

Some Multiobjective Optimizers are Better than Others

David Corne1

Department of Computer Science
University of Exeter

Exeter EX4 4QF, UK
d.w.corne@ex.ac.uk

Abstract- The No-Free-Lunch (NFL) theorems hold
for general multiobjective fitness spaces, in the sense
that, over a space of problems which is closed under
permutation, any two algorithms will produce the
same set of multiobjective samples. However, there are
salient ways in which NFL does not generally hold in
multiobjective optimization. Previously we have shown
that a ‘free lunch’ can arise when comparative metrics
(rather than absolute metrics) are used for
performance measurement. Here we show that NFL
does not generally apply in multiobjective optimization
when absolute performance metrics are used. This is
because multiobjective optimizers usually combine a
generator with an archiver. The generator corresponds
to the ‘algorithm’ in the NFL sense, but the archiver
filters the sample generated by the algorithm in a way
that undermines the NFL assumptions. Essentially, if
two multiobjective approaches have different
archivers, their average performance may differ. We
prove this, and hence show that we can say, without
qualification, that some multiobjective approaches are
better than others.

1 Introduction

The now well-known ‘No Free Lunch’ theorem (NFL)
refers to a small family of theorems which characterize the
average behaviour of optimization algorithms over spaces
of optimization problems. The seminal works (Wolpert &
Macready, 1995; 1997), showed that, when performance
is averaged over all possible optimization problems
defined over some search space X, no algorithm has a
performance advantage over any other. This means, for
example, that no algorithm is better than random search.
This may seem surprising, but can be intuitively
understood on the basis that when we consider all possible
optimization problems over the search space X, it is clear
that overwhelmingly many of these have no consistent
structure that could be exploited successfully by any
particular algorithm. Nevertheless, the NFL result remains
surprising and interesting, partly since it speaks to the
relationship between algorithm design and domain
knowledge.

1 This work was done while the first author was at The
Dept. of Computer Science, University of Reading, UK

Joshua Knowles2

IRIDIA, CP 194/6
Université Libre de Bruxelles

1050 Bruxelles, Belgium
jknowles@ulb.ac.be

NFL casts clearly into focus the fact that any
‘improvement’ to an algorithm is really a re-alignment of
that algorithm towards an altered collection of problems.
There has been and continues to be much debate over the
importance and applicability of NFL (Radcliffe & Surry,
1995; Christensen & Oppacher, 2001; Droste et al, 1999;
Igel & Toussaint, 2001). However, the main consequence
for the majority of researchers in optimization is to
recognize that the NFL result automatically precludes any
claim of the form ‘algorithm A is better than algorithm B’,
for any pair of algorithms A and B. For example, the
statement ‘Particle Swarm Optimization outperforms
Simulated Annealing’ is false. Any such statement can
only be true if qualified in terms of the set of problems
under consideration, and can then only be true if that set is
not ‘closed under permutation’ (c. u. p.) (Schumacher et
al, 2001). If we define an optimization problem as a
mapping which assigns a fitness to every point in a search
space, then a set of such problems is c.u.p. if and only if
any permutation of the fitnesses of a problem in the set
produces some other problem in the set. The set of ‘all
problems’ over some given search space is an example of
such a set.

In the remainder of the article, we first provide, in
section 2, some necessary background and notation, and
briefly relate some previous relevant work. Then, in
section 3, we outline the essential ‘generator plus
archiver’ structure of most modern multiobjective
algorithms, a fact which is salient to the failure of NFL to
sensibly apply as regards algorithm performance in the
multiobjective case. In section 4, we prove (twice) a
theorem that shows that two multiobjective optimizers can
differ in performance over all problems. We conclude
with general discussion in section 6.

2 Preliminaries

Consistent with Wolpert & Macready (1997), we talk of a
search space X and a set of ‘fitnesses’ Y. We will also
allow a fitness y in Y to be either single or multiobjective.
That is, we will not, unless it seems absolutely necessary,
introduce extra notation for multiobjective fitness vectors.

