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Abstract:

evolutionary system is how to take measures to preserve

A Kkey problem in a multiobjective
diversity in the population. The mechanism of natural
immune system and entropy principle are applied in
multiobjective evolutionary process to solve this problem
and a strategy of preserving diversity in the population
of multiobjective evolutionary algorithm based on
immune and entropy principles is introduced. The detail
design method is shown in the paper. Finally, we describe
the computer simulation of implementing several
2-objective Flow Shop Scheduling Problems and
compare the computing results of new method with
MultiObjective Genetic Algorithm. Experimental results
that this

population diversity and it has good search performance.

show strategy can effectively preserve
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1 Introduction

Multiobjective Evolutionary Algorithms (MOEAs) are

now a well-established field within Evolutionary
Computation. Many real-world design or decision- making
problems involve simultaneous optimization of multiple
objectives. Usually there is no single optimal solution, but
rather a set of alternative solutions. Evolutionary algorithms
(EAs) seem to be particularly suited to explore the design

space for Pareto-optimal solutions, because they processed a

Miao Li
Hefei Institute of Intelligent Machines

Tingjian Fang

Academia Sinica
Hefei, China

{mli, tjfang} @mail.iim.ac.cn

set of solutions in parallel [1]. Some researchers suggested
that multiobjective search and optimization might be an
interesting area where EAs do better than other blind search
strategies [2].

However when we consider the case of finding a set of
nondominated solutions rather than a single-point solution, a
simple (elitist) EA may converge towards a single solution
and lose other solutions. The concept and the theory of
immunity in biotic science [3] can be used for preference to
improve the performance of EAs. In the paper the density
mechanism of immune system and entropy principle are
applied in multiobjective evolutionary process and a new
strategy of preserving diversity in the population of MOEAs
is introduced to design fitness function for individuals. We
describe the computer simulation of implementing several
2-objective Flowshop Scheduling Problems (FSSP), and
compare the computing results of new method with
MultiObjective Genetic Algorithm. Experimental results
show that this strategy can effectively preserve diversity in

the population and it has good search performance.

2 Immune Principle and Preservation of
Diversity

2.1 Immune Principle Overview

Only a brief overview of the immune principle is
presented here. The immune system is the set of lymphoid
organs and cells whose main aim is the defense of the

organism from alien agents. It has many important features



different from usual life system. These features have
inspired researchers on improving the performance of

evolutionary algorithm [4][5]. However they only apply

immune principles to single objective optimization problems.

What we have done is different from other artificial immune
models, because we solved a key problem of multiobjective
based on its principle. Here we emphasize considering the
evolution of antibody molecules, which are responsible for
recognizing and destroying foreign cells and molecules,
called antigens. These defenders are circulated throughout
the body organs by the bloodstream; they are appropriately
processed in their migration through the lymphatic vessels.
The generation of these defenders is termed the immune
response. Because antibodies possess high specificity to a
given antigen, they do not form an absolute homogeneous
population. They differ from each other by some affinity to
a given antigenic determinant. An important feature of the
immune system is that its self-adaptive mechanism can keep
immune balance, i.e. protective mechanism generates
appropriate number of antibodies by inhibiting and boosting
antibodies to control their density. If we think of antigens as
the objects of actual problem, antibodies as the solution
individuals, the process of inhibiting and boosting the
individual reproduction in MOEAs resembles the generation
of antibody.
2.2 Preservation of Diversity

When EAs are used with a finite population they tend to
converge a single solution due to three effects: selection
pressure, selection noise and operator disruption [6]. If our
goal is to find the global optimum of a single objective EA,
this result may be acceptable. However multiobjective
optimization aims at finding the entire Pareto front of a
problem, and not only a single nondominated solution. The
goal of multiobjective optimization is not reached whether
the single solution is the global optimum (or at least a very
good approximation of it) or not. The question is then how
to develop a method to maintain population diversity.
MOEAs must prevent from premature convergence to
generate local solutions, and find a set of nondominated
solutions as evolutionary result.

