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Abstract- The No-Free-Lunch (NFL) theorems hold 
for general multiobjective fitness spaces, in the sense 
that, over a space of problems which is closed under 
permutation, any two algorithms will produce the 
same set of multiobjective samples. However, there are 
salient ways in which NFL does not generally hold in 
multiobjective optimization. Previously we have shown 
that a ‘free lunch’ can arise when comparative metrics 
(rather than absolute metrics) are used for 
performance measurement. Here we show that NFL 
does not generally apply in multiobjective optimization 
when absolute performance metrics are used. This is 
because multiobjective optimizers usually combine a 
generator with an archiver. The generator corresponds 
to the ‘algorithm’ in the NFL sense, but the archiver 
filters the sample generated by the algorithm in a way 
that undermines the NFL assumptions. Essentially, if 
two multiobjective approaches have different 
archivers, their average performance may differ. We 
prove this, and hence show that we can say, without 
qualification, that some multiobjective approaches are 
better than others.   


1 Introduction  


The now well-known ‘No Free Lunch’ theorem (NFL) 
refers to a small family of theorems which characterize the 
average behaviour of optimization algorithms over  spaces 
of optimization problems. The seminal works (Wolpert & 
Macready, 1995; 1997), showed that, when performance 
is averaged over all possible optimization problems 
defined over some search space X, no algorithm has a 
performance advantage over any other. This means, for 
example, that no algorithm is better than random search. 
This may seem surprising, but can be intuitively 
understood on the basis that when we consider all possible 
optimization problems over the search space X, it is clear 
that overwhelmingly many of these have no consistent 
structure that could be exploited successfully by any 
particular algorithm. Nevertheless, the NFL result remains 
surprising and interesting, partly since it speaks to the 
relationship between algorithm design and domain 
knowledge.
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NFL casts clearly into focus the fact that any 
‘improvement’ to an algorithm is really a re-alignment of 
that algorithm towards an altered collection of problems. 
There has been and continues to be much debate over the 
importance and applicability of NFL (Radcliffe & Surry, 
1995; Christensen & Oppacher, 2001; Droste et al, 1999; 
Igel & Toussaint, 2001). However, the main consequence 
for the majority of researchers in optimization is to 
recognize that the NFL result automatically precludes any 
claim of the form ‘algorithm A is better than algorithm B’, 
for any pair of algorithms A and B. For example, the 
statement ‘Particle Swarm Optimization outperforms 
Simulated Annealing’ is false. Any such statement can 
only be true if qualified in terms of the set of problems 
under consideration, and can then only be true if that set is 
not ‘closed under permutation’ (c. u. p.) (Schumacher et 
al, 2001). If we define an optimization problem as a 
mapping which assigns a fitness to every point in a search 
space, then a set of such problems is c.u.p. if and only if 
any permutation of the fitnesses of a problem in the set 
produces some other problem in the set. The set of ‘all 
problems’ over some given search space is an example of 
such a set. 


In the remainder of the article, we first provide, in 
section 2, some necessary background and notation, and 
briefly relate some previous relevant work. Then, in 
section 3, we outline the essential ‘generator plus 
archiver’ structure of most modern multiobjective 
algorithms, a fact which is salient to the failure of NFL to 
sensibly apply as regards algorithm performance in the 
multiobjective case. In section 4, we prove (twice) a 
theorem that shows that two multiobjective optimizers can 
differ in performance over all problems. We conclude 
with general discussion in section 6.


2 Preliminaries 


Consistent with Wolpert & Macready (1997), we talk of a 
search space X and a set of ‘fitnesses’ Y. We will also 
allow a fitness y in Y  to be either single or multiobjective. 
That is, we will not, unless it seems absolutely necessary, 
introduce extra notation for multiobjective fitness vectors.
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What is said in the following holds equally for single or 
multiobjective optimisation, unless otherwise indicated. 


An optimisation problem f is identified with a mapping 


YXf →:  and XYF =  is the space of all problems. Its 


size is clearly |||| XY . A black-box optimisation algorithm 


a generates a time-ordered sequence of points in the 
search space, associated with their fitnesses, called a 
sample. A sample of size m is denoted 
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general, )(id X
m  is the ith distinct point in the search space 


X visited by the algorithm, and )(id Y
m  is the fitness of this 


point. We may use the term X
md  to denote the vector 


containing only the )(id X
m , and similarly Y


md  for the time-


ordered set of fitness values in the sample   
We can now characterise what we mean by an 


optimisation algorithm. We think of an optimisation 
algorithm as a process which generates a sequence of 
points from the search space – i.e. it visits points in the 
search space one by one in a given order. Which point is 
visited next depends only on the points visited previously. 
It is therefore a mapping from samples to points in X, with 


the restriction that X
mm dda ∉)( . That is, it does not revisit 


previously visited points in X. This restriction, plus that of 
the algorithm being deterministic, is imposed for 
simplicity but does not affect the generality of the 
resulting theorems.  


