in the search space has a unique objective function
value. In [14] it is shown that these functions are, on average, ‘unusually’ complex
(uncompressible) – more so than the NP-complete class – implying that this set may
not be of practical interest. Furthermore, it is shown that all functions in this set have
identical summary statistics, implying that the latter cannot be used to guide search.


A ‘sharpened’ NFL result is proved in [11], which shows that the NFL holds over a
set of functions F, if and only if F is closed under permutation (c.u.p.). They also
show that the compressibility of a set of functions cannot be appealed to, as a means
of ‘escaping’ NFL: thus, a highly compressible function such as a needle-in-a-
haystack function, when closed under permutation, forms a set over which NFL still
holds. Expoiting the result in [11], Igel and Toussaint [7] consider its implications.
They prove that nearly all subsets of a typical space of problems are not c.u.p, and, in
particular, some practically interesting problem classes are not c.u.p. Hence, certain
practically interesting classes of problems are not subject to NFL.


Theme two concerns identifying and focusing on particular, usually ‘small’, subsets
of problems for which NFL does not hold. For example, in [4] it was shown that for a
certain very simple set of objective functions, and a particular restriction on this set,
NFL does not hold, and adaptive algorithms have provably better performance than
non-adaptive ones on this set. In [13] it is proven that Gray encoding is worse than
binary encoding over a set of functions with 12 −L optima, from which it follows that
Gray is better than binary over all other functions. In [1], a free lunch is proved for a
simple search algorithm, applied over a set of multivariate polynomial functions of
bounded degree d. This is of general interest because it is shown that performance is
better than random search up to a very large value of d, such that many functions of
practical interest could be approximated by the polynomial. Finally, in [5] it is proved
that the time to optimize a specific, realistic, and simply defined instance of MAXSAT
is exponential for a heuristic designed specifically for the MAX-SAT class, and it is
further hypothesised that all ‘reasonable’ heuristic algorithms will exhibit this per-
formance. This shows that even in complexity-restricted problem classes, in which
NFL does not hold, it still ‘almost’ holds since expected worst-case performance of an
optimizer may be very poor.


It so happens that, in the prominent published NFL work so far, the single-objective
case has been assumed, at least implicitly. For example, [16] talks of the space of
fitnesses Y as a space of ‘values’ and indeed cast the set of problems as ‘cost func-
tions’, and give examples of performance measures which relate to finding minima in
that space; when specific examples of functions are given in [11], they are numerically
valued; similar can be said of [1], [5] and so forth. Meanwhile, universally, NFL theo-
rems are notated in terms of a space of problems (functions) YXf →: , clearly im-
plying single-objective optimization. One exception we have found is the early work
of [10], which once notes that the domain of the problems concerned could be mul-
tiobjective.


That NFL holds over multiobjective optimization is hence not clear from an abrupt
reading of the literature in the literature. Since Y only needs to be a finite set, we could
glibly and simply say ‘it does’, however this ignores one key difference between mul-
tiobjective and single objective optimization: in the multiobjective case, algorithm







performance is commonly done via a comparative metric, which is non-trivially dis-
tinct from ‘absolute’ performance metrics. As it turns out, NFL does not in hold in
general in such a scenario. As we’ll see, the fact that fitnesses are vectors rather than
values is immaterial with regard to NFL in the context of absolute performance met-
rics (where performance of an algorithm is a measure of the result produced by that
algorithm alone), however as we just indicated, the greater emphasis in multiobjective
search on comparative metrics renders this less applicable, and in general there is a
free lunch (or, rather, ‘freee leftovers’) when certain well-behaved comparative met-
rics are involved.


Regarding the embracing of multiobjective optimization by the ‘absolute perform-
ance’ NFL theorem, one may still feel uneasy about this, since various aspects and
elements of the various ‘single-objective’ proofs, which at least implicitly assume
single-objective optimization, need to be revisited. So, rather than simply say ‘since Y
only needs to be a finite space, NFL holds for multiobjective optimization’, we also
provide a proof which shows how this follows from the ‘single-objective’ case; i.e. if
we assume only that NFL for absolute performance holds on single objective prob-
lems, we can derive its truth for multiobjective problems in a more interesting way.
This is done in section 4, following preliminaries and notation in section 3. As indi-
cated earlier, in section 5 we then look at certain salient subsets of multiobjective
problems, in particular those which share a certain Pareto front, and in section 6 we
look at the issue of comparative metrics.