2 The second author now holds a David Phillips
Fellowship at the new Manchester Interdisciplinary
BioCentre, Manchester, UK

What is said in the following holds equally for single or
multiobjective optimisation, unless otherwise indicated.

An optimisation problem f is identified with a mapping

YXf →: and XYF = is the space of all problems. Its

size is clearly |||| XY . A black-box optimisation algorithm

a generates a time-ordered sequence of points in the
search space, associated with their fitnesses, called a
sample. A sample of size m is denoted

))}(),(()),...,1(),1({(mdmdddd Y
m

X
m

Y
m

X
mm ≡ , where, in

general,)(id X
m is the ith distinct point in the search space

X visited by the algorithm, and)(id Y
m is the fitness of this

point. We may use the term X
md to denote the vector

containing only the)(id X
m , and similarly Y

md for the time-

ordered set of fitness values in the sample
We can now characterise what we mean by an

optimisation algorithm. We think of an optimisation
algorithm as a process which generates a sequence of
points from the search space – i.e. it visits points in the
search space one by one in a given order. Which point is
visited next depends only on the points visited previously.
It is therefore a mapping from samples to points in X, with

the restriction that X
mm dda ∉)(. That is, it does not revisit

previously visited points in X. This restriction, plus that of
the algorithm being deterministic, is imposed for
simplicity but does not affect the generality of the
resulting theorems.

It is of interest to consider the probability of a
particular sample (i.e. a particular sequence of points)
being generated by algorithm a after m iterations on

problem f. This is denoted with),,|(amfdP y
m . The

standard NFL theorem (Wolpert & Macready, 1995;
1997) is essentially characterised by the following, which
holds for any pair of algorithms 1a and 2a :

!! =
f

Y
m

f

Y
m amfdPamfdP),,|(),,|(21 . (1)

So, when averaged over all problems, the probabilities
of obtaining a particular sample using 1a amount to the

same as that of using 2a . In fact, it turns out that if a

particular sample is generated by 1a on each of m

different problems, then 2a , and indeed every other

algorithm, generates that same sample on a set of m
different problems, which may or may not overlap with

1a ’ s set (Schumacher et al, 2001).

 The well-known consequences concerning
algorithm performance stem from the fact that, in single
objective optimisation at least, the performance of an
algorithm is a straightforward function of the sample it
generates. For example, the result returned by an
algorithm in single objective optimisation is usually

)max(y
md (assuming maximisation, of course). It follows

from equation (1) that:

!! =
f

Y
m

f

Y
m amfdPamfdP),,|)(max(),,|)(max(21 . (2)

and of course more generally that:

!! Φ=Φ
f

Y
m

f

Y
m amfdPamfdP),,|)((),,|)((21 (3)

where ℜ→Φ Y
md: measures performance as a scalar

valued function of the sample.
We showed in Corne & Knowles (2003) that although

equation (3) holds for multiobjective optimisation, and
indeed holds for certain interesting subsets of
multiobjective problem spaces, it is actually not as
applicable in the multiobjective case as it is in the single
objective case. In Corne & Knowles (2003) we focussed
on the fact that in multiobjective optimisation we often use
comparative metrics (Hansen & Jaszkiewicz, 1998;
Knowles & Corne, 2002; Zitzler et al, 2002) which score
the relative performance of two algorithms by considering
the results of both. This is nontrivially different from
simply comparing the difference of two absolute metrics,
and it turns out that, in some tangible sense, that when the
comparison between some pair of algorithms is averaged
over a c.u.p. space of problems, one of these algorithms
may show an overall advantage.

In this paper, we focus on a simpler and more
accessible line of reasoning which again shows that
equation (3) is not generally applicable to the
multiobjective case, even if we only use absolute
performance metrics.

