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Abstract: A new multi-objective stochastic search
technique (MOSST) for the multi-objective
economic dispatch problem in power systems is
presented. It is a highly constrained problem with
both equality and inequality constraints. The
MOSST heuristic has been designed as a
combination of real coded genetic algorithms
(GA) and simulated annealing (SA). It
incorporates a genetic crossover operator BLX —
o and a problem specific mutation operator with
a local search heuristic to provide a better search
capability. Extensive simulations are carried out
on standard test systems, considering various
aspects, and the results are compared with other
methods. These results indicate that the new
MOSST heuristic converges rapidly to improved
solutions. MOSST is a truly multi-objective
technique, as it provides the values of various
parameters for optimising different objectives, as
well as the best compromise between them, all in
a single run. Perturbation analysis shows that the
solutions obtained by MOSST are truly pareto-
optimal, i.e. no objective can be further improved
without degrading the others.

1 Introduction

The economic load dispatch (ELD) problem involves
allocation of generations to different thermal units to
minimise the cost of generation, while satisfying the
equality and inequality constraints of the power system
and keeping pollution within limits [1]. The two objec-
tives may be conflicting in nature and a compromise
has to be reached to obtain an acceptable power dis-
patch strategy within the various system constraints.

Mathematically, the problem is represented as mini-
mising F, where

Fr =3 Fi(Py) (1)
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and
Fi(Pys)
= a; P2 4 biPy; + d;i + |e; sin { fi(Pyi min — Pyi) }|
(2)
subject to the power balance constraint
NQ
ZPgi_PD—_-Ploss:O (3)
i=1
and the capacity constraint
Pgi min S Pgi < Pgi mazx (4)

where Fris the total cost of generation, F; is the oper-
ating cost of the ith generator (§/h), P,; is the loading
of the ith generator, a;, b,, d,, e, f; are coefficients of the
cost curve of the ith generator, Py, Pejmac are the
minimum and maximum limits on the loadings of the
ith generator, P is the total demand, and P, is the
real power loss in transmission lines.

The emission of sulfur dioxide, nitrogen oxides, car-
bon monoxide gases etc., which cause atmospheric haz-
ards, can be mathematically modelled as

emission = 1072 (a;+ B;Pyi + viPy;) +& exp(e: Py:)

(5)
where a, 8, ¥, &, ¢ are coefficients of generator emission
characteristics [2].

Some papers model the problem at hand as a multi-
objective problem using a constraint method [3, 4] or
weighting method [5]. In the former, the multi-objective
problem is reduced to a single objective problem by
treating the emissions as a constraint. The latter
approach linearly combines the objectives as a
weighted sum. The objective function so formed may
lose significance due to the incorporation of multiple
non-commensurable factors into a single function.
Alternatively, the objectives are considered one at a
time [2]. This approach does not provide any idea
regarding the trade-offs involved.

In this paper, a new multi-objective optimisation
approach, MOSST, is presented. It is an adaptation of
the method proposed by Yip et al. [6] for single crite-
rion function optimisation. The solution provided by
MOSST is a family of points known as the pareto-opti-
mal set. Each point in this surface is optimal, in the
sense that no improvement can be achieved in an
objective that does not lead to a degradation in at least
one of the remaining objectives. A comparison of simu-
lation results on standard examples from the literature
indicates that the present method discovers better solu-
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tions by examining an extremely small fraction of the
feasible solution space.

2 Multi-objective stochastic search technique
(MOSST) for ELD

MOSST is a hybrid approach which incorporates SA in
the selection process of GA. Thus, MOSST provides
the advantages of both GA and SA. In this Section, the
basic steps and the problem-specific implementation
details are discussed. The MOSST algorithm can be
expressed concisely in the form of a pseudo-code as
given below:
Pseudo-code 1
1. Initialise

(i) Set initial temperatures 7, and 7

(i) Randomly select N parent strings

(iii) Number of children to be generated by each

parent

(iv) Initialise pareto-optimal set (PS)
2. For each parent i, generate m(i) children using cross-
over
3. Perform mutation with a probability pm
4. Find the best child for each parent
5. Select the best child as the parent for the next gener-
ation as per pseudo-code 2 given in the explanation of
Step 5
6. Repeat Step 7 to Step 10 for each family
7. count = 0
8. Repeat Step 9 for each child; goto Step 10
9. Increase count as per pseudo-code 3 given in the
explanation of Steps 6-9
10. Acceptance number of the family is equal to count
(4)
11. Sum the acceptance numbers of all the families (S)
12. For each family i, calculate the number of children
to be generated in the next generation according to the
following formula:

m(i) = (T« A)/S

where T = total number of children generated by all
the families
13. Update PS
14. Decrease the temperature
15. Repeat Step 2-14 until a certain number of itera-
tions has been reached

A more detailed explanation of each step is as fol-
lows:
Step 1. (i) As in SA, the selection of temperatures is
such that initially the probability of acceptance of a
bad move, i.e. when the best child is worse than the
parent is high (= 1), but as the temperatures are low-
ered this probability is successively decreased to zero
[7]. As there are two objective values with widely differ-
ent ranges, separate temperatures 7, and 7} are main-
tained. The initial and final temperatures are calculated
as follows:

Initially, the probability of accepting a bad move is
approximately 1, i.e.:

exp(—AXgverage/T1) = 0.99 (6)

and finally

exp(—AXgverage/Tmaxir) = 0.0001  (7)
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therefore
T1 = —AXayerage/ 10g(0.99)
TMAXIT = _AXave'rage/log(O'OOOl) (8)

where T is the initial temperature, Ty, y;7 is the final
temperature, and AX,,,,. is the difference in the objec-
tive X for any two neighbouring points in the search
space.