2 Preliminaries and Notation


Using similar notation to that in [16], we have a search space X and a set of ‘fitnesses’
Y, and we will generally assume maximization. A single-objective optimisation prob-
lem f is identified with a a mapping YXf →: and XYF = is the space of all prob-
lems. Its size is clearly |||| XY . A black-box optimisation algorithm a generates a time-
ordered sequence of points in the search space, associated with their fitnesses, called a
sample. A sample of size m is denoted ))}(),(()),...,1(),1({( mdmdddd Y


m
X
m


Y
m


X
mm ≡ ,


where, in general, )(id X
m is the ith distinct point in the search space X visited by the


algorithm, and )(id Y
m is the fitness of this point. We will also use the term X


md to
denote the vector containing only the )(id X


m , and similarly Y
md will indicate the time-


ordered set of fitness values in the sample. The space of all samples of size m is de-
noted m


m YXD )( ×= , and the space of all samples is denoted D, and is simply the
union of mD for all positive integers m.


An optimisation algorithm a is characterised as a mapping: XDa →: with the re-
striction that X


mm dda ∉)( . That is, it does not revisit previously visited points. This
restriction, plus that of the algorithm being deterministic, is imposed for simplicity but
ultimately does not affect the generality of the resulting theorems.


The (absolute) performance a after m iterations on problem f is measured using
),,|( amfdP y


m ; this is the probability of a particular sample being obtained after iter-
ating a for m iterations on problem f. The NFL theorem (for static cost functions) is
this [15, 16]: for any pair of algorithms 1a and 2a ,
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Hence, when summed over all cost functions, the probabilities of obtaining a particu-
lar sample using 1a amount to the same as that of using 2a . The key message is that,
since performance of an algorithm is a function only of the sample it generates, when
performance is summed over the whole space of problems, the result is the same for
any pair of algorithms. We can define a performance measure as a function


ℜ→Φ Y
md: (with the choice of ℜ being natural, and relatively arbitrary), and a


corollary of equation (1) is:
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Now, we need to establish notation that will be helpful in the multiobjective case. A
multiobjective problem with k objectives can be cast as a function kYXg →: , in
which, for simplicity at this stage, we assume that the space of fitness values in each
objective is the same (Y). We now need new notation for a multiobjective sample,
which we will denote as follows
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where kY
j Yjv ∈)( ; i.e. )( jvY


j is the k-objective vector of fitnesses resulting from
evaluation of )( jd X


j . Finally, using V to denote the set of all multiobjective samples,
we define a multiobjective algorithm q as a function XVq →: with the restriction
that X


mm vvq ∉)( , with notation assuming the obvious meaning.


3 No Free Lunch on Multiobjective Problem Spaces


What we wish to confirm is that, for any two multiobjective algorithms 1q and 2q ,
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As indicated, we choose to do so by showing how it follows from a ‘single-objective
only’ NFL theorem. The sketch of the proof is as follows – the idea is straightforward,
but the book-keeping issues will take up a little space. We will first assume that equa-
tion (3) is false, and hence there is some pair of multiobjective algorithms 1q and 2q
whose overall performance differs over the space of all k-objective problems. Via
showing that a 11 ↔ mapping exists between the space of k-objective problems and a
certain space of single objective problems, we can then show that this implies that
there are two single-objective algorithms who differ in performance over this single
objective space. This must be false (by equation (1)), and hence equation (3) follows
by reductio ad absurdum. So, we now formally state and prove an NFL theorem for
static multiobjective problems.







Theorem 1 Equation (3) holds for any two multiobjective algorithms 1q and 2q .
Proof of Theorem 1:
Assume that equation (3) does not hold, thus we can state that, for a particular pair of
multiobjective algorithms 1q and 2q ,
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in which, without loss of generality, we cast 1q as the algorithm which performs best
overall (when the performance measure correlates with achieving the sample Y


mv ).
Now consider the mapping WYs k →: , where }||...,2,1{ kYW = , defined as fol-
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This is clearly a one-to-one mapping; we omit a proof, but simply note that this map is
between a number s(z), and a unique representation of that number in base |Y|. The set
W simply enumerates, or uniquely labels, all possible multiobjective vectors in kY .


