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Abstract - Almost all approaches to multiobjec-
tive optimization are based on Genetic Algorithms,
and implementations based on Evolution Strategies
(ESs) are very rare. In this paper, a new approach
to multiobjective optimization, based on ESs, is pre-
sented. The comparisons with other algorithms indi-
cate a good performance of the Multiobjective Elitist
Evolution Strategy.


I. INTRODUCTION


Solving multiobjective engineering problems is a very
difficult task due to, in general, for this class of problems,
the objectives conflict across a high-dimensional problem
space. Thus, the interaction between the multiple objec-
tives gives rise to a set of efficient solutions, known as the
Pareto-optimal solutions. During the past decade, the
application of evolutionary algorithms to multiobjective
optimization has been investigated by several authors,
such as Schaffer [10], Fonseca and Fleming [5], Horn et
al. [4], Srinivas and Deb [12] and Zitzler and Thiele [14].
Almost all approaches are based on Genetic Algorithms
(GAs) [2] which were extended in order to track mul-
tiobjective problems. On the other hand, implementa-
tions based on Evolution Strategies (ESs) [8] are very
rare, such as the algorithm proposed by Knowles and
Corne [7]. However, the latter approach does not use
some traditional features of ESs, namely, the real coding
of decision variables and the adaptation of step sizes for
mutation. Thus, it is crucial to investigate how to extend
ESs to multiobjective optimization, since, in the past,
they prove to be powerful single objective optimizers. In
this paper, a new approach to multiobjective optimiza-
tion, based on ESs, is presented. In the new algorithm,
an effort was made in order to maintain the main fea-
tures of traditional ESs as single objective optimizers.
Several mechanisms, like elitism, have been introduced
in order to improve the algorithm performance, as previ-
ously suggested by Zitzler et al. [15] and Van Veldhuizen
and Lamont [13].


In section 2, a short introduction to ES is presented.
Section 3 describes the Multiobjective Elitist Evolution
Strategy (MEES) implemented. Next, the results of the
application to several problems are presented. Finally,
some conclusions and future work are addressed.


Figure I
The (µ + λ) Evolution Strategy
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II. EVOLUTION STRATEGIES


Evolution Strategies are search procedures that mimic
the natural evolution of the species in the natural sys-
tems. They were first reported by Rechenberg [8][9] and
later by Schwefel [11]. ESs were developed to solve single
objective optimization problems. Like GAs, they work
with populations of candidate solutions, requiring only
data based on the objective function and constraints,
and no derivatives or other auxiliary knowledge. How-
ever, ESs work directly with the real representation of
the decision variables and the transitions rules are deter-
ministic (in particular, selection is a deterministic proce-
dure). In spite of, traditionally, the search of new points
was based on one single operator, the mutation operator,
more recently, a recombination operator was introduced.
One of the most promising features of ESs is that they
use adaptive step sizes for mutation.


Figure I illustrates the (µ+λ)-ES. The (µ, λ)-ES is sim-
ilar differing, basically, on the selection procedure. Thus,
in (µ+λ)-ES, at a given generation, there are µ parents,
and λ offspring generated by mutation. Mutation creates
new points by adding random normal distributed quan-
tities with mean zero and variance σ2


i . It is important
to note that, for each decision variable, an individual
standard deviation σi is used (controlling the step sizes).
Then, the µ+λ members are sorted according to their ob-
jective function values. Finally, the best µ of all the µ+λ
members become the parents of the next generation (i.e.,
the selection takes place between the µ+λ members). On
the other hand, in (µ, λ)-ES, the µ best of the λ mem-
bers generated become the parents of the next generation
(i.e., the selection takes place between the λ members).







For many problems, λ/µ ≈ 7 is suggested. During the
search, the step sizes for mutation are adapted. Several
self-adaptation schemes are possible. One possibility is
to actualize the standard deviations σi (for each decision
variable) according to the equation:


σ
(k+1)
i = σ


(k)
i eziez (1)


where zi ∼ N(0, ∆σ2), z ∼ N(0,∆σ‘2) and ∆σ and ∆σ‘
are parameters of the algorithm.