It is of interest to consider the probability of a 
particular sample (i.e. a particular sequence of points) 
being generated by algorithm a after m iterations on 


problem f. This is denoted with ),,|( amfdP y
m . The 


standard NFL theorem (Wolpert & Macready, 1995; 
1997) is essentially characterised by the following, which 
holds for any pair of algorithms 1a  and 2a :
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So, when averaged over all problems, the probabilities 
of obtaining a particular sample using 1a  amount to the 


same as that of using 2a . In fact, it turns out that if a 


particular sample is generated by 1a  on each of  m


different problems, then 2a , and indeed every other 


algorithm, generates that same sample on a set of m
different problems, which may or may not overlap with  


1a ’ s set (Schumacher et al, 2001).  


      The well-known consequences concerning 
algorithm performance stem from the fact that, in single 
objective optimisation at least, the performance of an 
algorithm is a straightforward function of the sample it 
generates. For example, the result returned by an 
algorithm in single objective optimisation is usually 


)max( y
md  (assuming maximisation, of course). It follows 


from equation (1) that:  
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and of course more generally that: 
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where ℜ→Φ Y
md:  measures performance as a scalar 


valued function of the sample. 
We showed in Corne & Knowles (2003) that although 


equation (3) holds for multiobjective optimisation, and 
indeed holds for certain interesting subsets of 
multiobjective problem spaces, it is actually not as 
applicable in the multiobjective case as it is in the single 
objective case. In Corne & Knowles (2003) we focussed 
on the fact that in multiobjective optimisation we often use 
comparative metrics (Hansen & Jaszkiewicz, 1998; 
Knowles & Corne, 2002; Zitzler et al, 2002) which score 
the relative performance of two algorithms by considering 
the results of both. This is nontrivially different from 
simply comparing the difference of two absolute metrics, 
and it turns out that, in some tangible sense, that when the 
comparison between some pair of algorithms is averaged 
over a c.u.p. space of problems, one of these algorithms 
may show an overall advantage. 


In this paper, we focus on a simpler and more 
accessible line of reasoning which again shows that 
equation (3) is not generally applicable to the 
multiobjective case, even if we only use absolute 
performance metrics.   


3   Generators and Archivers 


For reasons argued in Knowles & Corne (2002; 2003) and 
elsewhere, applied multiobjective optimisation algorithms 
commonly incorporate an archiving process. This involves 
a datastructure (the ‘archive’ ) which maintains an a priori
bounded number of non-dominated points. The archive 
plays the role of the ‘best so far’  placeholder in single 
objective optimisation. However, whereas in single-
objective optimisation it is entirely trivial to maintain this 
best-so-far record, the story is quite different in 
multiobjective optimisation. The problems arise from the 
fact that non-dominated sets can be arbitrarily large, and 
for reasons of time and space complexity we therefore 
need a bound on the size of the archive. The question then 
arises as to what happens when the archive is full, but a 
new non-dominated point is generated. The archiving 
process must decide whether or not to place the new point 
in the archive, and, if it does incorporate the new point, it 
must decide which existing point(s) to remove. In this 
way, although ideally we would want the archive to 
maintain the ‘best so far’  record of the multiobjective 
search, it can only in general maintain an approximation to 
that. As we shall see, this essentially leads to ‘free lunch’  
results for archived multiobjective search. 







To bring out the results, we will first formalise a simple 
version of a multiobjective algorithm which uses an 
archive. Note that this includes the vast majority of 
published evolutionary multiobjective approaches (which 
either explicitly maintains an archive – e.g. Knowles & 
Corne (2000) – or exhibits a de facto archive in its 
management of the population – e.g. Deb et al (2000)). 
We can think of a multiobjective algorithm as a 
combination of a generator and an archiver. The 
generator produces a series of points from the search 
space X, and we will model it in the way familiarly used 
for algorithms in the NFL literature. That is, m iterations 
of the generator yields a sample  md  as introduced in 


section 2, and the generator itself is a mapping from a 


sample md  to some point in X which was not in X
md . We 


will simplify the notation here and set ))(),(( tdtdz Y
m


X
m


t ≡ ,


i.e. tz  is the tth point produced by the generator.  
On the other hand, an archiver is a mapping 


