
P. &]\ DN��$��-DV]NLHZLF]���������Pareto simulated annealing - a metaheuristic technique for
multiple-objective combinatorial optimization. -RXUQDO�RI�0XOWL�&ULWHULD�'HFLVLRQ�$QDO\VLV, �, 34-47.

1

3DUHWR�6LPXODWHG�$QQHDOLQJ���D�PHWDKHXULVWLF�WHFKQLTXH�IRU
PXOWLSOH�REMHFWLYH�FRPELQDWRULDO�RSWLPL]DWLRQ

3LRWU�&]\ DN�DQG�$QGU]HM�-DV]NLHZLF]
Institute of Computing Science,

3R]QD �8QLYHUVLW\�RI�7HFKQRORJ\�
60�����3R]QD ��3RODQG

e-mail:
Andrzej.Jaszkiewicz@CS.PUT.POZNAN.PL

$EVWUDFW�� The paper presents a multiple objective metaheuristic procedure - Pareto
Simulated Annealing. The goal of the procedure is to find in a relatively short time a
good approximation of the set of efficient solutions of a multiple objective
combinatorial optimization problem. The procedure uses a sample of, so called,
generating solutions. Each solution explores its neighborhood in a way similar to that of
classical simulated annealing. Weights of the objectives, used for their local
aggregation, are tuned in each iteration in order to assure a tendency for approaching the
efficient solutions set while maintaining a uniform distribution of the generating
solutions over this set. A computational experiment shows that the method is a better
tool for approximating the efficient set than some previous proposals.
.H\ZRUGV��Multiple objective combinatorial optimization, metaheuristic procedures.

���,QWURGXFWLRQ
Many real-life problems are combinatorial, i.e. they concern a choice of the best
solution from a finite but large set of feasible solutions (Nemhauser and Wolsey, 1988).
It is also a well known fact that the solutions of real-life problems are often evaluated
from several points of view which may be described by different objectives (Steuer,
1986; Roy and Bouyssou, 1993). These facts were reasons for significant research
efforts in the fields of FRPELQDWRULDO�RSWLPL]DWLRQ (CO) and PXOWLSOH�REMHFWLYH�GHFLVLRQ
PDNLQJ (MODM). They resulted in many practical applications of methods developed in
each of the two fields. Nevertheless, surprisingly few theoretical works concern PXOWLSOH
REMHFWLYH�FRPELQDWRULDO�RSWLPL]DWLRQ�(MOCO) problems (see e.g. the survey by Ulungu
and Teghem, 1994). Some exceptions are PXOWLSOH� REMHFWLYH� VKRUWHVW� SDWK� problems
(Ulungu and Teghem, 1991; Current and Marsh, 1993) and PXOWLSOH�REMHFWLYH� SURMHFW
VFKHGXOLQJ� SUREOHPV� �6áRZL VNL�� ������ ������� $V� D� FRQVHTXHQFH�� YHU\� IHZ� SUDFWLFDO
applications of MODM methods for combinatorial problems are reported in the OR
literature (see e.g. White, 1990; Ulungu and Teghem, 1994 for lists of references).

In our opinion, the relatively small number of applications of MOCO is not due to the
fact that combinatorial problems rarely require multiple objectives but due to the
notable difficulty of such problems. Indeed, different objectives are often used in
particular classes of combinatorial problems. For example, in vehicle routing the
typically used objectives are total cost, distance, number of vehicles, travel time (Assad,
1988), and in project scheduling the typical objectives are net present value, project
completion time, mean weighted delay, number of delayed tasks, mean weighted flow
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WLPH�� WRWDO� UHVRXUFH� XWLOL]DWLRQ� �6áRZL VNL�� ������ ������� 7KH� REMHFWLYHV�� KRZHYHU�� DUH
usually used separately or they are combined into a single objective.

 The difficulty of the MOCO problems results from the following two factors:
• solving a MOCO problem requires intensive co-operation with the decision maker

(DM); this results in especially high requirements for effective tools used to
generate efficient solutions,

• many combinatorial problems are hard even in single objective versions; their
multiple objective versions are frequently more difficult.

A MODM problem is ill-posed from mathematical point of view, because, except in
trivial cases, it has no optimal solution. The goal of MODM methods is to find a
solution most consistent with the DM's preferences, i.e. the EHVW� FRPSURPLVH. Under
very weak assumptions about DM's preferences the best compromise solution belongs
to the set of the HIILFLHQW solutions (Rosenthal, 1985). Interactive procedures, which have
become especially popular in recent years, generate efficient solutions in computational
phases alternating with phases of decision. Such procedures, however, can only be used
if sufficiently effective tools for finding efficient solutions are available.

