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System

Abstract

This paper describes the use of software agents within an interactive evolutionary conceptual design
system. Several different agent classes are introduced (search agents, interface agents and information
agents) and their function within the system is explained. A preference modification agent is developed

and an example is given illustrating the use of agents in preference modelling.
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1 Introduction

Although application of evolutionary and adaptive computing technologies for design optimisation is now
well-established, there is little recognition of their potential for design exploration through appropriate inte-
gration with conceptual design processes. Such integration supports search across predefined design spaces,
whilst also allows exploration outside of initial constraint and variable parameter bounds. Close designer
interaction allows exploration involving off-line processing of initial results which leads to a redefinition of the
design space. Further designer/evolutionary search of redefined space can lead to the discovery of innovative
or even creative solutions (Parmee, 1999; Parmee, 1998).

Entirely machine-based conceptual design is not suggested here, nor is currently considered viable. Best
utility can be achieved from systems that enhance the designer’s inherent capabilities. Appropriate integra-
tion can result in the development of prototype evolutionary design tools that provide powerful extensions to
design team activity by supporting rapid, extensive exploration and stimulating innovative reasoning. This
paper therefore discusses the use of agent based methods for both search/exploration and for the support
of the designer in the design process. It represents a synopsis of the second part of PhD thesis research
presented in (Cvetkovié, 2000), dealing with application of agents.

The idea of using preferences and agents in Conceptual Engineering Design is not new. Some aspects
of the research are presented by D’ Ambrosio and Birmingham (D’Ambrosio and Birmingham, 1995), Well-
man (Wellman and Doyle, 1991; Wellman, 1995; Wellman and Walsh, 2000) and many other researchers.

The paper is organised in the following manner: Section 2 briefly describes the interactive evolutionary
conceptual design system (IEDS), section 3 introduces preferences, whereas section 4 introduces agents. In
section 5 the use of agents within the system is discussed and some classes of agents are introduced. Section 6
provides an example of agent use. Finally, section 7 provides conclusions, discussion and pointers to future
work. More details, in a wider context, are given in (Cvetkovié, 2000). The IEDS is described in (Parmee et
al., 2000; Parmee et al., 2001) and the preferences are described in more details in (Cvetkovié, 2000; Cvetkovié

and Parmee, 2002).

2 The IEDS

Conceptual design represents the initial phase of a design process (Pahl and Beitz, 1996). The research
presented here is based on whole system airframe design in cooperation with British Aerospace (BAE)
Systems Ltd. Some design issues have been presented elsewhere (Parmee and Purchase, 1997; Cvetkovié et

al., 1998). A major characteristic of conceptual design relates to innovation and creativity which is very well



encapsulated by the following quote (Goel, 1997):

“...problem formulation and reformulation are integral parts of creative design. Designers’ un-
derstanding of a problem typically evolves during creative design processing. This evolution
of problem understanding may lead to (possible radical) changes in the problem and solution

representations.”

Therefore, an Interactive Engineering Design System (IEDS) (Parmee et al., 2000; Parmee et al., 2001)
has been developed in order to assist the designer during conceptual design. The core of the IEDS is described

in Figure 1. It consists of the following modules:

[Figure 1 about here.]

Information gathering processes: (e.g. cluster oriented genetic algorithms COGAs (Parmee, 1996; Bon-
ham and Parmee, 1998; Parmee and Bonham, 2000)) a module that constantly extracts relevant in-
formation from the search processes and presents it to the design team via machine-based agents.
COGAs support the rapid decomposition of complex, multi-variate design space into regions of high
performance and the extraction of relevant design information from such regions through good solution

cover.