To overcome this problem, several methods have been

developed that can be divided into niching techniques and

non-niching techniques. Fitness sharing [7] is used most
frequently, which is a niching technique based on the idea
that individuals in a particular niche have to share the
available resources. Among the non-niching techniques,
restricted mating is the most common in multicriteria
function optimization. Recently Eckart Zitzler proposed a
method that can preserve population diversity using the
Pareto dominance relationship [8]. In fact our strategy

should be a new non-niching technique.

3 Proposed Strategy

The proposed strategy based on immune and entropy
principle can preserve population diversity of MOEAs,
whose idea lies in using special fitness calculation to reduce
selection pressure of individuals. The more similar
individuals are located in the current population, the more
reproduction probability of an individual is degraded. This
strategy does not require any distance parameter (like the
niche radius for sharing [6]). Essentially the strategy use
exponential fitness rescaling mechanism based on genetic
similarity between an individual and the rest of the
population.

Here antibody of immune system is taken as individual in
MOEAs. Supposing that N denotes population size, M is the
length of antibody (fixed length) and S denotes the size of
symbolic set. The strategy is as follows:

i) Information-theoretic entropy of antibody.

According to entropy optimization principles of Shannon
[9], if a random vector X denotes the status feature of an
uncertain system (where X

of X is

={X|,X2,....Xxn}) and the

probability value denoted by P (where

P={pi.p2,....pn}, O<pi=1, i=1,2,..,n, and YL pi=1), the

information-theoretic  entropy of the system is

mathematically defined
H = =5 pedn(py)

An individual generated from evolutionary process can be
thought of as an uncertain system in entropy optimization
principle, and the entropy of the mth locus of the individual

is defined:



Hin(N) = =33 pon In(pin)

where py, denotes the probability that the kth symbol

appears the mth locus, and it can be calculated:
Prm—(total number of the kth symbol appears at the

mth locus among individuals)/N
1i) Similarity of antibody.

Similarity of antibody indicates similar extent between
individual i and individual j:

-1
A 1+H.i(2)

where H;j(2) is the average entropy of individual i and
individual j, and it can be calculated according to H,,(N)

from i) procedure when the value of N is 2:
Hi i(2) =57 535 Hi(2)

The range of A;; is within [0,1]. If the value A,jis higher,
the individual i is more similar with j. A;; =1 means that the
genes of the two individuals are absolutely same.

iii) Density of antibody.

Here density of antibody means the ratio of similar
antibodies of antibody i and the population size, and it is
denoted by C;:

C; = (number of antibodies in population whose
antibody similarity to the individual i exceeds A) /N
where A is similarity constant, and generally its range is
09< A <1.
iv) Aggregation fitness.

We define aggregation fitness of an individual as a
trade-off result of two evaluations:

fi=f; X exp(K X C))

where f; is initial (usual) fitness function of antibody i,
which directly indicate the object of the solving problem; K
is a plus regulative coefficient, which is determined by the
size of population and experience. Note that fi. f; are
optimized by minimization principle here, namely, if the
fitness is lower, the reproduction probability would be
higher. If they are optimized by maximization, K must be
taken negative value.

v ) Average density of antibody.

Average density of antibody means the average of the

sum of all antibody density in current generation. It is an

important measure of weighting the population diversity,

and is also a crucial criterion of truncated generations. We
use this concept here to evaluate the preserving diversity of
MOEAs.

4 FSSP Test Simulations

4.1 Problem Statement

A classical FSSP is defined as follows [10]: there are F/
machines and J different jobs; each job is composed of a set
of F stages; each stage requires a specific machine; each
stage has a fixed processing time; J jobs are carried out in
the same order. Several scheduling criteria have been
examined in the literature. Our approach can be applied to
optimization problems of more than two objectives, but we
use two criteria (makespan and maximum lateness) in order
to allow visualization in

the paper. Two-objective

minimizing problem is specified as follows:
Minimize  F(x)=(F(x),F,(x))

Fi(x) = max C; F2(x) = max L
j j

where x is a feasible solution of FSSP, C; denotes the
completion time of job j and L; denotes the lateness of
job j.