Furthermore, many of single objective combinatorial problems belong to the class of
NP-hard problems. Generation of efficient solutions in a MOCO problem is, of course,
not easier than finding solutions optimizing particular objectives and, in many cases, is
even harder. For example, the single objective shortest path problem is one of the
simplest combinatorial problems while the corresponding multiple objective problem is
NP-hard (Garey and Johnson, 1979). So, even problems for which relatively efficient
single objective exact methods are known, may be difficult if multiple objectives have
to be considered.

Tools used for generation of efficient solutions in MOCO, like single objective
optimization methods, may be classified into one of the following categories:
• exact procedures,
• specialized heuristic procedures,
• metaheuristic procedures.

The main disadvantage of exact algorithms consists in their high computational
complexity. As a result, only limited classes of real-life MOCO problems may be solved
exactly.

The main weak point of specialized procedures, both heuristic and exact, is their
inflexibility. This factor seems to be especially important in the case of MOCO. For
example, many MODM methods start by presenting to the DM the ideal point, which is
found by independent optimization of particular objectives. If the objective functions
have different mathematical forms, their optimization may require different specialized
procedures. Furthermore, MODM methods use various tools for generating efficient
solutions. Some of them apply Geoffrion's theorem (see e.g. Steuer, 1986), others use
penalty functions (see e.g. Charnes and Cooper, 1977), utility functions (Keeney and
Raiffa, 1976), ε-Constraints (see e.g. Steuer, 1986), or achievement scalarizing
functions (Wierzbicki, 1986). Of course, each of the tools may require individual
specialized procedures. As a result, solving a given MOCO problem may involve
several specialized procedures and it may be difficult to change the formulation of the
model, the family of objectives or even the MODM method used to solve the problem.

Consequently, it is not only the opinion of the authors (compare e.g. Ulungu and
Teghem, 1994) that the most promising practical approach to MOCO consists in
generating efficient solutions with metaheuristic procedures.
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In recent years several metaheuristic methods for single objective combinatorial
problems have been proposed (see e.g. Pirlot, 1993). The methods are called
metaheuristics, because they define only a "skeleton" of the optimization procedure that
have to be customized for particular applications. This class of methods includes:
simulated annealing (SA) (Cerny, 1982; Kirkpatrick et al., 1983; Laarhoven and Aarts,
1987), tabu search (Glover, 1989) and genetic algorithms (Goldberg, 1988). They allow
the finding of nearly optimal solutions for a wide class of combinatorial problems in a
relatively short time. The methods have been successfully applied to many problems
that cannot be solved exactly in polynomial time.

As most of the MODM methods use single objective optimization as a tool for
generating efficient solutions it seems rational to apply the classical single objective
metaheuristic procedures in MOCO. Yet such procedures may appear too inefficient for
practical applications.

Single objective metaheuristic procedures are relatively easy to apply if the DM
expresses his/her preferences a priori and the information about DM’s preferences are
used to build a functional preference model, e.g. an utility function (cf. Keeney and
Raiffa, 1976). A metaheuristic procedure can be used in order to optimize this function
on the set of feasible solutions. There is, however, both theoretical (cf. Roy and
Bouyssou, 1993) and empirical evidence (cf. Corner and Buchanan, 1994) that methods
with a priori expression of preferences perform relatively poorly in the case of multiple
objective mathematical programming.

In general, the single objective metaheuristic procedures may also be used if the DM
is interested in interactive analysis of the set of solutions. Interactive methods consist of
computational phases alternating with phases of decision. In each computational phase a
solution or a sample of solutions, usually efficient, is generated. The solutions are
usually generated by solving substitute single objective problems. Optimal solutions of
the substitute problems are efficient in the original multiple objective problem (cf.
Wierzbicki, 1986). Single objective metaheuristic procedures can be used in order to
solve the substitute problems. Interactive methods, however, may only be used if the
time needed for the computational phase is acceptable for the DM. Although
metaheuristic procedures are relatively effective tools for combinatorial optimization,
they might not be effective enough for use in interactive procedures, especially in the
case of methods generating samples of solutions.

This paper proposes a metaheuristic procedure, called Pareto Simulated Annealing
(PSA), for MOCO problems. The goal of the procedure is to find a set of solutions
being a good approximation of the efficient solutions set. The set of solutions obtained
by the procedure may then be presented to the DM. If the set is small enough, the DM
may select the best compromise from it. Otherwise, the DM may explore the set of
solutions guided by an interactive procedure for problems with explicitly given sets of
alternatives.