Now consider the mapping WXgs →:o . This is a single objective function on X.
Further, from any multiobjective algorithm XVq →: we can construct a correspond-
ing single objective algorithm WDq →′ : as follows:


))(()( mm vqsvq ≡′′ ,


where )))}((),(())),...,1((),1({( 11 mvsmdvsdv Y
m


X
m


YX
m =′ . Hence, every k-objective algo-


rithm q defined on the search space X and involving the space of fitnesses kY corre-
sponds to a unique single objective algorithm defined on the search space X and in-
volving the single-objective space of fitnesses W, and vice versa.


Recall our assumption (equation (4)); now, we can say
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qq ′and . It trivially follows (from this and equation (4)) that:
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However, we notice that the space of all functions gs o corresponds precisely to the
space of all functions WXf →: , that both 21 and qq ′′ are single objective algorithms
from D to X (where fitnesses in Y


md are from W), and that any sample mv′ corresponds
uniquely to a sample Y


md from D. Hence, we can write
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But this essentially expresses a free lunch for single-objective algorithm 1q′ at the
expense of single-objective algorithm 2q′ , over the space of all single-objective prob-







lems WXf →: . By equation (3), this is false, and hence we conclude our original
assumption is wrong, and so the following holds:
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and hence
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in which ℜ→Ψ V: is an arbitrary absolute performance metric for multiobjective
samples. So, for any k, any search space X, and any space of fitnesses Y, an NFL result
holds for the complete space of k-objective problems kYXg →: .


4 NFL on Certain Subsets of Multiobjective Problem Spaces


A further (and perhaps more interesting) issue concerns the shape of the Pareto Front;
this is a discussion which we will now motivate. The fact that there is no free lunch
over the set of all k-objective problems means that any multiobjective algorithm (such
as SPEA [17]) has no absolute performance advantage over any other algorithm (e.g.
NSGA-II [3]), over the (understood) space of all multiobjective problems. This result,
however, concerns averaging performance over all possible problems, and hence in-
cluding all possible shapes of Pareto front. It could be argued, however, that particular
algorithms have particular advantages correlated with the shape of the Pareto Front.
E.g. we may imagine that SPEA with a large internal population size will do better on
problems with a highly discontinuous Pareto front than would SPEA with a small
internal population size. We can show, however, that for a particular shape of Pareto
front, an NFL result holds over the space of all multiobjective problems which share
that shape of Pareto front. We proceed towards proving this, and then note the case of
‘general’ multiobjective problems.


Consider again the space of all k-objective problems kYXg →: , and the set
}||....,2,1{ kYW = which labels the space of k-objective fitness vectors. It will help to


illustrate a small example of the correspondence between W and kY as follows. Let
}3,2,1{=Y and k = 2, and therefore }9,...,1{=W . The correspondence between kY


and W is given by Table 1. We will refer to this Table in illustrations next.


Table 1: A simple correspondence between a space of multiobjective fitness vectors kY (in
this case 2-objective, where k = 2 and each objective has 3 possible values) and a single-
objective space W of the appropriate size (in this case 9). Four points are bold, representing a
particular subset of problems, with the underlined representing a particular Pareto front


Vector from kY (1,1) (1,2) (1,3) (2,1) (2.2) (2,3) (3,1) (3,2) (3,3)


‘Label’ from W 1 2 3 4 5 6 7 8 9







Consider a subset kYB ⊂ , and the corresponding labels WBL ⊂)( . E.g., in table 1,
the bold entries identify )}1,3(),1,2(),2,1(),1,1{(=B and }7,4,2,1{)( =BL . Any such
subset has its own non-dominated ‘front’ )(BN , in this case )}1,3(),2,1{()( =BN and


}7,2{))(( =BNL .
If we are interested in a particular Pareto front C which exists for at least some


multiobjective problems in kYXg →: , we can pick out the points from kY which
constitute this front, and then easily construct the maximal subset kYQ ⊆ such that


CQN =)( and the remainder of Q is made up of all points in kY which are domi-
nated by at least one point in C. This corresponds to, in table 1, choosing the front
represented by )}1,3(),2,1{(=C , in which case )}1,3(),1,2(),2,1(),1,1{(=Q .