In test simulations, we generate 20-job and 50-job
scheduling problems with 10-machine on randomly
generated benchmarks. Similar test method can be seen
in [11], but our method is different from it on several
implementary details. Thus our goal is to determine the
sequence of given jobs that are processed on 10
machines. The processing time of each job on each
machine is specified as a stochastic integer in the
interval [1,100].

The duedate of each job is specified through three
steps. First, randomly generate a sequence of the given
jobs. Secondly, calculate the completion time of each
job (Cjo) when the given jobs are processed in the job
sequence above. Finally, define the duedate of each job
by
dj= Cjptrand[-100XJ,100 X J]

where d; is the duedate of job j, J is the number of
scheduling jobs, and
the [-100 X 7,100 X J].

rand[] is a stochastic integer in



L; is defined as L;=C;j-d;, namely the total time that

the makespan of job j exceeds its duedate.
4.2 Implementation Method

Two MOEAs are used to compare and show the basic
function of our strategy. The standard genetic algorithm with
multiobjective ranking based on immune and entropy
principle in our study is called MOEA1, and MultiObjective
Genetic Algorithm proposed by Fonseca and Fleming [12] is
called MOEA2. Note that they use the same parameters and
initial population and the duedate of each job in the MOEAs
is also the same in a single run.
(1) Representation of individuals

Consider a J-job scheduling problem. Each individual is
defined as an integer sequence whose elements are within
the range [1,2,....... ,J], in such a way that the individual
denotes the permutation of job number, namely each
individual represents a possible scheduling
configuration or a candidate solution.
(2) Fitness function

MOEALI takes the ranking order of multiobjective as its
initial fitness, uses exponential fitness rescaling and need
not consider setting the niche radius that must be done in
usual MOEAs. From this point we also find our approach
can be used more convenient than common strategies. Here
the plus regulative coefficient K of aggregation fitness is
determined as 10.0 according to our experience in test
simulations. If the value of K is too low, the inhibiting
impact may be affected. On the contrary, if the value is too
high, some elitists may be lost. set the niche radius in
MOGA
(3) Control parameters

The genetic operators applied in all simulations are
generational partial match crossover, reverse mutation and
binary tournament selection with replacement. The control
parameters used in the experiments are as follows:

Population size: 50

Maximum generation: 100

Probability of crossover: 0.75

Probability of mutation: 0.1

Number of machines: 10

Number of jobs: 20,50

Length of antibody: 20,50

Size of symbolic set: 20,50
4.3 Simulation results and analysis

We have tested 20 runs of each algorithm, i.e. 20 different
random problems generated at each problem size. In each
simulation the two approaches used the same initial
population. Although the details of 20 results are different,
the whole performances of each approach are significantly
coincident. We randomly select one simulation from 20 runs
and the results are shown in Figure 1,2,3 and 4 for the cases
when the number of jobs is 20 and 50, respectively. In
Figure 1 and 2, small marks indicate the Pareto-optimal
solutions in the final population. In Figure 3 and 4, small
marks indicate the diversity of per population (namely
average antibody density)

The following results are obtained:
* From the results of MOEA2,

Pareto-based approaches causes the partial convergence of

the conventional

the solutions because of stochastic errors in the iterative
process; MOEAI1 has better search performance than
MOEALI, and it achieves the global Pareto-optimal solutions
but local ones.

* The diversity of MOEAI
(approximately 0.02) which is determined by population

sustain a fixed value

size, namely, MOEA1 maintain a certain degree of diversity;
the diversity of MOEA2 is always higher than the fixed

value, and its individuals have much more similarity.
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Figure 1: Distribution of solutions for FSSP (20 jobs)
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Figure 2: Distribution of solutions for FSSP (50 jobs)
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Figure 3: Diversity of each population (20 jobs)

4 Conclusion

We have proposed a new strategy of preserving diversity in the
population of MOEAs based on immune and entropy principles
that differs from existing fitness assignment strategies. This
strategy lies on that selection pressure of similar individuals can be
decreased during an evolutionary process by considering the
density of each individual. Several numerical simulations indicate
that the proposed method is effective for the generation of a
Pareto-optimal set. Our next work will extend the present strategy

to non-Pareto approaches to investigate its general effectiveness.
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Figure 4: Diversity of each population (50 jobs)
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