The paper is organized in the following way. In the next section a formal statement of
the MOCO problem is presented. Some previous proposals of multiple objective
metaheuristic procedures and their weaknesses are described in the third section. In the
fourth section the PSA procedure is presented. Evaluation of multiple objective
metaheuristic procedures is discussed in the fifth section. In the sixth section
computational experiments are reported. Finally, main features of the procedure are
summarized and some possible directions of further research are described in the
seventh section.



P. &]\ DN��$��-DV]NLHZLF]���������Pareto simulated annealing - a metaheuristic technique for
multiple-objective combinatorial optimization. -RXUQDO�RI�0XOWL�&ULWHULD�'HFLVLRQ�$QDO\VLV, �, 34-47.

4

���3UREOHP�VWDWHPHQW
The general MOCO problem is formulated as:

( ) ( ){ }PD[ �����I ] I ]� �� �[ [= =
s.t.

[ ∈' ,
where: VROXWLRQ [ = [ [ �� ����� �is a vector of discrete GHFLVLRQ�YDULDEOHV, ' is the set of

feasible solutions.
A solution [ ∈'  is HIILFLHQW (3DUHWR�RSWLPDO) if there is no [ 
∈'  such that

( ) ( )∀ ≥��� �I I[ [
  and ( ) ( )I I� �[ [
 >  for at least one M. The set of all efficient solutions

is denoted by 1�
An efficient solution x  is VXSSRUWHG if there exists a vector of non-negative weights

Λ = λ λ� ����� �  such that [ is the unique global optimum of the following problem:

( )PD[ λ 	
	
	

�

I [
=

∑�
s.t.

[ ∈' .

���5HYLHZ�RI�H[LVWLQJ�PXOWLSOH�REMHFWLYH�PHWDKHXULVWLF�SURFHGXUHV
Several multiple objective metaheuristic procedures have been already proposed. The
goal of the procedures is to find a sample of feasible solutions being a good
approximation to the efficient solutions set. Such procedures may be used in the first
phase of methods with a posteriori articulation of preferences or in computational
phases of interactive procedures generating samples of solutions.

Several multiple objective method based on genetic algorithms have already been
proposed (see e.g. Schaffer (1984), Srinivas and Deb (1994), and Fonseca and Fleming
(1995) for review). According to our knowledge, the methods have been tested,
however, on continuous or very small discrete problems only. So, the usefulness of
these procedures in the case of MOCO is yet to be tested.

Serafini (1992) and Fortemps, Teghem and Ulungu (1994) have independently
proposed very similar algorithms based on simulated annealing and suggested their use
in MOCO. The outcome of their algorithms is not a single solution but a set 0 of
SRWHQWLDOO\�HIILFLHQW�VROXWLRQV, i.e. the set composed of solutions efficient with respect to
all generated solutions. The set is updated whenever a new solution non-dominated with
respect to the current one is generated. Updating set 0 with a new solution [ consists in:
• adding [ to 0 if there is no other solution Y∈0 such that Y dominates [,
• removing from set 0 all solutions dominated by [.

The algorithms of the two mentioned above proposals are very close to that of the
single objective SA. The general scheme of the procedures is given below:

Select a starting solution [ ∈'
0 := ∅
Update the set 0 of potentially efficient solutions with [
7 := 7o

UHSHDW



P. &]\ DN��$��-DV]NLHZLF]���������Pareto simulated annealing - a metaheuristic technique for
multiple-objective combinatorial optimization. -RXUQDO�RI�0XOWL�&ULWHULD�'HFLVLRQ�$QDO\VLV, �, 34-47.

5

Construct ( )\ [∈9 �$��
LI \ is not dominated by [ WKHQ

Update the set 0 of potentially efficient solutions with \
[ := \ (accept \) with probability ( )3 7[ \� � �Λ
LI the conditions of changing the temperature are fulfilled WKHQ

decrease 7
XQWLO the stop conditions are fulfilled

where: ( )9 '[ ⊆  is the neighborhood of solution [,�i.e. the set of feasible solutions that

may be reached from [ by making a simple move, 7o - initial temperature, 7 - actual

temperature, Λ = λ λ� ����� �  is a vector of weights, ( )3 7[ \� � �Λ  - acceptance probability.

The probability of accepting a new solution is calculated in a different way than in the
single objective SA. In the case of the single objective SA a new solution is accepted
with probability equal to one if it is not worse than the current solution. Otherwise, it is
accepted with probability less than one. In the case of multiple objectives one of the
following three exclusive situations may occur while comparing a new solution \ with
the current one [:
• \ dominates or is equal to [,
• \ is dominated by [,
• \ is non-dominated with respect to [.