Clearly we can construct such a Q for any given Pareto front C in the space of
problems kYXg →: , for any X, Y, and k. Given C and Q, we can ask: does NFL
hold over the space H of all multiobjective problems QXh →: , where a restriction
on Hh ∈ is that the domain of h contains C? The restriction ensures that every func-
tion Hh ∈ has the same Pareto front C, but in general h may only contain addition-
ally in its domain a subset of the remainder of Q. Hence H is the space of all possible
multiobjective problems kYXg →: whose Pareto front is C. The anwer is affirma-
tive, and we prove it simply, by using this result from [11]:


Theorem 2:
For any two algorithms a and b, equation (1) holds iff the set of functions F concerned
is closed under permutation (c.u.p.).


This is (effectively) stated and proved in [11]. Recall that a function YXf →: is
an assignment of a Yy ∈ to each Xx ∈ , and can hence be viewed as a vector of |X|
elements from Y, where element yfi = iff yxf i =)( . If a set of functions F is
‘closed under permutation’, this simply means that we can arbitrarily permute the
elements of f, i.e. we apply a bijective mapping XX ↔:π and the resulting new
function f ′ , with )())(( xfxf =′ π , remains a member of F. We can now state and
prove the following:


Theorem 3:
Given the set of multiobjective functions kYXg →: , and a subset H, where


cxhXxCcQXhHh =∈∃∈∀→⇔∈ )(,,and: , where C is the Pareto subset of
kYQ ⊆ , equation (5) holds over the H. That is, given a particular Pareto front, NFL


holds over the space of multiobjective problems which share that Pareto front.
Proof of Theorem 3:
Given H, C and Q as defined in the theorem, we can identify a corresponding subset J
of single-objective functions, and ask if that set is closed under permutation. This set
is )()(,,and)(: cLxjXxCcQLXjJj =∈∃∈∀→⇔∈ . Consider any Jj ∈ , and
any point x such that )()( cLxj = for some Cc ∈ . A permutation XX ↔:π leads to
a function j′ such that )())(( xjxj =′ π , so clearly there is a point in the new function
( Xx ∈)(π ) whose fitness value is )(cL . Thus, every point in L(c) is in the domain of
j ′ . Next, suppose the domain of j′ contains some point )(QLu ∉ ; this means there


is some point u such that uxj =′ )( . But, )())(()( zjzjxj =′=′ π for some Xz ∈ ,







and the domain of j is L(Q); this is a contradiction, so j′ cannot contain a point out-
side L(Q). This proves that Jj ∈′ , and hence the set J is closed under permutation.


We know that NFL holds for the set of single objective problems J. By appeal to
the one-to-one correspondences between H and J, Q and L(Q), C and L(C), and by
using machinery developed earlier to produce one-to-one correspondences between
multiobjective samples and single objective samples, and multiobjective and single
objective algorithms, we can conclude that
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where 1q and 2q are multiobjective algorithms XVqq →:, 21 and H is as described.


This has shown that, over all k-objective problems with a particular Pareto front C,
there is no free lunch in terms of absolute metrics. We can still ask about the set of k-
objective problems with a particular shape of Pareto front C. We do not define how to
characterize a ‘shape’ here, but would expect that any such definition would amount to
enumerating a particular finite set of k-objective Pareto fronts },...,,{ 21 nCCCS =
where k


i YC ⊂ for each i. Given such a set S, we can easily prove:


Theorem 4:
Given any particular shape (or other characterisation) of Pareto front, corresponding
to a set of specific fronts },...,,{ 21 nCCCS = where k


i YC ⊆ for each i, there is no
free lunch over the set of all k-objective problems whose Pareto front is in S.
Proof of Theorem 4:
We know that, for each individual iC , the corresponding space of multiobjective
problems H is closed under permutation. Since a union of such sets is also closed
under permutation, it follows that the set S is closed under permutation.


Finally, we have confirmed that the absolute performance of black-box multiobjec-
tive algorithms is subject to NFL over the space of all problems kYXg →: ; how-
ever, in general, a multiobjective problem will typically have a different range of fit-
nesses for each objective. That is, a given k-objective problem will be of the form


kYYYXg ×××→ ...: 21 , where || iY >1 for each i, but with no other constraint (such as
|||| ji YY = for different i and j). One way to confirm that NFL holds over this more


general multiobjective problem space is by appeal to the results about Pareto fronts.
Any Pareto front defined in the space kYYY ××× ...21 corresponds to a Pareto front for
some set of problems in k


MY , where MY has the largest cardinality of the
},...,1{, kiYi ∈ . So, that NFL holds over this general space can be shown as a special


case of Theorem 4, where the set S includes all Pareto fronts of k
MY which are also


Pareto fronts of kYYY ××× ...21 .