Schwefel [11] has reported a remarkable acceleration
in the search process, as well as, the facilitation of self-
adaptation of parameters by introducing a recombina-
tion operator. Basically, the recombination operator con-
sists on, before mutation, to recombine a set of cho-
sen parents to find a new solution. A given number
ρ (1 ≤ ρ ≤ µ) of parents are randomly chosen for re-
combination. When ρ = 1 then there is no recombina-
tion. Thus, the nomenclature for ESs can now be ex-
tended, and ESs with recombination are usually referred
as (µ/ρ+λ)-ES or (µ/ρ, λ)-ES. Two types of recombina-
tion are, mainly, considered: intermediate and discrete
recombination. In the intermediate recombination, the
components of the offspring are obtained by calculating
the average of the corresponding components of parents
(randomly selected from the population). In the discrete
recombination, each component of the offspring is chosen
from one of the ρ parents at random. This procedure al-
lows different combinations of the values of the decision
variables from existing solutions in the population.


III. A MULTIOBJECTIVE ELITIST
EVOLUTION STRATEGY


The MEES approach to multiobjective optimization
differs from conventional ESs with respect to the selec-
tion operator emphasizing the non-domination of solu-
tions. Non-domination is tested at each generation in
the selection phase, thus defining an approximation to
the Pareto optimal set. On the other hand, a sharing
method is used to distribute the solutions in the pop-
ulation over the Pareto-optimal region. The usual de-
terministic selection was also modified in order to track
multiobjective optimization. The real representation of
the decision variables, mutation and recombination oper-
ators remain as usual. The step sizes for mutation were
adapted with a non-isotropic self-adaptation scheme as
in equation 1.


A. Fitness Assignment


For each generation, all non-dominated solutions of the
λ or µ + λ solutions will constitute the 1st front. To
these solutions a fitness value of 1 is assigned. In order


to maintain diversity, a sharing scheme is then applied
to the fitness values of these solutions [1]. Thus, the fit-
ness value of each solution is divided by a quantity, called
niche count, proportional to the number of solutions hav-
ing a distance inferior to a parameter, the σshare. All dis-
tances are measured in objective space. Thereafter, the
solutions of the 1st front are ignored temporarily, and
the rest of solutions are processed. To the second level of
non-dominated solutions is assigned a fitness value equal
to 1 plus the worst computed fitness value from the solu-
tions in 1st front. Next, the fitness value of each solution
in the 2nd front is divided by the respective niche count
value. This process is repeated till all the λ or µ+λ solu-
tions are assigned a fitness value. This fitness assignment
process will emphasize the non-domination of solutions,
since the fitness values of all solutions in the 1st front will
have a value inferior to all the fitness values of solutions
in the 2nd front, and so on. Moreover, the co-existence
of multiple non-dominated solutions is encouraged by the
sharing scheme.


B. Selection Operator


In the simplest form, at each generation, only µ from the
λ or µ+λ solutions are selected for next generation. Two
situations were considered:


• if the number of solutions in 1st front, n1, is not
greater than µ, then a deterministic selection is per-
formed;


• Otherwise, if n1 is greater than µ, then a tournament
selection is performed.


The deterministic selection consists on, after sorting the
λ or µ + λ offspring according to their fitness values, to
select the µ best (the ones with lower fitness values). This
selection is obviously similar to the traditional selection
of ESs, in the sense that only the best individuals will be
present on the next generation. On the other hand, when
the number of solutions in the 1st front is high (greater
than µ) then a selection scheme guaranteing that all non-
dominated solutions have a possibility of being present
in the next generation is adopted. This selection consists
on, after sorting the λ or µ + λ offspring, performing
a tournament between solutions of the 1st front. The
tournament consists on picking two individuals from the
offspring and then the best one is selected.


C. Elitist Scheme


The elitist technique is based on a separate population,
the secondary population (SP) composed of all (or a part
of) potential Pareto optimal solutions found so far dur-
ing the search process. In this sense, SP is completely







independent of the main population and, at the end of
the entire search, it contains the set of all non-dominated
solutions generated so far.