In the first situation the new solution may be considered as not worse than the current
one and accepted with probability equal to one. In the second situation the new solution
may be considered as worse than the current one and accepted with probability less than
one. Serafini (1992) and Fortemps, Teghem and Ulungu (1994) have proposed several
multiple objective rules for acceptance probability which in different way treat the third
situation. Figure 1 presents the general idea of the multiple objective rules for
acceptance probability in the case of two maximize objectives. Some characteristic rules
are described below.

)LJXUH����7KH�JHQHUDO�LGHD�RI�PXOWLSOH�REMHFWLYH�UXOHV�IRU�DFFHSWDQFH�SUREDELOLW\

)LJXUH����*UDSKLFDO�LOOXVWUDWLRQ�RI�UXOH�&
Rule & may be seen as a local aggregation of all objectives with an achievement

scalarizing function based on the Chebyshev metric with the reference point [. It is
defined by the following expression:

( ) ( ) ( )( ){ }3 7 I I 7� � � �[ \ [ \� � � PLQ �H[S PD[ �Λ = −








� λ .

A graphical illustration of the rule is given in figure 2.
Rule 6/ may be seen as a local aggregation of all objectives with a weighted sum of

the objectives. It is defined by the following expression:

( ) ( ) ( )( )3 7 I I 7� � �
�

�

[ \ [ \� � � PLQ �H[S �Λ = −




















=
∑� � λ .
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A graphical illustration of the rule is given in figure 3.

)LJXUH����*UDSKLFDO�LOOXVWUDWLRQ�RI�UXOH�6/
Some tests which were performed with procedure (A1) resulted in observation that the

procedure works well enough for relatively small problems only. In the case of larger
problems the set of potentially efficient solutions may represent a small region of set 1.
This observation is illustrated by results of the experiments described in the seventh
section. It was the reason for developing the PSA procedure which tends to generate a
good approximation of the whole set 1 even for relatively large MOCO problems.

���'HVFULSWLRQ�RI�WKH�3DUHWR�6LPXODWHG�$QQHDOLQJ

����%DVLF�FRQFHSWV
PSA uses several ideas known from simulated annealing (Kirkpatrick et al., 1983;
Laarhoven and Aarts, 1987):
• the concept of neighborhood,
• acceptance of new solutions with some probability,
• dependence of the probability on a parameter called the temperature,
• the scheme of the temperature changes.
PSA, however, uses a sample (population) of interacting solutions at each iterations.
The solutions are called JHQHUDWLQJ� VROXWLRQV. Among metaheuristic procedures this
concept is used in genetic algorithms (Goldberg, 1988).

)LJXUH����7KH�UROH�RI�ZHLJKWV�LQ�WKH�PXOWLSOH�REMHFWLYH�UXOHV�IRU�DFFHSWDQFH
SUREDELOLW\

Another new idea used in PSA is to control the objective weights used in the multiple
objective rules for acceptance probability in order to assure dispersion of the generating
solutions over the whole set of efficient solutions. Please note, that the higher the weight
associated with a given objective, the lower the probability of accepting moves that
decrease the value on this objective and the greater the probability of improving the
value of this objective. So, by controlling the weights one can increase or decrease the
probability of improving values of the particular objectives. This fact is graphically
illustrated in figure 4.

����$OJRULWKP�RI�WKH�36$�SURFHGXUH
The general scheme of the PSA procedure may be written as follows:

Select a starting sample of generating solutions 6 '⊂
IRU�HDFK [ ∈6  GR

Update set 0 of potentially efficient solutions with [
7 := 7o

UHSHDW
IRU�HDFK [ ∈6  GR

Construct ( )\ [∈9
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LI \ is not dominated by [ WKHQ
Update the set 0 of potentially efficient solutions with \

Select solution [’∈6  closest to [ and non-dominated with respect
to [
LI there is no such solution [’ or it is the first iteration with [ WKHQ

Set random weights such that:
∀ ≥ =∑� � �λ λ� ��DQG�

�

HOVH
IRU�HDFK objective I �

( ) ( )
( ) ( )λ

αλ
λ α

�
� � �

� � �

I I
I I=

≥
<







�

�

[ [
[ [

� LI�
� LI�



� 


normalize the weights such that λ � =∑ �
�

[ := \ (accept \) with probability ( )3 7[ \� � �Λ
LI the conditions of changing the temperature are fulfilled WKHQ

decrease 7
XQWLO the stop conditions are fulfilled

where: Λ
� � �

= λ λ� ����� 	  is the weighting vector used in the previous iteration for

solution [, α >� is a constant close to one (e.g. α =1.05), ( )3 7[ \� � �Λ  is one of the

multiple objective rules for acceptance probability described above.
In each iteration of the procedure a sample of solutions, called the JHQHUDWLQJ�VDPSOH,

is used. The main idea of PSA is to assure a tendency for approaching the set of
efficient solutions as well as an inclination for dispersing the solution constituting the
generating sample over the whole set 1. In result each solution tends to investigate a
specific region of set 1.