5 Comparative Metrics


The basis of NFL theorems published to date concerns there being ultimately no per-
formance advantage for one black box algorithm over another, when averaged over a
suitable collection of problems. In NFL work published thus far, it tends to be as-
sumed that the measure of performance of algorithm a is purely a function of the sam-
ple yielded by algorithm a when run on a problem. So far, we have confirmed that
NFL holds over certain spaces of multiobjective problems, and what follows from
this, in terms of statements about algorithm performance, can only be stated with
respect to ‘absolute’ performance metrics – i.e. performance measures which are
based only on the sample produced by a single algorithm. Several such metrics are
occasionally used in multiobjective optimisation studies (such as hypervolume [17], or
others which can be found in [12]). However, a more common and favoured way to
measure the performance of a multiobjective algorithm is via a metric: ℜ→Ψ dV: ,
where 1>d typically d = 2), where the metric takes in the results of two or more
algorithms and produces a measure of relative performance; Zitzler’s ‘Cover’ metric is
a commonly employed example [17], while more sophisticated but currently less used
examples can be found in [6].


Before we consider NFL in relation to such metrics, it is worth mentioning that
they are far from trivial counterparts to ‘absolute’ performance metrics. E.g., some
such metrics yield intransitive performance relationships between algorithms. See [8]
for a full treatment of multiobjective comparison metrics and their properties in this
sense, as well as [9] and [18].


It turns out that there is a potential ‘free lunch’ when comparative performance is
concerned, at least for certain comparative metrics ℜ→×Ψ VV: . This arises owing
to an asymmetry which occurs when we look at the performance of a pair of algo-
rithms on the same problem. Every algorithm will generate a given sample on some
problem in the set, but the pair of samples generated by two algorithms on some prob-
lem may not be generated by the same pair of algorithms on any other problem.


Preliminaries to what we call a ‘Free Leftovers’ theorem are as follows, with the
earlier preliminaries (section 2) already in place. Let the set of algorithms be A, let the
set of all comparative metrics be C, and let the set of problems be F (we will use the
notation of [16] for simplicity, hence often oriented towards the single objective case
but not ruling out the multiobjective case). A comparative ‘experiment’, E, is a func-
tion ℜ→×Ν×××Ε CFAA: which separately runs two algorithms, Aba ∈, on a
function Ff ∈ for Nm ∈ distinct function evaluations each, and then compares the
resulting two samples using a comparative metric C∈Ψ , where ℜ→×Ψ DD: .
Hence, given two algorithms a and b, and a problem f, running experiment


),,,,( ΨΕ mfba produces the result ),( Y
m


Y
m wvΨ , where Y


mv is the sample produced by
a on f, and Y


mw is the result produced by b on f.
Importantly, we will be concerned here only with comparative metrics which are


well-behaved in the following reasonable sense. Where v and w are samples,
0),( =Ψ⇒= wvwv , and 0),(),( =Ψ+Ψ wvwv . Hence, when samples are the same,


the ‘performance difference’ is 0, and in particular the metric is symmetric. That is,
assuming without loss of generality that 0),( >=Ψ rwv indicates that (the algorithm







which produced) sample v is better than (the algorithm which produced) sample w),
the same metric will indicate that rvw −=Ψ ),( ; hence, that w is worse than v, to the
same extent that v is better than w. Now, familiarity with the NFL theorems and intui-
tion may suggest that, when summed over all problems f, ),,,,( ΨΕ mfba will amount
to zero, since the performance advantage for a on some problem will presumably be
countered by advantages for b on others. However, this is not so in general. In fact,
[16] proves by example that


),,|(),,|(),,|(),,|(,, amfePbmfdPbmfePamfdPAba Y
m


f


Y
m


Y
m


f


Y
m ⋅≠⋅∈∃ ∑∑ . (6)