Preference module: a module for specifying the relative importance of objectives and constraints (Cvetkovié
and Parmee, 1999b; Cvetkovi¢ and Parmee, 2002). Its task is to help the designer in this process by
introducing several categories of importance of objectives (much less important, less important, equally
important, more important and much more important) linguistically and to transfer these values, using
concept of leaving score and induced ordering (Fodor and Roubens, 1994), into weights used throughout

the optimisation process.

e Distributed co—evolutionary genetic algorithm: a module for multi-objective optimisation (Parmee
and Watson, 1999; Parmee et al., 2000), supporting the identification of high performance regions
of a multi-dimensional Pareto frontier. Each objective is assigned a separate optimisation process
with the task of optimising (minimising or maximising) that objective only. At the beginning all
optimisation processes are independent of each other but as the run progresses a penalty, relating to
maximal allowable Euclidean distance between the variables of each evolutionary process, is used to
lead obtained solutions towards a common region. If a variable is outside a range defined by a range
constraint map, the associated solution fitness is adjusted by a penalty function. The communication
between processes is implemented using Parallel Virtual Machine (PVM) software package (Geist et

al., 1994).



e Problem decomposition module: a part of the distributed co—evolutionary module that uses Taguchi
methods (Peace, 1993) for identifying the sensitivity of several differing objectives to individual variable

parameters;
e Database module: a module for storing interesting and promising solutions and training data.

The two components under consideration within the paper are the distributed co—evolutionary genetic
algorithm and preference module. Preferences are used in a co—evolutionary context to change the value of
penalties depending on importance factors: more important objectives are penalised less, the less important
objective are penalised more. In that way, processes compete for the best solution, since the penalty function
discourages the solutions that are far apart.

Examples of different algorithms and different design aspects are illustrated through the joint research
project with British Aerospace (BAE) Systems. The details of the project are described in more details
in (Cvetkovié¢ et al., 1998; Cvetkovi¢, 2000; Parmee et al., 2000; Parmee et al., 2001) and also below in
section 5.

An example of the integration of these two modules is presented in Figure 2 showing the influence of
preference settings on the co—evolutionary optimisation processes. It shows the optimisation (maximisation)
of 2 objectives: both processes Sy and S; work on objectives y3 (specific excess power, SEP1) and yq
(ferry range, FR), but the process Sy tries to maximise objective ys, whereas process S; tries to maximise
objective yg (the objectives are conflicting). The plots show the values of objective ys. Figure 2(a) shows
the optimisation results using preference y3 < yo (i.e. “objective y3 is much less important than yo”),
Figure 2(b) with equal preferences (y3 ~ y9) and Figure 2(c) shows the optimisation results using preference
y3 > yg (i.e. “objective y3 is much more important than yo”). These preferences direct search towards
different regions of y3 vs. yg values: if y3 < yg the search processes will converge towards smaller values for
y3 (and larger values for yy), as illustrated in Figure 2(a), if they are considered equally important, they will
converge towards compromise regions where both objectives are “average” (Figure 2(b)). Similar results are

obtained by plotting objective yg instead of ys.
[Figure 2 about here.]

Figure 2 demonstrates how preferences control the search process driving the compromise region towards
the one with better values for the more important objective. It can also be noted in Figure 2(a) that
the results of the two optimisation processes do not converge to the same extent as they do with equal
preferences (Figure 2(b)). This behaviour (i.e. the result difference) could be explained by noting that the

more important objective is penalised less: the solution that is usually penalised if the Euclidean distance



between variables is more than for instance 10%, will now be penalised if the distance is more than for
instance 20%.

The penalty—factor corrected value of objective y;, fi(x,t) was calculated using the following formula:

fil@,t) = fO(@) - [Tj=y Xa(xj,mi,t), where

@pOp(z,y), |z —yl > dy(t); (1)
Xd(xaya t) =
1, otherwise.
for
Op(z,y) = min{l, w, /wy}, (2)

w; is the weight of objective s, f2(x) is the original value of objective y; for a given set of inputs x, ¢ is the
generation number, dj(t) is the monotonically decreasing function specifying minimal non-penalised distance
and ¢, is the original penalty factor (usually 0.5).