3 Generators and Archivers

For reasons argued in Knowles & Corne (2002; 2003) and
elsewhere, applied multiobjective optimisation algorithms
commonly incorporate an archiving process. This involves
a datastructure (the ‘archive’) which maintains an a priori
bounded number of non-dominated points. The archive
plays the role of the ‘best so far’ placeholder in single
objective optimisation. However, whereas in single-
objective optimisation it is entirely trivial to maintain this
best-so-far record, the story is quite different in
multiobjective optimisation. The problems arise from the
fact that non-dominated sets can be arbitrarily large, and
for reasons of time and space complexity we therefore
need a bound on the size of the archive. The question then
arises as to what happens when the archive is full, but a
new non-dominated point is generated. The archiving
process must decide whether or not to place the new point
in the archive, and, if it does incorporate the new point, it
must decide which existing point(s) to remove. In this
way, although ideally we would want the archive to
maintain the ‘best so far’ record of the multiobjective
search, it can only in general maintain an approximation to
that. As we shall see, this essentially leads to ‘free lunch’
results for archived multiobjective search.

To bring out the results, we will first formalise a simple
version of a multiobjective algorithm which uses an
archive. Note that this includes the vast majority of
published evolutionary multiobjective approaches (which
either explicitly maintains an archive – e.g. Knowles &
Corne (2000) – or exhibits a de facto archive in its
management of the population – e.g. Deb et al (2000)).
We can think of a multiobjective algorithm as a
combination of a generator and an archiver. The
generator produces a series of points from the search
space X, and we will model it in the way familiarly used
for algorithms in the NFL literature. That is, m iterations
of the generator yields a sample md as introduced in

section 2, and the generator itself is a mapping from a

sample md to some point in X which was not in X
md . We

will simplify the notation here and set))(),((tdtdz Y
m

X
m

t ≡ ,

i.e. tz is the tth point produced by the generator.
On the other hand, an archiver is a mapping

NN Zr AA →×: , where NA is the set of all archives

containing no more than N points, and Z is simply YX × ,
the elements of which are points in the search space
associated with their (multiobjective) fitnesses. The
archiver takes successive points from the generator, in

each case taking archive 1−tA and point tz , and

outputting archive tA , the new notation having the
obvious meaning. Both to emphasise practical relevance in
the following, and to simplify some of the discussion and
formalities, we will only consider a subset of archiving
algorithms which we call precise archivers. A precise
archiver is one which ensures, in its local archiving steps,
that as many non-dominated points as possible are kept in
the archive, and only non-dominated points are kept. A
precise archiver with bound N has the following
properties:

• SA1: if tz dominates one or more points in
1−tA , then tz is incorporated into tA and the

points it dominated (and no others) are removed.

• SA2: if tz is dominated by one or more points

in 1−tA , then the archive remains unchanged (i.e.
tz is not incorporated, and no points are

removed).

• SA3: if 1−tA contains fewer than N points, and

neither SA1 nor SA2 apply, then tz is
incorporated into the archive and no points are
removed.

These properties are clearly necessary if we wish the

archive at time tA to contain (subject to the bound N) the

non-dominated subset of tt zA ∪−1 , which is an obvious
requirement if we aim to return the best approximation we
can to the set of Pareto optimal points produced by the
generator. Property SA1 is straightforward, ensuring that a

precise archive always accepts a point that dominates any
point within it, and then removes the dominated points.
Property SA2 ensures that an archive will always reject a
point that is dominated by something already present in it.
Property SA3 simply includes a new non-dominated point
in the archive if space is available. This reflects a general
assumed desire, which is usually felt to be consistent with
the idea of maintaining a good approximation to the
Pareto front, to fill as many slots in the archive as
possible. Put another way, given that we have a bound of
N on the archive size, and assuming the Pareto set of the
points produced by the generator ends up being either N or
greater, then we would hope that the archive contains N
non-dominated points at the end of the run. In the case that
the generator has produced s < N Pareto points, we would
hope and expect that the archive contains precisely these s
points. Where precise archivers can vary is entirely in

what happens when 1−tA is full (with N points) but tz is

non-dominated with respect to all points in 1−tA .
It is worth noting that not all published archivers are

precise. This arises for good reasons, which are illustrated
by Figure 1.