The tendency for approaching the set of efficient solutions is assured by using one of
the mentioned above multiple objective rules for acceptance probability. The inclination
for dispersing the solutions from the generating sample over the whole set 1 is obtained
by controlling the weights of particular objectives used in these rules. For a given
solution [ ∈6  the weights are changed in order to increase the probability of moving it
away from its closest neighbor in 6�denoted by [’. This is obtained by increasing the
weights of the objectives on which [ is better than [’ and decreasing the weights of the
objectives on which [ is worse than [’. An intuitive explanation of this approach is
given in Appendix A.

Please note that the algorithm of PSA is essentially parallel because calculations
required for each solution from 6, i.e. construction of a new solution from its
neighborhood, setting the weights and accepting the new solution, may be done on
different processors.

It is also worth mentioning that one of the crucial points of the procedure from the
point of view of its effectiveness is the updating of the set of potentially efficient
solutions. A data structure called Quad Tree allows for very effective implementation of
this step (Finkel and Bentley, 1974; Habenicht, 1982).
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PSA is not a complete method for solving MOCO problems but just a tool for
generating an approximation to the set of efficient solutions. One can use the following
two stage method for finding the best compromise of a MOCO problem:
6WDJH�,��Generation of an approximation 0 of set 1 with PSA
6WDJH����Selection of the best solution� [ �from the set 0�with an interactive procedure
for problems with explicitly given sets of alternatives.

 The second stage requires co-operation with the DM. In this stage the DM learns the
possible trade-offs as well as his/her preferences and selects the best compromise. As
was mentioned before, he/she may require some support in this phase. One of the
interactive methods for multiple criteria problems with a large but finite set of
alternatives may be used to support the DM.

���(YDOXDWLRQ�RI�PXOWLSOH�REMHFWLYH�PHWDKHXULVWLF�SURFHGXUHV
Since the goal of multiple objective metaheuristic procedures is to find a good
approximation of the set 1, it is important to have some evaluation technique allowing
for comparison of different approximations.

A solution obtained by a single objective optimization method may be evaluated by
comparison with randomly generated solutions, with a solution obtained by another
method or with some reference solution, e.g. the global optimum or the best solution
known so far. Analogously, in the multiple objective case a set of potentially efficient
solutions may be compared with: randomly generated solutions, another solution set
obtained by a different method or some reference set 5 of solutions (e.g. the set of
efficient solutions or the best approximation known so far). The quality metrics
described below concern the latter case.

It may seem natural to use as a quality metrics the percentage of reference solutions
found, defined as:

{ }
{ }

FDUG 0 5
FDUG 5

∩ ���� .

This measure has, however, significant disadvantages. In the case of real-size MOCO
problems it may be impossible to obtain in a reasonable time a significant percentage of
efficient solutions. It is more important to obtain in a short time solutions close to the
efficient ones. For example, considering two approximations presented in figures 5a and
5b, it is natural to evaluate the first one as better. This quality measure, however, will
have a value of zero in both cases.

The other disadvantage may become visible considering approximations presented in
figures 5a and 5c. The second approximation contains some percentage of reference
solutions but all potentially efficient solutions are concentrated in a small region of set
5. Many reference solutions have no representation in set 0. In the first case for each
reference solution there is a relatively close solution in the set 0. So, the first
approximation gives the DM much better information about the shape of the efficient set
and should be evaluated as better than the other one. The percentage of reference
solutions found is, however, greater in the second case.

)LJXUH����7KUHH�GLIIHUHQW�DSSUR[LPDWLRQV�RI�D�UHIHUHQFH�VHW�5
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In order to avoid the above mentioned disadvantages two quality metrics which tends
to measure the closeness of set 0 to the reference set are proposed. We assume that set
0� is a good approximation of set 5 if it gives the DM important information about all
regions of set 5� or, in other words, if for each solution \ ∈5  there is a close solution
[ ∈0 . We propose to measure the closeness of two solutions by the following metric
based on the achievement scalarizing function:

( ) ( ) ( )( ){ }F Z I I� � � � �[ \ \ [� PD[ �
� � � � �

= −
= �

� .

So, the measure takes value 0 if on all objectives [ reaches the values of solution \.
Otherwise, it takes the value of the maximal weighted deviation from \ on particular
objectives.