During the design process, the designer is able to change the preferences and objectives to optimise and
to dynamically add, modify and delete constraints (scenarios) with an almost immediate feedback from the
system, showing the influence of the changes on the solutions generated.

During the later phases of design few objectives tend to be in evidence, whereas during conceptual design
the designer requires a global picture and, therefore, routinely deals with many possible objectives. The vast
number of parameters involved can confuse the designer. In order to reduce cognitive overload and to help
the designer in mundane and less creative tasks, a set of agents has been developed that are an integral part
of the IEDS. The components relevant to the research described in this paper are marked by dotted lines in

Figure 1. They are described in section 5 after an introduction to preferences and agents.

3 Preferences

The notion of preferences is not now, and different authors propose different preference systems in engineering
design (Wellman and Doyle, 1991; D’ Ambrosio and Birmingham, 1995; Greenwood et al., 1996). The authors
have developed a preference systems for specifying the relative importance of objectives. The following
predicates have been introduced (Cvetkovi¢ and Parmee, 1999b; Parmee et al., 2000; Cvetkovi¢ and Parmee,

2002; Cvetkovié¢, 2000):



relation | intended meaning

= is equally important

< is less important

< is much less important
- is not important

! is important

and the set of axioms specifying the following properties of these relations:

e = is an equivalence relation;

< and < are strict orders;

e = is congruent with < and <;

& is subrelation of <;

e misc. properties:

lz V- (3)

WAz =z <Ly (4)
AT RY (5)
rT<YANyKLz=>2<K 2 (6)

The corresponding, “more important” (>) and “much more important” (>>) relations are defined as

x>>y(}:e>fy<<m (7

-y &y<a (8)

The above cited work describes the use of preferences within multi-objective optimisation (weighted sums
optimisation, weighted Pareto optimisation etc). The current paper tries to merge preferences with agents

i.e. to use agents to automate preference estimation.

4 Agents

Defining the notion of an agent is a very difficult task as the following quote demonstrates. According

to Watt (1996, p. 89):



“...‘Agent’ is a difficult word for a difficult concept; covering a rag-bag of concepts that

span a whole gamut of different kinds of behaviour, including, for example, autonomy, learning
and social interaction; but there is a common ground. An agent will set out to do something,
and do it; therefore it has competences for intending to act, for action in an environment, and
for monitoring and achieving its goals. Of course, the adequate performance of these, other

competencies, such as learning, negotiation, and planning, may be helpful or even necessary.”

An overview of theoretical aspects of agents (including topics such as belief, intention, default reasoning,
possible world semantics etc.) is given in (Wooldridge and Jennings, 1995).

In the most general sense, agents can be classified into the following categories (Stenmark, 1999): inter-
face agents, system agents, advisory agents, filtering agents, retrieval agents, navigation agents, monitoring
agents, recommender agents and profiling agents. However, for the purposes of our application, conceptual

design, the following classes of agents appear to offer utility:

Interface agents: agents that help the designer deal with a system and which (if designer wishes it) hide

some low—level non-interesting details from the designer;

Search agents: agents that cover the process of optimisation, cooperation, population monitoring, jumping

out of regions, constraint questioning etc.

Information agents: agents that deal with information obtained, look for interesting solutions, filter un-

interesting ones, make decision with regard to what and where to explore, resolve conflicts etc.

Figure 3 classifies the agents used throughout the project. A similar classification is used by Sycara et

al. (1996).
[Figure 3 about here.]

Since the role of agents necessitates collaboration (negotiations) and interaction, these two concepts are

important and they will be described in the following two subsections.