Figure 1. A contrived Pareto front containing nine points. If an
archive was bounded to contain at most 5 points, then the set of
points labeled A—E would be a preferable archive to the set of
points labeled ‘unrepresentative cluster’ . This illustrates the
motivation behind archiving algorithms which eschew all the
properties of a ‘precise’ archiver in favour of promoting the
maintenance of a diverse set of points in the archive.

In the figure, a contrived Pareto front is illustrated
which contains nine points, and we imagine the case of
generator producing a series of points of which these nine
are the Pareto set, and an archiver whose bound is N = 5.
Depending on the order in which points are generated by
the generator (and hence the order they are presented to a
precise archiver), the contents of a precise archiver at the
end of the process may be any subset of these nine points.

A

B
C

D

E

unrepresentative
cluster

Note in particular that it may be the ‘unrepresentative
cluster’ in the figure, or it may be the well-spread-out
collection of points A—E. For most practical purposes, a
well-spread-out set of points would be more favoured.
However, it turns out that the design of archivers to
maintain such good spreads of points (in arbitrary
numbers of dimensions) is very difficult (Knowles &
Corne, 2002; 2003; Laumanns et al, 2002; 2002a). For
example, in order to guarantee maintenance of an ∈ -
approximate archive, which has good properties in terms
of spread across the (approximated) Pareto front, the
archiver of Laumanns et al (algorithm 2 in Laumanns et al
(2002a)) sacrifices precision in the sense we have defined
it here. To elaborate, in ∈ -approximate archiving a
special notion of dominance is used, called ∈ -dominance,
where we say that, for multiobjective vectors f and g, f ∈ -
dominates g iff f⋅∈+)1(dominates g (assuming

maximization). Laumann et al’ s archiver for maintaining
∈ -approximate Pareto sets violates (for example) property
SA3, since a non-dominated point which may be a
candidate for inclusion in a non-full archive will not be
accepted if it is (as it may well be, depending on the value
of ∈) ∈ -dominated by a point already in the archive; that
is, such a point would be rejected, even though it would
lead to a larger approximation to the Pareto set, because it
would be deemed too ‘close’ to an existing point in the
archive.

Finally, we note that the idea of unbounded archives
has been studied in the recent literature. In particular,
Fieldsend et al (2003) describe specialized datastructures
and algorithms which enable fast update and hence speedy
maintenance of such archives. This approach, in which all
non-dominated points are always accepted into the archive
and none is ever removed, does not succumb to the results
in this paper. It is also currently a very uncommon
approach, which is impractical in the many cases where
memory is strictly limited.

4 The GRATIS Theorem

The NFL theorem tells us that, when averaged over all
possible problems, any function of the samples produced
by two algorithms will be the same. This is equation (3),
and it stands for multi-objective samples as well as single-
objective samples. In the single-objective case it is a
profound result, since all of the overwhelmingly typical
measures of algorithm performance, such as the highest
fitness obtained during the run, are covered by the
theorem. However, the situation is quite different for
multiobjective optimisation, because the typical way to
measure absolute performance (we deal with comparative
performance measures in Corne & Knowles (2003)) is via
a function of the archive. For example, this may be the
hypervolume of the archive, its extent, and any of several
other metrics (Hansen & Jaszkiewicz, 1998; Van
Veldhuizen, 1999; Knowles & Corne, 2002; Zitzler et al,

2002). But, the archive will not generally be a correct
reflection of the performance achievable from the sample.

Formalisation will now be helpful. Since we are
dealing with absolute performance metrics over archived
multiobjective optimisation, the question which arises is
whether the following holds:

!! =
ff

amfAPamfAP),,|(),,|(21 . (4)

where A is the set of all archives and),,|(amfAP is the

probability of obtaining archive A after m iterations of
multiojective algorithm a on problem f. We now state and
prove a GeneratoR/Archiver Theorem In Search
(GRATIS).