In [16] it is called a minimax distinction when this type of asymmetry exists between
algorithms, and [16] was concerned with the consequences as regards whether a large
performance advantage for a over b on one function is matched by a similar advantage
for b on another function, or instead by several small advantages for b on other func-
tions. Here, however, we see how this type of result relates directly to the issue of
comparative performance, which is especially salient in multiobjective optimisation.
In the following, we build on this result and express it in our ‘Experiment’ notation,
and derive a result which guarantees that, at least on a certain large space of problems,
every algorithm has a ‘straw man’ – some other algorithm b which it outperforms on
the whole over all functions in a space according to some metric. However, we only
show here that this holds over spaces of permutation functions. Such a space can be
defined as: })()(,,|:{ yxyfxfXyxYXf =⇒=∈∀↔=Π , i.e. every point in the
search space has a unique fitness. Our ‘Free Leftovers in Permutation Spaces’ theorem
shows that every algorithm has a comparative performance advantage in a permutation
space, (over some other algorithm, and given a particular metric).


Theorem 5 (Free Leftovers in Permutation Spaces)
Given any algorithm a, there are other algorithms b and well-behaved comparative
metrics Ψ such that, when summed over all problems in a permutation space, a out-
performs b. Formally:


0),,,,(:,, >Ψ∈Ψ∈∃∈∀ ∑
Π∈f


mfbaECAbAa . (7)


Proof of Theorem 5
We start by showing a proof of the following statement:


0),,,,(:,, ≠Ψ∈Ψ∈∃ ∑
f


mfbaECAba , (8)


which proposes the existence of at least one pair of algorithms whose summed com-
parative performance, for some well behaved metric, is nonzero. This is not confined
to permutation spaces, and a theorem from which this follows is already proved by
example in [15], however we also give a proof by example, since in so doing we re-
hearse and clarify some concepts in the proof of Theorem 6.


Towards proving equation (8), let },...,2,1{ pX = and XY = , with Np ∈ , and let
problem YXf →:1 simply be defined by: xxf =)(1 . Further, let algorithm a be the







algorithm which simply enumerates X from point 1 to point p. So, when we apply a to


1f for m )( p≤ iterations, the sample Y
mv obtained is simply },...,2,1{ p . Now consider


algorithm b, which enumerates X in a different order as follows: the first point b visits
is point 2, and thereon the nth point visited is point n+1, for n < p, and the final point
visited is point 1. So, on problem 1f , algorithm b generates the sample


Y
mw = }1,,...,3,2{ p . Now, we will construct a problem 2f on which algorithm a pro-


duces sample Y
mv . This is easily done – a visits points in a particular order, and so we


simply arrange 2f such that the appropriate fitnesses are at the points visited so as to
generate Y


mw . That is, we define 2f as follows: 1)(2 += xxf for px <≤1 , and
1)(2 =pf . Algorithm a will now generate Y


mw on this function (and note that this is
the only function on which algorithm a will generate this sample), but algorithm b
does not generate Y


mv ; in fact algorithm b generates: }2,1,,...,4,3{ p .
So far, to couch it in the more familiar notation of the NFL theorems, this has


shown, by example, that equation (6) is true, which was proved in [15, 16]; we next
derive equation (8) from this, which indicates what this means explicitly in terms of
well-behaved comparative performance metrics, of the type commonly used in mul-
tiobjective optimisation.


Let algorithm a generate sample Y
mv * on problem f, and let algorithm b generate


Y
mw* on the same problem. Further, let a and b be a pair, whose existence is guaran-


teed above, such that for any function g on which a generates sample Y
mw* , b does


not generate Y
mv * . Now, define a well-behaved comparative performance metric Ψ


by setting 1)*,*( =Ψ Y
m


Y
m wv (entailing 1)*,*( −=Ψ Y


m
Y
m vw ), and 0),( =Ψ wv for all


other distinct pairs of samples. When we run experiment ),,,,( ΨΕ mfba , we get the
result 1),,,,( =ΨΕ mfba , since this experiment results in a pair of samples for which
the metric will provide this result. However, given the preceding, there no function g
for which 1),,,,( −=ΨΕ mgba , which leads to and proves equation (8).