4.1 Negotiations

According to Sycara (1991), there are four conflict situations where negotiation is used in design. These

conflicts are (Berker, 1995):

e Different agents make conflict recommendations for a parameter value;



e A value proposed by one agent makes it impossible for another agent to offer consistent values for other

attributes;
e A decision of one agent adversely affects the optimality of other agents;
e Alternate approaches achieve similar functional results.
The negotiation process proceeds as follows:
1. Generation of proposal;
2. Generation of counter proposal based on feedback from dissenting agents;
3. Communication of justifications and supporting evidence.

The paper by Nwana et al. (1996) gives an overview of different coordination techniques.

4.2 Agent communication

Agents need a common language in order to be able to communicate. The first developed methods used
a blackboard architecture (Hayes-Roth, 1985; Brenner et al., 1998), as presented in Figure 4(a), where all
agents are able to read from and write to a shared memory area. The other method utilises directed message
passing from agent to agent, as shown in Figure 4(b) using message transport methods (e.g. PVM, MPI,

etc). More modern agent communication languages (ACL) are described in (Labrou et al., 1999)).

[Figure 4 about here.]

5 Use of agents in design processes

A very successful agent—based application is described in (Ygge and Akkermans, 1999): it describes a
climate control of large buildings with many office rooms using a “market based agent approach”. Agents
buy and sell cooling power resources (Huberman and Clearwater, 1995). A very comprehensive review of
computer supported cooperative environments for engineering design is given in (Shen and Norrie, 1999).
Wellman describes “market—oriented programming” in (Wellman, 1995; Wellman, 1996). Some issues are
also discussed in (Lander, 1997). An agent based system for conceptual design is described in (Campbell et
al., 1999; Campbell, 2000).

In our development of agents, it has been decided to follow the philosophy of simple agents: an agent
performs only one function, similar to single function agents (SIFA) (Brown et al., 1995; Berker, 1995).

Single function agents are designed to perform one function only and they have the following parameters:



Function: what kind of work it performs;
Target: on what parameter or object the agent has an immediate effect;

Point of view: the perspective that the agent takes in performing its function on its target. The point of

view can be cost, strength etc.

Brown et al. (1995) argue that in this way it is much easier to construct new agents and (equally
important) it is much easier to debug agents.

Following the classification of agents given in section 4, the agents developed for the BAE Systems
conceptual engineering design system are schematically presented in Figure 3. They mostly follow the above
SIFA philosophy: single function per agent.

The conceptual airframe design project (or miniCAPS project, explained below) has been developed in
cooperation with BAE Systems. The details of the project are not relevant for this paper and it is not
possible to describe the model in detail. However, a brief summary follows.

The miniCAPS model (Webb, 1997) is a version of CAPS (Computer Aided Project Studies), BAE
Systems software used by designers during the earliest investigation stages of a new aircraft. MiniCAPS
reproduces the general characteristics of CAPS but without the computational complexity. MiniCAPS
models a variety of disciplines and consists of three modules: Aerodynamics (lift and drag coefficients,
flight envelope etc.); Performance (ferry range, sustained turn rate, take-off distance, cruise height etc.)
and Configuration (wing position, wing shape, canard position, number of engines, mass estimation etc.).
A high degree of interaction is incorporated between these disciplines and many of the objectives are thus
highly conflicting.

One of the goals of the project was a development of an (semi-)intelligent and (semi-)autonomous system
that will utilise preferences and agents in order to reduce designer’s burden through the performance of more
mundane tasks, enabling designer to concentrate on more creative aspects of the design.

At present miniCAPS utilises 9 variable parameters producing a total of 13 outputs, each of which may

be considered an objective.

5.1 Interface agents

Interface agents are used to reduce the complexity of increasingly sophisticated and overloaded conceptual
design systems. They build an (user friendly) interface between the designer and the computer. The designer

can specify the quality threshold of solutions, situation trigger actions and other parameters.

10



Their role is to help the designer in a (boring) Q&A preference estimation procedure (e.g. “Statement:
A is the most important to me and B the least important of all the objectives” the agent transforms into a

series of questions and answers suitable for the preference module).