Theorem: GRATIS

There are pairs of multiobjective algorithms 21,aa for

which the following holds

!! <
ff

amfAPamfAP),,|(),,|(21 . (5)

and consequently, some multiobjective algorithms are
better than others.

Proof:

Let 1a and 2a use precise archiving algorithms with

different bounds, with the archiver of 1a restricted to size

N = 1, and the archive of 2a restricted to size N = 2.

Further, let archive A contain two non-dominated points.
The term on the LHS of equation (5) must be zero in this
case, since, being restricted to hold just 1 point in its
archive, 1a can never produce archive A as a result.

However, 2a will sometimes produce archive A. For

example, consider the problem f where the multiobjective
fitness space contains just two fitnesses, corresponding to
those in A. We can engineer 2a ’ s generator for some

problem f such that these two fitnesses are those of 1z

and 2z , and since 2a ’ s archiver is precise, this will

remain the archive’ s contents throughout. The RHS of
equation (5) is therefore nonzero, and the theorem is
proved.

The proof is straightforward and simple, but may seem
to suggest that the Free Lunch in this scenario is
contingent on the precise values of memory bounds. That
is, for example, an algorithm which can maintain (and
hence return as its result) a set of 100 points is naturally
better than an algorithm that can maintain and return only

10 points. We stress that this result is not so trivial as that
by way of the following alternative, but necessarily longer
proof.

Alternative Proof:

Without loss of generality, we will work in the space of
two-objective problems, where the aim is to maximise
both objectives, x and y. Let 1a and 2a use precise

archiving algorithms with the same bound N = 2, but differ

in response to a non-dominated tz when 1−tA is full as

follows: 1a ’ s archiver always accepts tz if its x value or y

value is larger than that of any other point in 1−tA , and a
point whose objective values are not extremal is removed
(such a point must exist in this 2-objective case with 3 or
more points in consideration). However 2a ’ s archiver

never accepts tz . That is, 2a ’ s archiver is precise, but

never alters the archive unless it has to.
Let the space of multiobjective fitnesses Y under

consideration contain 3 Pareto optimal fitnesses. Let the
two extremal fitnesses in objectives x and y be q and r
respectively. That is, the x value of point q is the largest
among the 3 Pareto optimal fitnesses in Y, and similar for
the y value of r. Let c be the non-extremal Pareto optimal
point.

We will prove that 1a and 2a have different overall

performance by showing that, given an archive A
containing q and r, 1a is more likely to produce it than

2a , even when that likelihood is summed over all possible

problems with fitnesses in Y over the search space X. So,
let A contain just the two points q and r, and let m = 3.
That is, the generator has produced a sequence of 3 points.
There are several cases as follows:

The generator has not produced both q and r. In such
cases (corresponding to a portion of the problems in the
summation in equation (5)), there is no chance of
producing archive A, and the probabilities on the LHS and
RHS of equation (5) are zero.

The next case is that q and r are the first two points
generated (in either order). By definition of 1a and 2a ’ s

archiving algorithms, and given that they are precise
archivers, in this case both will produce archive A
whatever the third point generated happens to be. For
each in the collection of problems in the summation of
equation (5) which lead to such a sequence, both the LHS
and RHS will therefore contribute 1.

The final case is where both q and r are generated, but
one of the first two points generated is neither q nor r. If
the non-extremal point is dominated by q or r, then both
archivers will produce the same result (archive A). If not,
then 1a ’ s archiver will produce A after iteration 3, but

2a ’ s archiver will not. This finally leads to an imbalance

in equation (5), and we have exhausted all cases. Hence,
overall, when averaged over all possible problems,

multiobjective algorithm 1a will produce archive A more

often than will multiobjective algorithm 2a . It generally

follows from this, since absolute performance measures
are functions of the archives returned, that some
Multiobjective algorithms are better than others.