A parameter θ is introduced in order to control the
elitism level. This parameter states the maximum num-
ber of non-dominated solutions of SP, the so-called elite,
that will be introduced in main population. These non-
dominated solutions will effectively participate in the
search process. If the number of solutions in SP (nSP )
is greater or equal than θ, then θ non-dominated solu-
tions are randomly selected from SP to constitute the
elite. Otherwise, only nSP non-dominated solutions are
selected from SP to constitute the elite. In the latter
case, the elite will only have nSP members.


In its simplest form, for all generations, the new po-
tential Pareto optimal solutions found are stored in SP.
The SP update implies the determination of Pareto opti-
mality of all solution stored so far, in order to eliminate
those that became dominated. As the size of SP grows,
the time to complete this operation may become signif-
icant. So, in order to prevent the growing computation
times, in general, a maximum SP size is imposed. Thus,
the algorithm consists on, for all generations, to store, in
SP, each Pareto optimal solution xnd found in the main
population if:


1. all solutions in SP are different of xnd;
2. none of the solutions in SP dominates xnd.


Next, all solutions in SP that became dominated are elim-
inated. As mentioned, as the size of SP increases, the
execution time and memory requirements also increase.
So, it is convenient to keep relatively small sizes of SP.
In this sense, the previous algorithm can be modified ac-
cordingly. A new parameter d is introduced, stating the
minimum desirable distance in objective space between
potential Pareto optimal solutions in SP. So, the algo-
rithm is modified by the introduction of the following
step:


3. the distance from xnd to any of the non-dominated
solutions in SP is greater than d (euclidean distance
measured on objective space).


IV. RESULTS


Several experiments were carried out in order to study
the effect of the parameters of the elitist scheme, as well
as, to compare its performance with some other evolu-
tionary multiobjective approaches.


A. Test Problems


The multiobjective problems were chosen from Zitzler et
al. [15]. All problems have two objective functions, no


TABLE I
MULTIOBJECTIVE PROBLEMS


Problem Objective functions


ZDT1 (n = 30) f1(x) = x1


xi ∈ [0, 1] f2(x) = g(x)[1−
√


x1/g(x)]


i = 1, ..., n g(x) = 1 + 9(
∑n


i=2
xi)/(n− 1)


ZDT2 (n = 30) f1(x) = x1


xi ∈ [0, 1] f2(x) = g(x)[1− (x1/g(x))2]


i = 1, ..., n g(x) = 1 + 9(
∑n


i=2
xi)/(n− 1)


ZDT3 (n = 30) f1(x) = x1


xi ∈ [0, 1] f2(x) = g(x)[1−
√


x1/g(x)− xi
g(x) sin(10πx1)]


i = 1, ..., n g(x) = 1 + 9(
∑n


i=2
xi)/(n− 1)


ZDT4 (n = 10) f1(x) = x1


x1 ∈ [0, 1] f2(x) = g(x)[1−
√


x1/g(x)]


xi ∈ [−5, 5] g(x) = 1 + 10(n− 1) +
∑n


i=2
[x2


i − 10 cos(4πxi)]


i = 2, ..., n


ZDT6 (n = 10) f1(x) = 1− exp(−4x1) sin6(4πx1)
xi ∈ [0, 1] f2(x) = g(x)[1− (f1(x)/g(x))2]


i = 1, ..., n g(x) = 1 + 9[(
∑n


i=2
xi)/(n− 1)]0.25


constraints and the Pareto-optimal solutions are known.
Table I describes these problems, showing the number of
variables and their bounds.


The MEES was applied to each problem with a rea-
sonable set of values for the parameters (no effort was
made in finding the best parameter setting for each prob-
lem). The initial values for standard deviations (step
sizes) and parameters for its self adaptation during the
search were the suggested for ESs in single objective opti-
mization. The points in the initial population were gen-
erated randomly. Several scenarios were considered in
order to study the effects of the recombination operator,
the selection mechanism, the elitism and d parameter.
Thus, for each scenario all parameters values were kept
constant except the feature under study (interaction be-
tween parameters was not studied in this phase).