5.1.1 Application within the system

An agent has been implemented in the system that helps the designer in the preference estimation procedure.

It allows the designer to specify the complete preference order on the command line or in a file e.g.:

Y RYI0 DY R Y2 R Y > Ys R Y4 > Y5 > Y7 VY11 > Y8

instead of answering the following standard sequence of questions:

Y9 R Y10

Y1 R Y2 R Ys

Ys R Ya

Y7 = Y11

Y1 > Y2, Y1 > Ys, Y1 > Y7, Y1 D> Ys, Y1 K Yo
Y3 > Ys, Y3 > Y7, Y3 > Ys

Ys > Y7

Ys > ys

Y7 = Ys

In the initial stage, the designer will probably prefer the second method (pair—wise comparisons), but
as the process goes on, specifying the complete order is easier, especially if the changes are incremental (as
in the case of the incremental agent described in section 5.4.1). Since the preference method transforms
preferences into a total order, these two methods are equivalent, providing that the initial complete order

specified is not circular (also checked by the agent).

5.2 Search agents

The role of search agents is to look for “interesting” solutions. Here the notion of being “interesting” is
defined by the designer, or for instance a good solution with a large Euclidean distance from the majority
of the population. It looks for “novelty” solutions which might be overlooked and ignored otherwise.

Among the search agents the following classes of agents have been investigated and developed:

11



JumpOut agent: agent that searches exclusively outside of variable boundaries;
Quality monitoring agent: agent that monitors the quality of solutions;

Constraint agent: agent that tries to find out what solutions can be obtained by breaking one of the

constraints;

Scenario agent: agent that solves the original problem minus one of the scenarios (dynamically, on-line
specified constraints in a relatively rich mathematical language with logical operators (Cvetkovi¢ and

Parmee, 1999a));
Population monitoring agent: agent that monitors the convergence of the population.

These agents are described in subsequent sections. The following need to be considered when applying

agents:
e Where to search?
e Variation of each variable parameter range;

e Constraint vs. objective space (i.e. shall we use penalty functions to transform constraints into objec-

tives etc.).

5.2.1 JumpOut agent

This agent searches exclusively out of boundaries. It can initiate a new genetic algorithm that works in
parallel with the main one, or it can initiate a quick hill-climber that starts from one of the solutions, changes
a randomly chosen variable to be out of defined range and then performs hill-climbing. Alternatively, it
could start modifying good solutions, not just any random population member. Parameters of the agents
limit how far outside the domain the agent can go and for how many generations. How many individuals to
create could also be specified. The method used could be hill climbing, simulated annealing (Laarhoven and
Aarts, 1987), scatter search (Laguna, 2002), differential evolution (Storn and Price, 1995) and many others.
If desired, this can be combined with tabu lists (Glover and Laguna, 1997) to remember already explored
regions.

This area has also been investigated within the Plymouth Engineering Design Centre (PEDC) through
the work of Beck and Parmee (1999).

JumpOut agents are useful for questioning the initial constraints and domain of the problem and for
attempting to expand the problem domain. During conceptual design, some limits are set rather ad hoc.

This agent assesses whether it is possible to obtain better solutions by ignoring some of the initial limitations.

12



5.2.2 Quality monitoring agent

If the solution fitness is at least 90% of the best solution, this agent notifies the designer about it. The
quality threshold (the percentage of the best solution, 90% in this example) is a configurable parameter.

Also, the user can specify when to be notified:
e Immediately, so that the search can be lead in that direction, or

e Afterwards, for off-line analysis.

5.2.3 Constraint agent

This agent tries to break some of the constraints, and if a good solution is obtained, it notifies the designer.
Constraints can have different levels of ‘softness’ assigned (from 0 to 1, or from ‘absolutely unchangeable’ to
‘you can do whatever you want with it’). For each solution information regarding the number of constraints
broken (if using penalty functions for resolving constraints) is stored.