Despite two proofs, there may still seem to be an air of
practical irrelevance to this result, which we can give
shape to in the following observations and question: it
seems that what makes one multiobjective algorithm better
or worse than another is that the two algorithms use
different archivers. Also, although ‘precise’ , the archivers
which have led to ‘beaten’ algorithms so far have been
clearly deficient in some way (smaller in the first case,
indifferent to Pareto extremes in the second case). Is there
not one ‘super-precise’ archiver which all multiobjective
algorithms should use anyway, in which case the GRATIS
theorem would not arise (save for the case when different
algorithms use different archive bounds)?

Current practice strongly suggests this is not the case,
with many variations being explored for precise archivers
(Zitzler, 1999; Knowles & Corne, 2000; Laumanns et al,
2002). More to the point, when we consider what
properties a ‘super-precise’ archiver might have, it would
seem clearly desirable for it to contain (if its bound
allows) the Pareto front of the points it has ‘seen’ , or for it
to be filled up with points contained in that Pareto front.
However, our recent result (Knowles & Corne, 2003),
shows that such cannot in general be guaranteed by any
archiving algorithm. More precisely, we showed that no
bounded (by N) archiver can guarantee to maintain

|)*|,min(FN points, where F* is the Pareto subset of the

generated points. In other words, there is no ‘super-
precise’ archiver which ensures, for sequences of points
which contain a Pareto set of at least size N, to return an
archive containing N Pareto points, and there is not even
any archiver which can generally guarantee to always
return the Pareto set of the generated points even if the
size of this set is within the archive bound. To intuit the
essential background to such
results, consider figure 2.

In the figure, in which we assume objectives are being
minimized towards the bottom left corner, we see four
points and imagine they are generated in the order A, B,
C, then D. For simplicity, we also imagine that our archive
is bounded with N = 2. By the time A and B are generated,
the archive is precisely: {A, B}. When C is generated, the
archiver can either incorporate it (and hence must
eliminate either A or B), or it can choose to reject C
whether to eliminate A, eliminate B, or reject C. Let’ s
assume it decides to reject C. At the next step, when D is
generated, our precise archiver will incorporate D and
eliminate both A and B, and will hence be {D}. Note that
the size of the archive here is smaller than the archive
bound, despite the fact that the number of Pareto points
generated so far is equal to the archive bound. Naturally,

things would have been different in this example if we had
chosen to accept C and eliminate A or B, in which case
the archive following the generation of D would be equal
to the Pareto set generated so far. But, notice that we
could have simply contrived D to be a point which
dominated B and C, and the same issue would have arisen.
The fact that we cannot see into the future (deciding how
to update the archive on the basis of points not yet
generated) leads to this basic limitation on archivers.

Figure 2. Assuming minimization, four points generated in the
order A, B, C, then D. We imagine an archive with bound N = 2,
which is first {A} and then {A, B}. When C is generated, the
archiver must choose whether to eliminate A, eliminate B, or
reject C. If C is rejected, then, after the next step, the archive is
only {D}.

 Since there seems to be no ideal archiver (we also
prove this in Knowles & Corne (2003) with respect to a
definition of ‘ideal’ based on ∈ -approximate sets), there
can only be competing approximations to the ideal. The
state of the art in multiobjective optimisation at the
moment comprises in part a thriving research theme
whereby different researchers are considering the design
of archiving algorithms, and consequently there are
several different archivers being used. The consequence of
this, which follows from the Gratis theorem, is that some
modern multiobjective optimisation approaches are
fundamentally better than others.