The weights used in the above expression are set as:

Z�
�

= �
∆

,

where ∆ �  is range of objective I�  in the reference set.

The first metric is defined as:

{ } ( ){ }{ }'LVW FDUG 5 F�
	�


� �=
∈

∈
∑ PLQ �� [ \ ,

while the second metric is defined as:

( ){ }{ }'LVW F �� =
∈ ∈

PD[ PLQ �� � [ \
The first metric gives information about the average distance from y R∈  to the closest

solution in  0 while the second metric gives information about the worst case. The
lower  the values the better set 0 approximates set 5. Moreover, the lower the ratio
'LVW��'LVW� the more uniform the distribution of solutions from set 0 over the set 5.

���&RPSXWDWLRQDO�H[SHULPHQW
In order to evaluate the PSA method some computational experiments have been
performed. In the experiments the multiple objective knapsack problem has been used.
The multiple objective knapsack problem seems to be a good testing problem because
while being an NP-complete problem it allows for relatively simple generation of a
good approximation of the Pareto solution set in terms of the supported solution set.
This set could play the role of the reference set 5.

The goals of the experiments were as follows:
• to compare the effectiveness of the PSA method with the methods of Serafini (1992)

and Fortemps, Teghem and Ulungu (1994),
• to find some general pattern of behavior of the method while changing the size of

the generating sample, the number of moves and the type of implementation
(sequential or parallel).

�����([SHULPHQW�GHVLJQ
A multiple objective knapsack (MOK) problem is formulated in the following way:
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given a set { }( H H�= � �����  of elements, set { }* J J�= � �����  of elements’ weights

and sets { }& F F �� ��� �= ����� ,..., { }& F F� � ���= � �����  of elements’ values find a set

( (
⊆  that maximizes the following objectives:
max F �

�
	�
�

∈
∑ 

.........
max F���

�
�� ∈
∑ �

s.t.
J .�

���� ∈
∑ ≤

�

where: . is the knapsack size.
The MOK problem has already been used by Fortemps, Teghem and Ulungu (1994) for
evaluation of their procedure. The problem is NP-Complete (but not in the strong sense)
even in the single objective case. However, on average it can be solved in a relatively
short time. So, in the multiple objective case it is relatively simple to obtain supported
efficient solutions. Please note that it is not our goal to recommend the use of PSA in
order to solve MOK problem. We have selected this problem for our tests because there
are other more efficient methods for finding efficient solutions that allow us to obtain
good reference sets even for relatively big MOK problems.

In the bi-objective case the reference sets were composed of all supported efficient
solutions generated by applying the first phase of the algorithm proposed by Ulungu and
Theghem (1995). In the case of two objectives it is possible to generate all, supported
and non-supported, efficient solutions (cf. Ulungu and Teghem, 1995). Computational
and memory requirements are, however, very high. We were not able to obtain all
non-supported efficient solutions even for problems with 100 elements. In the case of
three and more objectives the reference sets were obtained by generating 1000
supported efficient solutions with random weights in the linear combination of objective
functions. Redundant solutions were then removed.

The tests problems were generated such that the weights and prices of the elements
were generated randomly from the range [60, 100]. The knapsack size was set equal to
50% of the total weight of elements.

The tests were made for 2, 3 and 4 objective problems. The number of elements was
set equal to 100, 200, 400, and 800. The number of moves on each temperature level
was set equal to 128, 256, 512, 1024, 2048. For each problem size 10 different problems
were generated. For each particular problem and for each particular setting of the PSA
parameters 5 runs of the PSA method were made.

�����&XVWRPL]DWLRQ�RI�WKH�36$�PHWKRG�WR�WKH�PXOWLSOH�REMHFWLYH�NQDSVDFN�SUREOHP
The following decisions have been made in order to customize the PSA method to this

particular problem.
The neighborhood solutions of solution [ were generated by the following algorithm:

UHSHDW
remove a randomly selected element from the knapsack

XQWLO there is a free space in the knapsack for the biggest element that is outside
the knapsack
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UHSHDW
insert a randomly selected element into the knapsack

XQWLO there is no free space for any element that is outside the knapsack
Exactly the same neighborhood was used in the study of Fortmeps et al. (1994).

The temperature was decreased after making a given number of moves (accepted or
not). The rate of decreasing the temperature was set equal to 0.9. The starting
temperature was set equal to 50 which assured that above 80% of moves were accepted.
The procedure was stopped after obtaining the temperature below 1 at which less than
5% of moves were accepted.