Another constraint agent monitors the best solutions and for each of them, tries to further optimise
the solution, ignoring (i.e. breaking) one of the constraints. If the obtained solution is significantly better,
present it to the designer and let him decide if that constraint is necessary. The designer can mark some of

the constraints as non—questionable (as before).

5.2.4 Scenario agent

The scenario agent is similar to a constraint agent, except that it deals with scenarios i.e. set of constraints
connected with logical operators AND, OR and NOT (Cvetkovi¢ and Parmee, 1999a; Cvetkovié¢, 2000). Each
agent solves the original problem minus one of the scenarios. For m scenarios, that means m + 1 parallel GAs
(one with all scenarios). This could be very costly since parallel search processes are required. However,
the increased use of parallel and more and more powerful computers makes such distributed strategies

increasingly feasible. One example of scenarios is given in section 6 below.

5.2.5 Population monitoring agent

If the GA search is too concentrated (i.e. too converged in variable space) in one part of the search space,
this agent “jumps” far away from the converged point in space (but still within the feasible domain D) and
starts a new search there. Bookkeeping about already explored regions is needed in order to avoid visiting
the same region many times.

Three levels of spontaneous behaviour are available:

13



e Machine-based agent automatically decides to try jumping out of regions, breaking constraints etc.;
e The designer only decides on the action taken;

e Interactively: agent suggests and the designer declines or accepts.

5.3 Information agents

This class of agents is more intelligent then the previously described classes and should be able to make

autonomous decision concerning (but not limited to):
e “spawning” an agent to search in a given direction;
e “killing” an agent that is not very successful;
e negotiation between agents (unless they need to consult the designer);

e recognition of the novelty of a solution (eventually consulting the database of existing solutions) and

the turning designer’s attention towards it;
e when to consult the designer.

One example of an information agent is the incremental agent described below in section 5.4.1.

5.4 Closing design loop

In a conceptual design context the agents can be applied in the manner presented in Figure 5.
[Figure 5 about here.]

Common to all optimisation processes, there is a standard search path: Preferences — Search Engine —
Output. The new component here is a process that picks up solutions from the search engine and presents
them to a consortium of agents that look at it in terms of different interests or points of view (say agent A
monitors objective 1, agent B monitors objective 2, ..., agent D monitors variable 1 which, ideally should be
between 0 and 5 or between 15 and 20 etc.). This information is presented to the designer together with some
suggestions (e.g. “can we change this preference?” or “this solution path is no good for some constraints”)
and preferences and some mathematical model details are changed (with the designer’s approval). This
connects agents nicely with the scenario concept. The agents are employed to monitor constraints and

scenarios and to analyse those that are never completely fulfilled. The unfulfilled constraints and scenarios

14



usually give an indication about the changes needed to improve the design. Ideally, these changes should be
suggested by the agents.

The next section describes an agent that tries to fulfil scenarios through changing preferences and variable
ranges. Every time it finds an unfulfilled scenario, it suggests the changes to the designer and if approved,

continues search in the modified setting.

5.4.1 Incremental agent

The incremental agent developed in this section will close the design loop as presented in Figure 6. This is
a more detailed view of the general IEDS (Interactive Engineering Design System, described in section 2)
presented in Figure 1. For the sake of simplicity, in Figure 6 it is assumed that agent and scenario values

are incorporated into the fitness value as some form of penalty.
[Figure 6 about here.]
The incremental agent works in the following way:

1. Use the original designer’s preferences (both for objectives and for scenarios) and run optimisation

process;

2. If some of the scenarios are not fulfilled, suggest increasing importance of those scenarios that are not

fulfilled and repeat the search process;

3. If some scenarios are still not fulfilled although they are classified as the most important, suggest
changing variable ranges (of those variables mentioned in scenarios) and repeat the search with this

new setting;

4. If some scenarios are still not fulfilled, give up and report the results to the designer.

6 Example of agent use

The following example illustrates the use of agents and the automated preference adjustment through the
use of incremental agents described in section 5.4.1. The example also illustrates the interactiveness of

conceptual design process using the IEDS.