NN Zr AA →×: , where NA  is the set of  all archives 


containing no more than N points, and Z  is simply YX × ,
the elements of which are points in the search space 
associated with their (multiobjective) fitnesses. The 
archiver takes successive points from the generator, in 


each case taking archive 1−tA  and point tz , and 


outputting archive tA , the new notation having the 
obvious meaning. Both to emphasise practical relevance in 
the following, and to simplify some of the discussion and 
formalities, we will only consider a subset of archiving 
algorithms which we call precise archivers. A precise 
archiver is one which ensures, in its local archiving steps, 
that as many non-dominated points as  possible are kept in 
the archive, and only non-dominated points are kept. A 
precise archiver with bound N has the following 
properties: 


• SA1:  if tz  dominates one or more points in 
1−tA , then tz  is incorporated into tA  and the 


points it dominated (and no others) are removed. 


• SA2:  if tz  is dominated by one or more points 


in 1−tA , then the archive remains unchanged (i.e. 
tz  is not incorporated, and no points are 


removed). 


• SA3:  if 1−tA  contains fewer than N points, and 


neither SA1 nor SA2 apply, then tz is
incorporated into the archive and no points are 
removed. 


These properties are clearly necessary if we wish the 


archive at time  tA  to contain (subject to the bound N) the 


non-dominated subset of tt zA ∪−1 , which is an obvious 
requirement if we aim to return the best approximation we 
can to the set of Pareto optimal points produced by the 
generator. Property SA1 is straightforward, ensuring that a 


precise archive always accepts a point that dominates any 
point within it, and then removes the dominated points. 
Property SA2 ensures that an archive will always reject a 
point that is dominated by something already present in it. 
Property SA3 simply includes a new non-dominated point 
in the archive if space is available. This reflects a general 
assumed desire, which is usually felt to be consistent with 
the idea of maintaining a good approximation to the 
Pareto front, to fill as many slots in the archive as 
possible. Put another way, given that we have a bound of 
N on the archive size, and assuming the Pareto set of the 
points produced by the generator ends up being either N or 
greater, then we would hope that the archive contains N
non-dominated points at the end of the run. In the case that 
the generator has produced s < N Pareto points, we would 
hope and expect that the archive contains precisely these s
points. Where precise archivers can vary is entirely in 


what happens when 1−tA  is full (with N points) but tz  is 


non-dominated with respect to all points in 1−tA .
It is worth noting that not all published archivers are 


precise. This arises for good reasons, which are illustrated 
by Figure 1.  


Figure 1. A contrived Pareto front containing nine points. If an 
archive was bounded to contain at most 5 points, then the set of 
points labeled A—E would be a preferable archive to the set of 
points labeled ‘unrepresentative cluster’ . This illustrates the 
motivation behind archiving algorithms which eschew all the 
properties of a ‘precise’  archiver in favour of promoting the 
maintenance of a diverse set of points in the archive.    


In the figure, a contrived Pareto front is illustrated 
which contains nine points, and we imagine the case of  
generator producing a series of points of which these nine 
are the Pareto set, and an archiver whose bound is N = 5. 
Depending on the order in which points are generated by  
the generator (and hence the order they are presented to a 
precise archiver), the contents of a precise archiver at the 
end of the process may be any subset of these nine points. 
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Note in particular that it may be the ‘unrepresentative 
cluster’  in the figure, or it may be the well-spread-out 
collection of points A—E. For most practical purposes, a 
well-spread-out set of points would be more favoured. 
However, it turns out that the design of archivers to 
maintain such good spreads of points (in arbitrary 
numbers of dimensions) is very difficult (Knowles & 
Corne, 2002; 2003; Laumanns et al, 2002; 2002a). For 
example, in order to guarantee maintenance of an ∈ -
approximate archive, which has good properties in terms 
of spread across the (approximated) Pareto front, the 
archiver of Laumanns et al (algorithm 2 in Laumanns et al 
(2002a)) sacrifices precision in the sense we have defined 
it here. To elaborate, in ∈ -approximate archiving a 
special notion of dominance is used, called ∈ -dominance, 
where we say that, for multiobjective vectors f and g, f ∈ -
dominates g iff  f⋅∈+ )1(  dominates g (assuming 


maximization). Laumann et al’ s archiver for maintaining  
∈ -approximate Pareto sets violates (for example) property 
SA3, since a non-dominated point which may be a 
candidate for inclusion in a non-full archive will not be 
accepted if it is (as it may well be, depending on the value 
of ∈ ) ∈ -dominated by a point already in the archive; that 
is, such a point would be rejected, even though it would 
lead to a larger approximation to the Pareto set, because it 
would be deemed too ‘close’  to an existing point in the 
archive. 