On PC with Pentium 100 CPU about 2 seconds were necessary to perform 1000
moves for problems with four objectives and 800 elements.

�����5HVXOWV
Because of the limited space only some of the obtained results are presented. All the test
problems, reference sets and results are available from the authors upon request.

In order to evaluate the results we use 'LVW� and 'LVW� metrics. The percent of
reference solutions found was in most cases equal to zero, and was never greater than
5%. 90% - 100% (in most cases 100%) of generated solutions were dominated by some
reference solutions).

It was observed that the rules & and 6/ give similar results. All the results presented
below are obtained with the rule 6/.
Table 1 contains the average results of 5 runs obtained for 10 three objective problems
with 200 elements for different sizes of the generating sample. On each level of the
temperature 512 moves were made, so, the total number of moves was equal to 19456.
A sequential implementation was assumed, i.e. the total number of moves made by all
generating solutions was constant and the time of calculation was approximately the
same for each size of the generating sample. So, the larger the sample the fewer moves
were made with each single generating solution. For example, when the generating
sample was composed of a single solution, 512 moves were made with it. When the
generating sample was composed of 16 solutions, 32 moves were made with each of
them. Thus, two factors influence the values of the quality measures while the size of
the generating sample is changed:
� The larger the sample, the larger the probability that the generating solutions will be

dispersed over the different regions of the non-dominated set.
� The larger the sample, the fewer steps are made with each of the solutions and the

larger the probability that many of them will not reach the non-dominated set.
One can observe that the influence of the two factors gives relatively good results for

samples composed of 8 and 16 solutions, while for smaller and bigger sizes the results
are worse. In particular, PSA can give better results than the method of Serafini (size of
the generating sample equal to 1) even in the case of  sequential implementation if the
size of the generating sample is appropriately set. One can also observe that the ratio
Dist2/Dist1 decreases with the growth of the size of the generating sample. It means that
for larger generating samples more uniform distribution of potentially efficient solutions
over the reference set is obtained.

Similar results were observed for problems with different numbers of objectives and
numbers of elements. For example, table 2 contains results of the same experiment
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made with four objective problems with 800 elements. On each level of the temperature
2048 moves were made, so, the total number of moves was equal to 77824.

Table 3 and 4 show the influence of the number of moves made on each temperature
level when the sequential implementation is assumed. One can see that with the growth
of the number of moves an improvement of the results is obtained. In the case of the
method of Serafini which uses a single generating solution a relatively small
improvement is obtained. This suggests that the method does not generate a good
representation of all regions of the efficient set, and increasing the number of moves
does not change this situation significantly. In the table the best two results for each
number of moves are underlined. The best result is additionally written in bold. Please
note that the optimal size of the generating sample slowly increases with increase of the
number of moves. A general conclusion may be drawn from the table that the larger the
number of moves the bigger the gain obtained by using a sample of generating solutions
in spite of a single solution. For wide range of number of moves the sample composed
of 8 or 16 elements gives relatively good results. According to our experience with
MOK and other MOCO problems, 8 to 16 generating solutions is usually good choice.

Table 5 contains the result of tests when a parallel implementation was simulated, i.e.
the number of moves made by each generating solution was constant. So, the total
number of moves increased with the growth of the generating sample. If, however,
calculations required for each of the generating solutions are performed on different
processors the total calculation time would be approximately constant (an additional
burden connected with inter-processor communication is ignored). Precisely 128 moves
were made by each solution on each temperature level. Of course in this case the results
improve with the growth of the size of generating sample. One can observe, however,
that the improvement is more significant for small sizes of the sample. For relatively big
generating samples only a small improvement may be achieved by increasing the
sample size.

7DEOH����5HVXOWV�REWDLQHG�IRU��
REMHFWLYH�SUREOHPV������HOHPHQWV�
VHTXHQWLDO�LPSOHPHQWDWLRQ

Size of the
generating

sample

'LVW� 'LVW� 'LVW�/'LVW�

1 (Serafini’s
algorithm)

0.217 0.481 2.212

2 0.253 0.681 2.690
4 0.206 0.440 2.132
8 0.184 0.397 2.164
16 0.180 0.365 2.026
32 0.214 0.425 1.984
64 0.295 0.518 1.760
128 0.413 0.569 1.377

7DEOH����5HVXOWV�REWDLQHG�IRU��
REMHFWLYH�SUREOHPV������HOHPHQWV�
VHTXHQWLDO�LPSOHPHQWDWLRQ

Size of the
generating

sample

'LVW� 'LVW� 'LVW�/'LVW�

1 (Serafini’s
algorithm)