Example 1 Suppose that for BAE System’s airframe design problem the following set of scenarios is given:

15



# constraints for F-111 Aardvark Bomber

S1: y11 >= 9.74 & y11<=19.20 # Wing span

S2: x4 <=61.07 & x4 >=48.77 # Wing plan area

S3: y9 >=4707 # Ferry range

S4: y10 >= 45360 # Take off mass

S5: x3 >= 0.75 # max cruise speed 919km/h
S6: y1 <= 951 # take-off run

The process goes as follows:

1. The original set of objective preferences i.e.

Y1 R Y9 = Y10 = Y11

and the original set of scenario preferences i.e.

51%S2NS3HS4NS5QSG

give the solution where y10 = 30936, so scenario Sy (that requires that y;0 > 45360) is not fulfilled and

is noted by the agent.

2. At that stage the agent suggest increasing importance of scenario Sy i.e.:

Sy > 851~ Sy~ S3~ S5~ S

but the obtained solution still does not satisfy scenario Sj.

3. At that stage the agent suggests another increase of the importance of the S, scenario i.e.:

S4>>51N52%S3%55%56

This again gives a solution where scenario Sy is not fulfilled and this is noted by the agent.

4. Since the importance of the scenario S4 cannot be further increased, the agent suggests modifying the

variable bounds. It suggests increasing the range of all variables by 10% and starting again.

5. With all equal scenario preferences there is no difference, so Sy importance increase is suggested again.

16



10.

For a preference setting

Si =51~ Sy~ S35~ S5~ S
the solution finally satisfies Sy, but violates scenarios Sy, Ss and Sg.

Agent suggests
Sy > 51~ Sy =S¢ > 53 =55

which again gives a solution where S, S» and Sg are satisfied but S, is not so the next suggestion is

Sy> 81~ 8~ 8¢ = S3~ S5

This gives a solution where scenarios S1, So and Ss are not fulfilled: z3 = 0.92, 4 = 86, y1 = 759,
yo = 290, y10 = 46982 and y;; = 23.6. At this point the agent might call the designer for further

assistance.

From the analysis so far, the designer can immediately see that he can (using the given airframe model)
either have Sy fulfilled, or S; and S2 (wing span and wing plan area are connected to take-off mass).

At this point the designer decides to use the following preferences (the last set of preferences above)

Sy > 81~ 8~ 5S¢ = S3~ S5

and to just increase the range of variable z4 from [20,80] to [20,120], keeping all other variables to
their original ranges. This gives a solution z3 = 0.87, z4, = 120, y; = 951, yg = 7846, y10 = 49924
and y11 = 26.8, that violates scenarios Si and S, but is probably the best compromise in these

circumstances.

If the designer further decides to minimise take—off mass instead of maximising, the result is 3 = 0.86,

Ty = 120, y = 878, Yg = 9829, Y10 = 45360, and Y11 = 26.8.

If the designer, out of curiosity, further increase the range of z4 to [20,140], the solution is z3 = 0.87,
x4 = 140, y1 = 951, yg = 8517, y10 = 49452 and y;; = 14.5, where only scenario S is not fulfilled and
the obtained aeroplane has very large wing plan area but small wing span (probably some delta—shaped

wings).

Etc.
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As it can be seen from this example, IEDS provides a powerful system for interactive analysis and change
of parameters in the run and gives an almost immediate feedback about the objectives, constraints and
preferences.

Note that in this particular example the agent did not find an acceptable solution, but by trying different
methods it has enabled the designer to find the right one (as much as concept of “rightness” is unambiguous

in multi-objective framework).