Finally, we note that the idea of unbounded archives 
has been studied in the recent literature. In particular, 
Fieldsend et al (2003) describe specialized datastructures 
and algorithms which enable fast update and hence speedy 
maintenance of such archives. This approach, in which all 
non-dominated points are always accepted into the archive 
and none is ever removed, does not succumb to the results 
in this paper. It is also currently a very uncommon 
approach, which is impractical in the many cases where 
memory is strictly limited.    


4   The GRATIS Theorem 


The NFL theorem tells us that, when averaged over all 
possible problems, any function of the samples produced 
by two algorithms will be the same. This is equation (3), 
and it stands for multi-objective samples as well as single-
objective samples. In the single-objective case it is a 
profound result, since all of the overwhelmingly typical 
measures of algorithm performance, such as the highest 
fitness obtained during the run, are covered by the 
theorem. However, the situation is quite different for 
multiobjective optimisation, because the typical way to 
measure absolute performance (we deal with comparative 
performance measures in Corne & Knowles (2003)) is via 
a function of the archive. For example, this may be the 
hypervolume of the archive, its extent, and any of several 
other metrics (Hansen & Jaszkiewicz, 1998; Van 
Veldhuizen, 1999; Knowles & Corne, 2002; Zitzler et al, 


2002). But, the archive will not generally be a correct 
reflection of the performance achievable from the sample.


Formalisation will now be helpful. Since we are 
dealing with absolute performance metrics over archived 
multiobjective optimisation, the question which arises is 
whether the following holds: 
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where A is the set of all archives and ),,|( amfAP  is the 


probability of obtaining archive A after m iterations of 
multiojective algorithm a on problem f. We now state and 
prove a GeneratoR/Archiver Theorem In Search 
(GRATIS).  


Theorem: GRATIS 


There are pairs of multiobjective algorithms 21,aa  for 


which the following holds
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and consequently, some multiobjective algorithms are 
better than others. 


Proof:


Let 1a  and 2a  use precise archiving algorithms with 


different bounds, with the archiver of 1a  restricted to size 


N = 1, and the archive of 2a  restricted to size N = 2. 


Further, let archive A contain two non-dominated points. 
The term on the LHS of equation (5) must be zero in this 
case, since, being restricted to hold just 1 point in its 
archive, 1a  can never produce archive A as a result. 


However, 2a  will sometimes produce archive A. For 


example, consider the problem f where the multiobjective 
fitness space contains just two fitnesses, corresponding to 
those in A. We can engineer  2a ’ s generator for some 


problem f such that these two fitnesses  are those of 1z


and 2z , and since 2a ’ s archiver is precise, this will 


remain the archive’ s contents throughout. The RHS of 
equation (5) is therefore nonzero, and the theorem is 
proved. 


The proof is straightforward and simple, but may seem 
to suggest that the Free Lunch in this scenario is 
contingent on the precise values of memory bounds. That 
is, for example, an algorithm which can maintain (and 
hence return as its result) a set of 100 points is naturally 
better than an algorithm that can maintain and return only 







10 points. We stress that this result is not so trivial as that 
by way of the following alternative, but necessarily longer 
proof. 


Alternative Proof:


Without loss of generality, we will work in the space of 
two-objective problems, where the aim is to maximise 
both objectives, x and y. Let 1a  and 2a  use precise 


archiving algorithms with the same bound N = 2, but differ 


in response to a non-dominated tz  when 1−tA  is full as 


follows: 1a ’ s archiver always accepts tz  if its x value or y


value is larger than that of any other point in  1−tA , and a 
point whose objective values are not extremal is removed 
(such a point must exist in this 2-objective case with 3 or 
more points in consideration). However 2a ’ s archiver 


never accepts tz . That is, 2a ’ s archiver is precise, but 


never alters the archive unless it has to. 
Let the space of multiobjective fitnesses Y under 


consideration contain 3 Pareto optimal fitnesses.  Let the 
two extremal fitnesses in objectives x and y be q and r
respectively. That is, the x value of point q is the largest 
among the 3 Pareto optimal fitnesses in Y, and similar for 
the y value of r. Let c be the non-extremal Pareto optimal 
point. 