B. Metrics of Performance


Comparing different multiobjective optimization algo-
rithms is substantially more complex than for the case
of single objective optimizers, because the optimization
goal itself consists on finding a non-dominated set of so-
lutions that is:


• a good approximation to the true Pareto optimal set
(the distance between the approximation and the
true sets should be minimized);


• a well distributed set in the objective space.


Several attempts can be found in literature to express
the above statements by means of quantitative metrics.
The metric here considered is described by Knowles and
Corne [7] and is based on a statistical method proposed
by Fonseca and Fleming [6]. For several executions of the
algorithms, a statistical test based on the Mann-Whitney







Figure II
Results for ZDT2 problem with 5 and 30 variables
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rank-sum test is applied to the previous collected data.
The results of a comparison can be presented in a pair
[a, b], where a is the percentage of the objective space
on which algorithm A was found statistically superior to
B, and b gives the similar percentage for algorithm B.
Thus, a is the percentage of the objective space where
algorithm A is ’unbeaten’ and, b is the percentage of the
objective space where algorithm B is ’unbeaten’. So,
typically, if a ≈ b ≈ 100% then the algorithms A and
B have similar results. For all results presented in the
paper the statistical significance is at the 5% level and
1000 sampling lines were used.


C. Influence of Recombination


The MEES without the recombination operator seems
to have difficulties in obtaining a well distributed set of
non-dominated solutions when applied to multiobjective
problems with a high number of variables. This is illus-
trated by Figure II, which represents the non-dominated
solutions obtained, in one single run, for ZDT2 problem
with 5 and 30 variables for an (100+150)-ES without any
recombination and, with σshare=0.027, d = 0 and θ = 0.
The stopping criterion was to terminate the execution
after 250 generations. It is clear that a good definition
of the approximation to the Pareto-optimal set was ob-
tained for the ZDT2 problem with 5 variables. How-
ever, for 30 variables, the results are poor, in the sense,
that the solutions are far from the true Pareto-optimal
front and, they are not uniformly distributed in the ob-
jective space. Since MEES without recombination seems
to perform poorly for large dimensional multiobjective
problems, several scenarios of MEES with recombination
were tested. Scenarios that combine the most popular
recombination schemes were considered:


• without any recombination (NOrec scenario);
• intermediate recombination on variables and stan-


TABLE II
INFLUENCE OF RECOMBINATION (ZDT1 PROBLEM)


ZDT1 IIrec IDrec DIrec DDrec
NOrec [100,3.8] [100,2.2] [2.7,100] [2.7,100]
IIrec - [100,7.2] [3.6,100] [3.7,100]
IDrec - - [2.1,100] [2.1,100]
DIrec - - - [56.7,100]


Figure III
Results for ZDT2 problem with and without recombination
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dard deviations (IIrec scenario);
• intermediate recombination on variables and discrete


recombination on standard deviations (IDrec sce-
nario);


• discrete recombination on variables and intermediate
recombination on standard deviations (DIrec sce-
nario);


• discrete recombination on variables and standard de-
viations (DDrec scenario).


For scenarios with recombination, an (100/100,250)-ES
was applied (obviously, an (100,250)-ES was considered
when no recombination exists) with σshare=0.027, d = 0
and θ = 0. As before, the stopping criterion was to
terminate the execution after 250 generations. For each
scenario, the MEES was executed 30 times. Table II
presents the results obtained for all scenarios for the
ZDT1 problem. All scenarios were compared in pairs
using the statistical technique as previously described.
It is clear that the best results were obtained for DDrec
scenario, i.e., when discrete recombination is applied to
decision variables and standard deviations. The MEES
with discrete recombination on variables and standard
deviations (an (100/100,250)-ES) can now be compared
with the performance of MEES without any recombina-
tion for the ZDT2 problem. The comparison is illustrated
by Figure III, which represents the non-dominated solu-
tions obtained in one single run after 250 generations.
The approximation to the Pareto-optimal front obtained
with the MEES with recombination, was far better than
the obtained without any recombination.