5 Concluding Discussion

The NFL Theorem is a profound result which cuts across
all forms of optimization. In its ‘sharp’ form (Schumacher
et al, 2001), it reveals that, given all possible problems
defined over some search space X, every black-box
optimization algorithm (i.e. every algorithm that can be
viewed as visiting points in the search space one by one –
essentially including all local search and population-based
search algorithms) produces the same set of samples. That
is, if a particular algorithm is shown to visit points in a
particular order on precisely 47 problems, then all
algorithms visit points from X in that same order on
precisely 47 problems. This is as true for multiobjective
problem spaces (Radcliffe & Surry, 1995; Corne &
Knowles, 2003) as it is for single-objective problem
spaces (Radcliffe & Surry, 1995; Wolpert & Macready,

1995; 1997). However, when we come to consider the
performance of algorithms, there are important differences
between single objective and multiobjective search.

In single-objective search, there is a straightforward
link between a sample – the sequence of points visited (or
generated) by an algorithm, and the performance of that
algorithm. Mostly, for example, performance is taken to
be the highest (assuming maximization) fitness found
during the run. Hence, performance is simply the highest
ftness in the sample. There may occasionally be other
performance measures in play, but invariably the link
between sample and performance is straightforward and
computationally trivial. Another point, which almost goes
without saying, is that when two algorithms are compared
in terms of performance, we always use the same
performance measure (such as Φ on both the LHS and
RHS of equation (3)). What follows from all this is that, in
single objective optimisation, given the common and
precise ways in which performance is measured and
compared, the average performance (over all problems) of
every algorithm is the same.

Despite the NFL results holding for multiobjective
problem spaces at the level of samples, the follow-on
considerations as regards performance are problematic.
We have already seen that a ‘free lunch’ can arise when
comparative performance is measured by comparative
metrics (Corne & Knowles, 2003). In this paper we have
shown a more direct free lunch result concerning the
simpler case of absolute performance metrics. The result
arises because, in multiobjective optimization, we have no
reliable space-efficient way to keep track of the ‘best so
far’ (the Pareto set of the points generated so far).
Consequently, we are forced to maintain an estimate of
this set, and there are different ways of maintaining this
estimate (different archivers), and it turns out that
multiobjective approaches which use different archivers
can differ in overall performance (i.e. performance
averaged over all possible problems). The essential reason
for the latter is that two archivers can produce different
archives after seeing the same sequence. We would have
the same things to say about single objective optimization
if it were the case that two correct ‘best-so-far’ -trackers
could produce different results on the same sequence, but
this is of course not the case. In fact, the ‘equivalent’
result for single objective optimisation would be
tantamount to saying that a free lunch can arise between
algorithms 1a and 2a if we used different performance

measures for each. However, just as this is true but not
sensibly applicable in single-objective optimisation, we
would claim, backed up by the results herein, that the
standard NFL result is true but not sensibly applicable in
multiobjective optimisation.

The Gratis Theorem applies, strictly, only to
multiobjective optimization approaches which follow the
model in which a generator interacts with an archiver in
the simple way described in section 3. It is not clear that
all multiobjective approaches which use archiving are
appropriately covered by this interaction model, and this
will be explored in later work. In particular, it is notable

A
B

C

D

that the Gratis theorem depends entirely on the archivers
of algorithms 1a and 2a being different. We think that a

more interesting result could be proven concerning
multiobjective approaches in which the generator and
archiver are more closely linked.

Acknowledgments

The first author is grateful to Evosolve (UK Registered
Charity number 1086384) for partial support of this work,
and to British Telecommunications Plc and BT Exact Plc,
who have funded previous projects concerning
multiobjective optimization, out of which arose the idea
for this study. The second author gratefully acknowledges
the support of a CEC Marie Curie Fellowship, contract
number HPMF-CT-2000-00992 (to September 2003) and
a David Phillips Fellowship (from October 2003).

Bibliography

Christensen, S. and Oppacher, F. (2001) What can we
learn from No Free Lunch? A First Attempt to
Characterize the Concept of a Searchable Function, in L.
Spector et al (eds), Proc. of GECCO 2001, Morgan
Kaufmann, pp. 1219–1226.

Corne, D.W. and Knowles, J.D. (2003) No Free Lunch
and Free Leftovers Theorems for Multiobjective
Optimization Problems. Evolutionary Multi-Criterion
Optimization (EMO 2003) Second International
Conference, Faro, Portugal, April 2003, Proceedings, pp.
327-341, Springer LNCS.