6.1 Design agent cooperation

Consider a system with several agents, each with a task to optimise a single objective. The question is how
to make them collaborate. Each agent is aware of the quality of its own solution. If the quality of one’s
solution is inferior to the quality of solution of some other agents and their solutions are conflicting, that
agent compromises and accepts a worse solution from its point of view, for the benefit of other agents. In a
case where they cannot decide (e.g. both agents think that they have quality solutions), the designer is asked
to decide. Once the designer resolves a conflict, the agents need to remember the decision and try to learn
from it so that the next time a similar situation happens, they can resolve the conflict among themselves
without the designer’s intervention.

Some form of voting system, where the importance of each agent also plays a certain role in resolving
conflicts, can be useful. However, that can lead to problems, since according to Arrow’s impossibility
theorem (Arrow, 1951), it is not possible to construct a group preference relation satisfying the following
basic principles: complete domain, positive association of social and individual ordering, independence of
irrelevant alternatives, individual’s sovereignty, and nondictatorship.

If an agent is successful, it is made more important than the others (so that good solutions usually count
as more important in the negotiation process). For each “best solution”, increase the value of the solution.
If an agent is less successful, reduce the agent’s importance or the quality of its solutions. Limits to both
maximal and minimal possible importance of an agent are needed in order to keep diversity of solutions
generated. More details are given in (Cvetkovié¢, 2000). A similar learning method is used by Campbell

(2000).

7 Conclusion and discussion

A frequently asked question is “do we need agents?”. Talking about agents, Jennings and Wooldridge (1995)

say the following:

18



“Although agent based technology clearly has an important role to play in the development
of leading edge compound applications, it should not be regarded as a panacea. The majority
of applications which currently use agents could be solved using non—agent techniques (in most
cases not as well, but in some cases better!). ... As with all system designs, the ultimate choice
depends upon a large number of technical and non—technical factors ...

Whilst this new system paradigm offers many exciting opportunities, it has a down side which
invariably places a limit on the types of application to which agents can be applied. The first
major problem is that the overall system is unpredictable and non—deterministic: which agents
will interact with which other in which way to achieve what cannot be predicted in advance. Even
worse, there is no guarantee that dependencies between the agents can be managed effectively,
since the agents are autonomous and free to make their own decisions ... The second main
disadvantage is that the behaviour and properties of the overall system cannot be fixed at design
time. While a specification of the behaviour of an individual agent can be given, a corresponding
specification of the system in its entirety cannot, since global behaviour necessarily emerges at

run time.”

In this paper some techniques and methods used in the interactive design system for conceptual design
of products have been described. The use of agents is described and some examples of their use presented.

As this research illustrates, the agents do not need complex architectures: simple agents such as the “jump
out agent” are very useful in the optimisation process. Their use enables the designer to concentrate on the
higher—level aspects of the design process and frees him/her from having to worry about the behaviour of
the optimisation module. Filtering and information agents are useful for turning the designer’s attention to
some interesting and/or unusual (but promising) solutions. They are also useful for questioning all (variable)
limits and constraints.

We do not claim that these agents are very intelligent or sophisticated. However, they should be consid-
ered in terms of the environment in which they are used i.e. in an interactive design system. In this context
however, their usefulness has been illustrated to some extent. In the previous example, the agent did not
really solve the problem, but during its work it has collected enough information that the designer was able
to see immediately the way to an acceptable solution. The designer is able to solve the problem without
using agents, but not without extensive and tedious ‘trial and error’ runs. The agents described in this
article are designed for a conceptual design environment where design goals and constrains are still rather

vague and in that environment any help to the designer is important.
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Due to the complex problem domain, it is very hard to judge the role of the agents in the system i.e. if
they are limiting factor or a factor of improvement in design. The primary role in using agents is pragmatic:
they should make the design task easier to the designer.

For the same reason it is very hard to compare the developed system with agent systems described in
literature.

Future work will include the development of new classes of agents and their tighter integration in design

processes.
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