TABLE III
INFLUENCE OF ELITISM (ZDT1 PROBLEM)


ZDT1 θ = 10 θ = 20 θ = 50 θ = 100
θ = 0 [0.3,100] [0.3,100] [0.3,100] [0.3,100]
θ = 10 - [100,32.1] [100,13.5] [100,13.5]
θ = 20 - - [96.9,83.9] [96.9,83.9]
θ = 50 - - - [100,100]


Figure IV
Results for ZDT2 problem for θ = 0 and θ = 10
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D. Influence of Elitism


In order to study the influence of the elitism level, an
(100/100,250)-ES with discrete recombination on vari-
ables and standard deviations was applied to the ZDT1
problem. The same values for the parameters were con-
sidered with the exception of θ, which was varied from 0
to 100 as in Table III. The d parameter was fixed equal
to 0 in order to guarantee that in SP all non-dominated
solutions found during the search are present. This table
shows that for increasing values of θ there is a degra-
dation of the performance of the algorithm, due to the
lack of diversity in main population. However, it is also
clear that, for the values of θ tested, the best results
were obtained with elitism. Furthermore, consistently,
the best results were obtained with θ = 10. The compar-
ison between different levels of elitism is illustrated by
Figure IV, which represents the non-dominated solutions
obtained in one single run, after 250 generations for the
ZDT2 problem, with θ = 0 and θ = 10. It is clear that
the approximation to the Pareto-optimal front obtained
with θ = 10 was far better than with θ = 0.


E. Comparison with other algorithms


The elitist ES was compared with four algorithms for the
test problems (ZDT1 to ZDT6 problems). These results
were published by Ziztler et al. [15]. The algorithms con-
sidered here are:


• HLGA: Hajela and Lin’s weighted-sum based ap-
proach [3];


• VEGA: Vector Evaluated Genetic Algorithm [10];


TABLE IV
COMPARISON BETWEEN ALGORITHMS (ZDT1 PROBLEM)


ZDT1 HLGA VEGA NSGA SPEA MEES10
MEES0 [100,8.3] [100,11.4] [100,1.3] [1.7,100] [1.7,100]
HLGA - [75.2,77.5] [8.8,100] [8.3,100] [8.3,100]
VEGA - - [12.0,100] [11.3,100] [11.2,100]
NSGA - - - [1.3,100] [1.3,100]
SPEA - - - - [1.9,100]


TABLE V
COMPARISON BETWEEN ALGORITHMS (ZDT2 PROBLEM)


ZDT2 HLGA VEGA NSGA SPEA MEES10
MEES0 [100,16.3] [100,3.3] [100,3.5] [17.8,97.3] [1.5,100]
HLGA - [25.7,100] [19.0,100] [16.5,100] [15.9,100]
VEGA - - [4.6,100] [3.4,100] [3.2,100]
NSGA - - - [3.6,100] [3.4,100]
SPEA - - - - [1.9,100]


• NSGA: Nondominated Sorting Genetic Algorithm [12];
• SPEA: Strength Pareto Evolutionary Algorithm [14].


For MEES, an (100/100,150)-ES with discrete recombi-
nation in variables and standard deviations was consid-
ered. The MEES was applied without and with elitism
(MEES0 and MEES10, respectively). The d and σshare


parameters were fixed equal to 0 and 0.027, respectively.
The stopping criterion was to terminate the search af-
ter 100 generations. As described with more detail in
[15], for algorithms HLGA, VEGA, NSGA and SPEA,
the population size was 100 (for SPEA the population
size was 80 with an external non-dominated set of 20
points). The crossover and mutation rates were 0.8 and
0.01, respectively. The maximum number of generations
was 250. The niching parameter was fixed in 0.48862. All
algorithms were executed 30 times for each test problem
and, for each run, the set of all non-dominated solutions
generated during the entire search was taken as the out-
come of one optimization run (off-line performance). The
number of objective function evaluations was the same
for algorithms HLGA, VEGA, NSGA and SPEA (ap-
proximately, 25000 evaluations). The number of objec-
tive function evaluations required by MEES was inferior
than the other algorithms (approximately, 15000 evalua-
tions). Tables IV to VIII present the results of compari-


TABLE VI
COMPARISON BETWEEN ALGORITHMS (ZDT3 PROBLEM)