Deb, K, Agrawal, S., Pratab, A. and Meyarivan, T. (2000)
A fast elitist non-dominated sorting genetic algorithm for
multiobjective optimization: NSGA-II, KanGAL Technical
Report 200001, Indian Institute of Technology, Kanpur,
India.

Droste, S., Jansen, T. and Wegener, I. (1999), Perhaps
Not a Free Lunch But At Least a Free Appetizer, in W.
Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V.
Honavar, M. Jakiela and R. E. Smith (eds.) Proc. of
GECCO 9), Morgan Kaufmann Publishers, Inc., pp. 833–
839.

Fieldsend, J.E. Everson, R.M., and Singh, S. (2003) Using
Unconstrained Elite Archives for Multi-Objective
Optimization, IEEE Transactions on Evolutionary
Computation 7(3), pp 305-323.

Hansen, M.P. and Jaszkiewicz, A. (1998) Evaluating the
quality of approximations to the non-dominated set, Tech.
Report IMM-REP-1998-7, Technical University of
Denmark.

Igel, C. and Toussaint, M. (2001) On Classes of Functions
for which No Free Lunch Results Hold, see
http://citeseer.nj.nec.com/528857.html.

Knowles, J.D., Corne, D.W. (2000) Approximating the
non-dominated front using the Pareto Archived Evolution
Strategy, Evolutionary Computation, 8(2): 149–172.

Knowles, J.D. and Corne, D.W. (2002) On metrics for
comparing non-dominated sets, in Proc. 2002 Congress
on Evolutionary Comp., IEEE Service Center, Piscataway,
NJ.

Knowles, J.D. and Corne, D.W. (2003) Bounded Pareto
archiving: theory and practice, in Multiple Objective
Meta-Heuristics: Selected Papers, Springer LNES, to
appear.

Laumanns, M., Thiele, L., Deb, K., Zitzler, E. (2002)
Archiving with guaranteed convergence and diversity in
multiobjective optimization, in Proceedings of GECCO
2002, Morgan Kaufmann Publishers, pp. 439–447.

Laumanns, M., Thiele, L., Deb, K., Zitzler, E. (2002a)
Combining Convergence and Diversity in Evolutionary
Multi-Objective Optimization, Evolutionary Computation
10(3): 263–282.

Radcliffe, N.J. and Surry, P.D. (1995) Fundamental
Limitations on Search Algorithms: Evolutionary
Computing in Perspective, in Computer Science Today,
pp. 275–291

Schumacher, C., Vose, M.D. and Whitley, L.D. (2001)
The No Free Lunch Theorem and Problem Description
Length, in L. Spector et al (eds), Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO 2001), Morgan Kaufmann, pp. 565–570.

Van Veldhuizen (1999) Multiobjective Evolutionary
Algorithms: Classifications, Analyses, and New
Innovations, PhD Thesis, Dept. of Electrical and
Computer Eng., Graduate School of Engineering, Air
Force Institute of Technology, Wright-Paterson AFB,
Ohio.

Wolpert, D.H. and Macready, W.G. (1995) No Free
Lunch Theorems for Search, Santa Fe Institute Technical
Report SFI-TR-05-010, Santa Fe Institute, Santa Fe, NM.

Wolpert, D.H. and Macready, W.G. (1997) No Free
Lunch Theorems for Optimization, IEEE Transactions on
Evolutionary Computation 1(1): 67–82.

Zitzler, E. (1999) Evolutionary Algoirthms for
Multiobjective Optimization: Methods and Applications,
PhD Thesis, Swiss Federal Institute of Technology (ETH),
Zurich, Switzerland, November.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M.,
Fonseca, V.G. (2002) Performance assessment of
multiobjective optimizers: an analysis and review,
available from the url:
http://citeseer.nj.nec.com/zitzler02performance.html.