We will prove that 1a  and 2a  have different overall 


performance by showing that, given an archive A
containing q and r, 1a  is more likely to produce it than 


2a , even when that likelihood is summed over all possible 


problems with fitnesses in Y over the search space X. So, 
let A contain just the two points q and r, and let m = 3. 
That is, the generator has produced a sequence of 3 points. 
There are several cases as follows:   


The generator has not produced both q and r. In such 
cases (corresponding to a portion of the problems in the 
summation in equation (5)), there is no chance of 
producing archive A, and the probabilities on the LHS and 
RHS of equation (5) are zero.  


The next case is that q and r are the first two points 
generated (in either order). By definition of 1a  and 2a ’ s


archiving algorithms, and given that they are precise 
archivers, in this case both will produce archive A
whatever the third point generated happens to be.  For 
each in the collection of problems in the summation of 
equation (5) which lead to such a sequence, both the LHS 
and RHS will therefore contribute 1. 


The final case is where both q and r are generated, but 
one of the first two points generated is neither q nor r. If 
the non-extremal point is dominated by q or r, then both 
archivers will produce the same result (archive A). If not, 
then 1a ’ s archiver will produce A after iteration 3, but 


2a ’ s archiver will not. This finally leads to an imbalance 


in equation (5), and we have exhausted all cases. Hence, 
overall, when averaged over all possible problems, 


multiobjective algorithm 1a  will produce archive A more 


often than will multiobjective algorithm 2a . It generally 


follows from this, since absolute performance measures 
are functions of the archives returned, that some  
Multiobjective algorithms are better than others. 


Despite two proofs, there may still seem to be an air of 
practical irrelevance to this result, which we can give 
shape to in the following observations and question: it 
seems that what makes one multiobjective algorithm better 
or worse than another is that the two algorithms use 
different archivers. Also, although ‘precise’ , the archivers 
which have led to ‘beaten’  algorithms so far have been 
clearly deficient in some way (smaller in the first case, 
indifferent to Pareto extremes in the second case). Is there 
not one ‘super-precise’  archiver which all multiobjective 
algorithms should use anyway, in which case the GRATIS 
theorem would not arise (save for the case when different 
algorithms use different archive bounds)? 


Current practice strongly suggests this is not the case, 
with many variations being explored for precise archivers 
(Zitzler, 1999; Knowles & Corne, 2000; Laumanns et al, 
2002). More to the point, when we consider what 
properties a ‘super-precise’  archiver might have, it would 
seem clearly desirable for it to contain (if its bound 
allows) the Pareto front of the points it has ‘seen’ , or for it 
to be filled up with points contained in that Pareto front. 
However, our recent result (Knowles & Corne, 2003), 
shows that such cannot in general be guaranteed by any 
archiving algorithm. More precisely, we showed that no 
bounded (by N) archiver can guarantee to maintain 


|)*|,min( FN  points, where F* is the Pareto subset of the 


generated points. In other words, there is no ‘super-
precise’  archiver which ensures, for sequences of points 
which contain a Pareto set of at least size N, to return an 
archive containing N Pareto points, and there is not even 
any archiver which can generally guarantee to always 
return the Pareto set of the generated points even if the 
size of this set is within the archive bound. To intuit the 
essential background to such  
results, consider figure 2.  


In the figure, in which we assume objectives are being 
minimized towards the bottom left corner, we see four 
points and imagine they are generated in the order A, B, 
C, then D. For simplicity, we also imagine that our archive 
is bounded with N = 2. By the time A and B are generated, 
the archive is precisely: {A, B}. When C is generated, the 
archiver can either incorporate it (and hence must 
eliminate either A or B), or it can choose to reject C 
whether to eliminate A, eliminate B, or reject C. Let’ s 
assume it decides to reject C. At the next step, when D is 
generated, our precise archiver will incorporate D and 
eliminate both A and B, and will hence be {D}. Note that 
the size of the archive here is smaller than the archive 
bound, despite the fact that the number of Pareto points 
generated so far is equal to the archive bound. Naturally, 







things would have been different in this example if we had 
chosen to accept C and eliminate A or B, in which case 
the archive following the generation of D would be equal 
to the Pareto set generated so far. But, notice that we 
could have simply contrived D to be a point which 
dominated B and C, and the same issue would have arisen. 
The fact that we cannot see into the future (deciding how 
to update the archive on the basis of points not yet 
generated) leads to this basic limitation on archivers. 