0.417 0.7216 1.733

2 0.316 0.705 2.233
4 0.308 0.613 1.988
8 0.274 0.573 2.093
16 0.280 0.509 1.816
32 0.322 0.515 1.599
64 0.406 0.559 1.378
128 0.535 0.631 1.181
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7DEOH����9DOXHV�RI�WKH�',67��PHWULF�REWDLQHG�IRU���REMHFWLYH�SUREOHPV�����
HOHPHQWV��VHTXHQWLDO�LPSOHPHQWDWLRQ��GLIIHUHQW�QXPEHUV�RI�PRYHV

Number of
moves

______________

Size of the
generating
sample

128 256 512 1024 2048 4096

1 (Serafini’s
algorithm)

0.292 0.245 0.218 0.192 0.179 0.172

2 0.284 0.270 0.253 0.241 0.226 0.207
4 0.262 0.233 0.206 0.185 0.167 0.150
8 ����� ����� 0.184 0.161 0.139 0.124
16 0.318 0.225 ����� ����� ����� �����
32 0.436 0.300 0.214 0.165 0.137 0.114
64 0.563 0.424 0.295 0.209 0.157 0.130
128 0.663 0.548 0.413 0.288 0.201 0.151

7DEOH����9DOXHV�RI�WKH�',67��PHWULF�REWDLQHG�IRU���REMHFWLYH�SUREOHPV�����
HOHPHQWV��VHTXHQWLDO�LPSOHPHQWDWLRQ��GLIIHUHQW�QXPEHUV�RI�PRYHV

Number of
moves

______________

Size of the
generating
sample

128 256 512 1024 2048 4096

1 (Serafini’s
algorithm)

0.572 0.488 0.438 0.373 0.354 0.348

2 0.713 0.673 0.681 0.671 0.646 0.587
4 0.506 0.485 0.440 0.409 0.386 0.343
8 ����� ����� 0.397 0.330 0.275 0.240
16 0.508 0.430 ����� ����� ����� �����
32 0.579 0.485 0.425 0.357 0.293 0.251
64 0.667 0.566 0.518 0.445 0.361 0.301
128 0.740 0.649 0.569 0.499 0.437 0.361
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7DEOH����5HVXOWV�REWDLQHG�IRU���REMHFWLYH�SUREOHPV������HOHPHQWV��SDUDOOHO
LPSOHPHQWDWLRQ

Size of the
generating

sample

'LVW� 'LVW� 'LVW�/'LVW�

1 (Serafini’s
algorithm)

0.292 0.572 1.959

2 0.270 0.673 2.493
4 0.206 0.440 2.136
8 0.161 0.330 2.050
16 0.130 0.262 2.015
32 0.114 0.251 2.202
64 0.107 0.250 2.336
128 0.102 0.249 2.441

���6XPPDU\�DQG�FRQFOXVLRQV
A multiple objective metaheuristic procedure for combinatorial problems has been
presented. The procedure tends to generate a good approximation of the efficient
solution set in a relatively short time. The main advantages of the procedure are as
follows:
• it finds a representation of the whole set of efficient solutions for relatively large

problems,
• it naturally allows for a parallel implementation.

The following directions of further research may be considered:
• adaptive setting of the size of the generating sample,
• the use of concepts from other single objective metaheuristic procedures, e.g. tabu

search.
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$SSHQGL[�$��,QWXLWLYH�H[SODQDWLRQ�RI�36$
Paretoland is a country inhabited by shepherds. During the winter they keep their flocks
in the valleys and in the summer they move with their flocks to the mountains. The
mountains grow up from the south to the north. The Paretolanders are individualists, so
they favor to pasture their flocks far away from other shepherds. They prefer the
mountain pastures placed on the southern mountain-sides. Please note that such pastures
may be considered efficient from the point of view of two objectives: elevation and
southern latitude. So, when a shepherd sees a possibility of moving to a pasture placed
higher and further to the south than his current position he will move his flock to this
pasture. However, when he notices another shepherd close to him, he will try to move
away from the other shepherd. When he sees another shepherd at a lower elevation and



P. &]\ DN��$��-DV]NLHZLF]���������Pareto simulated annealing - a metaheuristic technique for
multiple-objective combinatorial optimization. -RXUQDO�RI�0XOWL�&ULWHULD�'HFLVLRQ�$QDO\VLV, �, 34-47.

17

further to the south he thinks: "As I am at a higher position than the other guy I will try
to move up". When he sees another shepherd at a higher elevation and further to the
north he thinks: "As I am further to the south than the other guy I will try to move even
further in this direction". Every year this behavior results in a relatively uniform
distribution of flocks on the southern mountain-pastures in Paretoland.
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