Now, on to Theorem 6. We will illustrate with a simple example as we go along.
Let Aa ∈ and Π∈f ; a generates a sample mvaf on f. For example, f may be the
function }5,...1{,)( ∈= xxxf , with m = 3, and so )}3,3(),2,2(),1,1{(=mvaf , and there-
fore )3,2,1(=Y


mvaf . We will show that another algorithm b can always be constructed
with the following properties: b produces a sample mm vafvbf ≠ on f, (which, given


Π∈f , guarantees that Y
m


Y
m vafvbf ≠ ), however there is no function Π∈g such that


both a produces sample Y
mvbf on g and b produces sample Y


mvaf on g. To show this,
we start with the samples mvaf and mvbf . We first construct b so as to ensure that
these samples are different in terms of performance (i.e. Y


m
Y


m vafvbf ≠ ), but that they
‘overlap’ (by which we mean X


m
X


m vbfxvafxXx ∈∧∈∈∃ , – i.e. the same point in
the search space occurs at some position (not necessarily the same) in each sample).
We can handle these conditions at one stroke by just arranging that )2()( 2


Xvafb =φ .
I.e., the first point visited by b is the second point visited by a when a runs on f. Con-
tinuing our simple example, we have arranged b such that ),...}2,2{(=mvbf – i.e. the
first point visited by b is the second point visited by a, which ensures that, on problem
f, different samples are generated by a and b, however some point in the search space
(2) is visited by both. Now, assume that we have a function g on which b generates a
sample mvbg , where Y


m
Y
m vafvbg = , and on which a generates a sample mvag where


Y
m


Y
m vbfvag = . So, in our example, we are assuming that we have some mapping







}5,...,1{}5,...,1{: ↔=g on which algorithm a generates Y
mvbf (which so far we know


starts with 2), and b generates )3,2,1( First, since a is constrained to first visit
)1()( 1


Xvafa =φ , we need )1())1(( 11
YX vbfvafg = . In our example, since a visits point 1


first, we must have g(1)=2. Similarly, since )1()( 1
Xvbfb =φ , we need


)1())1(( 11
YX vafvbfg = . In our example, we must have g(2)=1, However, now recall


that )2()( 2
Xvafb =φ , which is the second point visited by a on f. The second point


visited by b on g must have the same fitness as this, in order to ensure Y
m


Y
m vafvbg = .


In our example, this means that we have to arrange g such that g(z)=2, where z is the
second point visited by b on g. But, we are free to construct b so that this is violated.
So far our construction of b does not preclude any particular assignment to


))})1(),1(({( 11
YX vbfvafb (in our example, b({(2,1)}) must in fact be 1, if we are to


ensure Y
m


Y
m vafvbg = , since g(1)=2. However, we are free to construct b such that


b({(2,1)}) maps to any point we wish other than 2, which has already been visited by
b. We will impose that )3())})1(),1(({( 111


XYX vafvbfvafb = , ensuring that no function g
can exist with the assumed properties. In the example, we have made b visit point 3,
which cannot have fitness 2 (since we already needed to ensure that point 1 had fitness
2, and each point must have a unique fitness), and so our attempt to construct a func-
tion g which allowed a and b to ‘swap’ their performances on f was doomed to failure.


5. Concluding Summary


We have confirmed that the NFL holds for absolute performance metrics in the realm
of multiobjective optimization. Interestingly, we have shown that NFL holds over
certain salient subsets of multiobjective problems, particularly: over the space of all
problems which share the same type of Pareto front (subject to a reasonable way to
define ‘type’ of front as an enumeration of examples). This is of interest since it
speaks to the notion of test-function design. For example, Deb [2] has given the com-
munity an excellent framework for test function design, which explicitly differentiates
between problems on the basis of the shape and nature of their Pareto fronts. The NFL
result concerning Pareto fronts essentially means that we ultimately learn nothing from
the finding ‘algorithm A outperforms algorithm B on a problem with Pareto front P’.
This is because the NFL result guarantees that this will be counterbalanced by B out-
performing A on some other problem or set of problems which share the same Pareto
front P. However, inasmuch as the shape of the Pareto front (for problems in this or
similar test suites) correlates with or corresponds to certain regularities of the land-
scapes in these test suites, there is certainly value in such test suites; the point is that
any statements about comparative multiobjective algorithm performance should be
carefully qualified. We have also shown that, in general, there are ‘free leftovers’
available for every algorithm, when compared with at least some other algorithm using
a particular well-behaved performance metric. Much needs to be done to indicate how
applicable this overall result is. For example, it is currently unknown which families of
comparison metrics will yield such asymmetry and which won’t, or what proportion of
algorithms are thus summarily outperformed by a given algorithm. This and related
work are the topic of further research.
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