Figure 2. Assuming minimization, four points generated in the 
order A, B, C, then D. We imagine an archive with bound N = 2, 
which is first {A} and then {A, B}. When C is generated, the 
archiver must choose whether to eliminate A, eliminate B, or 
reject C. If C is rejected, then, after the next step, the archive is 
only {D}.     


 Since there seems to be no ideal archiver (we also 
prove this in Knowles & Corne (2003) with respect to a 
definition of ‘ideal’  based on ∈ -approximate sets), there 
can only be competing approximations to the ideal. The 
state of the art in multiobjective optimisation at the 
moment comprises in part a thriving research theme 
whereby different researchers are considering the design 
of archiving algorithms, and consequently there are 
several different archivers being used. The consequence of 
this, which follows from the Gratis theorem, is that some 
modern multiobjective optimisation approaches are 
fundamentally better than others. 


5   Concluding Discussion 


The NFL Theorem is a profound result which cuts across 
all forms of optimization. In its ‘sharp’  form (Schumacher 
et al, 2001), it reveals that, given all possible problems 
defined over some search space X, every black-box 
optimization algorithm (i.e. every algorithm that can be 
viewed as visiting points in the search space one by one – 
essentially including all local search and population-based 
search algorithms) produces the same set of samples. That 
is, if a particular algorithm is shown to visit points in a 
particular order on precisely 47 problems, then all
algorithms visit points from X in that same order on 
precisely 47 problems. This is as true for multiobjective 
problem spaces (Radcliffe & Surry, 1995; Corne & 
Knowles, 2003) as it is for single-objective problem 
spaces (Radcliffe & Surry, 1995; Wolpert & Macready, 


1995; 1997). However, when we come to consider the 
performance of algorithms, there are important differences 
between single objective and multiobjective search.  


In single-objective search, there is a straightforward 
link between a sample – the sequence of points visited (or 
generated) by an algorithm, and the performance of that 
algorithm. Mostly, for example, performance is taken to 
be the highest (assuming maximization) fitness found 
during the run. Hence, performance is simply the highest 
ftness in the sample. There may occasionally be other 
performance measures in play, but invariably the link 
between sample and performance is straightforward and 
computationally trivial. Another point, which almost goes 
without saying, is that when two algorithms are compared 
in terms of performance, we always use the same 
performance measure (such as Φ  on both the LHS and 
RHS of equation (3)). What follows from all this is that, in 
single objective optimisation, given the common and 
precise ways in which performance is measured and 
compared, the average performance (over all problems) of 
every algorithm is the same.  


Despite the NFL results holding for multiobjective 
problem spaces at the level of samples, the follow-on 
considerations as regards performance are problematic. 
We have already seen that a ‘free lunch’  can arise when 
comparative performance is measured by comparative 
metrics (Corne & Knowles, 2003). In this paper we have 
shown a more direct free lunch result concerning the 
simpler case of absolute performance metrics. The result 
arises because, in multiobjective optimization, we have no 
reliable space-efficient way to keep track of the ‘best so 
far’  (the Pareto set of the points generated so far). 
Consequently, we are forced to maintain an estimate of 
this set, and there are different ways of maintaining this 
estimate (different archivers), and it turns out that 
multiobjective approaches which use different archivers 
can differ in overall performance (i.e. performance 
averaged over all possible problems). The essential reason 
for the latter is that two archivers can produce different 
archives after seeing the same sequence. We would have 
the same things to say about single objective optimization 
if it were the case that two correct ‘best-so-far’ -trackers 
could produce different results on the same sequence, but 
this is of course not the case. In fact, the ‘equivalent’  
result for single objective optimisation would be 
tantamount to saying that a free lunch can arise between 
algorithms  1a  and 2a  if we used different performance 


measures for each. However, just as this is true but not 
sensibly applicable in single-objective optimisation, we 
would claim, backed up by the results herein, that the 
standard NFL result is true but not sensibly applicable in 
multiobjective optimisation. 


The Gratis Theorem applies, strictly, only to 
multiobjective optimization approaches which follow the 
model in which a generator interacts with an archiver in 
the simple way described in section 3. It is not clear that 
all multiobjective approaches which use archiving are 
appropriately covered by this interaction model, and this 
will be explored in later work. In particular, it is notable 


A
B


C


D







that the Gratis theorem depends entirely on the archivers 
of algorithms  1a  and 2a  being different. We think that a 


more interesting result could be proven concerning 
multiobjective approaches in which the generator and 
archiver are more closely linked. 
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