ZDT3 HLGA VEGA NSGA SPEA MEES10
MEES0 [100,13.7] [100,6.6] [100,2.4] [2.4,100] [2.7,100]
HLGA - [55.9,82.9] [14.3,100] [13.7,100] [15.6,100]
VEGA - - [6.9,100] [6.6,100] [7.3,100]
NSGA - - - [2.4,100] [2.7,100]
SPEA - - - - [0.9,100]


TABLE VII
COMPARISON BETWEEN ALGORITHMS (ZDT4 PROBLEM)


ZDT4 HLGA VEGA NSGA SPEA MEES10
MEES0 [100,32.7] [100,9.8] [100,16.7] [100,13.7] [100,27.9]
HLGA - [87.6,47.4] [33.1,100] [33.1,100] [32.7,100]
VEGA - - [10.6,100] [10.6,100] [9.8,100]
NSGA - - - [82.2,100] [16.7,100]
SPEA - - - - [13.7,100]







TABLE VIII
COMPARISON BETWEEN ALGORITHMS (ZDT6 PROBLEM)


ZDT6 HLGA VEGA NSGA SPEA MEES10
MEES0 [63.8,36.9] [64.6,35.7] [58.8,41.5] [51.3,49.2] [85.1,47.0]
HLGA - [100,11.2] [4.9,100] [3.5,100] [25.0,76.0]
VEGA - - [0.0,100] [0.0,100] [34.8,65.4]
NSGA - - - [5.2,100] [15.5,85.3]
SPEA - - - - [17.1,85.4]


TABLE IX
GLOBAL PERFORMANCE


HLGA VEGA NSGA MEES0 SPEA MEES10
ZDT1 8.8 11.4 1.3 100 100 100
ZDT2 16.5 3.4 3.6 100 100 100
ZDT3 14.3 6.9 2.7 100 100 100
ZDT4 32.7 10.6 82.2 100 100 100
ZDT6 25.0 11.2 41.5 63.8 100 76.0


son of these algorithms with MEES. Two classes of algo-
rithms can be distinguished, those that do not use elitism
(HLGA, VEGA NSGA and MEES0) and, those that use,
explicitly, elitism in the search (SPEA and MEES10) .
Thus, considering only the results obtained with non eli-
tist algorithms, the best results were obtained by MEES0


for all test problems considered. Moreover, MEES0 has
outperformed the elitist approaches SPEA in two prob-
lems (ZDT4 and ZDT6 problems) and MEES10 in one
problem (ZDT4 problem). However, MEES10 has beaten
SPEA in all the problems considered. Table IX resumes
the results obtained by different algorithms for all prob-
lems. The values in the table, for each algorithm, are
the median percentage of the objective space that is ’un-
beaten’ when compared with the remaining algorithms.
From this table, it is clear that, in general, the elitism
is useful in guiding the search. The best non elitist al-
gorithm seems to be MEES0. SPEA, globally, outper-
formed MEES10 on ZDT6 problem.


V. CONCLUSIONS AND FUTURE WORK


In this work, a new Elitist Evolution Strategy for mul-
tiobjective optimization was presented. This approach
incorporates the main features of traditional single ob-
jective Evolution Strategies, like real representation of
the decision variables and self-adaptation of step sizes.


The algorithm was tested on several test problems
in order to investigate the influence of some factors on
its performance, as well as, to compare its performance
with other multiobjective evolutionary approaches. As
expected, the results indicated that recombination and
elitism are essential for obtaining good approximations
to the Pareto-optimal front. The Multiobjective Eli-
tist Evolution Strategy without elitism (MEES0) outper-
formed the other non elitist approaches (HLGA, VEGA
and NSGA) for all the test problems considered. The
results of the Multiobjective Elitist Evolution Strategy
with elitism (MEES10) and SPEA were similar. It should
be noted that the number of function evaluations re-


quired by MEES is inferior than the others algorithms
being compared.


Future work will concentrate on the study of param-
eters like population sizes, initial step sizes and self-
adaptation schemes. The influence of the parameter that
controls the density of points in the approximation set to
the Pareto-optimal front will also be investigated.
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