(i) Generation of the initial population of N = 50
parents is random. Care is taken to ensure that only
feasible strings are generated. Power generations from
the generators are coded as strings of floating point
numbers. The generation capacity constraint {eqn. 4) is
embedded in the coding itself using the following
encoding:

X'L = (Pgi - Pgimin)/(Pgimaz - szmln) (9)
where X; is the ith element of chromosome X, i.e.:
Pgi - Xi(Pgimaa: - Pgi mln) + Pgimin (10)

The equality constraint of real power balance
(eqn. 3) has also been embedded in the coding using
the approach of [8]. The method randomly selects N, -
1 generator loadings and treats the N th generator as
the dependent generator. The loading of this generator
is calculated using the B-coefficients in such a way as
to satisfy the power balance equation. MOSST focuses
the search effort on feasible solutions only, thereby
reducing the search time significantly.

(iii) Initially, all the parents generate an equal
number of children given by m(i) = M. In this imple-
mentation, M = 10. The total number of children in a
generation is fixed and is given by

N
T =Y m() (11)
i=1

(iv) A set containing non-inferior solutions, PS, is
maintained and is updated in every generation. Initially
PS is empty.

Step 2: For each parent i, m(i) children are generated.
A blend crossover operator (BLX — ) based on the
theory of interval schemata [9] has been employed in
this study with a = 0.5. BLX ~ « operates by randomly
picking a point in the range (p1 — a(p2 - pl), p2 + a(p2
~ pl)), where pl and p2 are the two parent points and
pl < p2. This crossover may produce a child which
does not satisfy the power balance constraint even
when the parents satisfy it. Therefore, one of the gener-
ators is selected at random and its power generation is
adjusted to restore the real power balance as in Step 1
(it).

Step 3: A local optimisation step is used for mutation
in the proposed method. Cost mutation and emission
mutation are performed over the population with small
probability (0.1 in each case). Mutation is carried out
in two steps. First, the generators with highest and low-
est incremental costs (emissions) are taken as the candi-
dates for mutation in the selected chromosome.
Second, the loading of the generator with highest incre-
mental cost (emission) is reduced by an amount AP,,
and an equal and opposite change is made on the gen-
erator with minimum incremental cost (emission). AP,
is given by the following expression:

AP; = K min{(Pgl = Py in)s (Pg21na:r: - sz)}
(12)
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where Pg;, Pg, are the loadings of the generators hav-
ing maximum and minimum incremental costs, respec-
tively, Pgim, 18 the minimum limit of generator I,
Pgrmax 18 the maximum limit of generator 2, and K is
constant (0.1 in this case).

The change is made repeatedly until either the overall
cost (emission) of the chromosome starts increasing, or
the generator loading reaches its limit. Inclusion of the
mutation operator speeds up the convergence consider-
ably and also leads to better solutions.

Step 4: The children in the same family (i.e. generated
from the same parent) compete with each other and
only the best child survives. Child 1 is better than child
2 if

(1 —@2)/z1 + (Y1 —y2)/y1 <0 (13)

where x;(x,) and y,(y,) are the objective functions val-
ues of child 1 (child 2) for objectives x and y, respec-
tively. The best child is better than other children in the
family.

Step 5: Child C is preferred over its parent P for the
next generation for the objectives X and Y according to
the following pseudo-code:

Pseudo-code 2

if C;, = P, and C, = P, (Child is superior to parent)
then the child is selected as the parent for the next
generation;

else if C, < P, and C, > P, (Child is non-inferior to

parent)

if exp{P, - C)T}} = p
then the child is selected;
endif;,

elseif C, > Pyand C, < P,

if CXp{(Px - Cx)/Ta} =p

then the child is selected;

endif;
else the child is rejected; (Child inferior to Parent)
endif;
where C,, C, arc the objective function values of the
child for objectives x and y, respectively, P,, P, are the
objective function values of the parent for objectives x
and y, respectively, p is a random number in the range

0, 1), and T,, T, are the temperatures for the two
objectives.

Steps 6-12: The number of children allocated to each
family for the next generation is proportional to a
parameter called the acceptance number. If a region is
found to contain a large number of good candidate
solutions (as measured by the acceptance number),
more search is allocated in that region. The acceptance
number is calculated by counting the good solutions as
under:

Pseudo-code 3

if Cy=P,and C, = P,
then increment the count

else if C, < P, and C, > P,
if exp{(LOWESTy - Cp)/T}} =z p

then increment the count;

endif;

else if C, > P,and C, < P,
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if exp{(LOWESTy — C)/T,} = p
then increment the count;
endif;
endif

where LOWESTy and LOWESTYy are the lowest values
of objectives X and Y obtained so far. The acceptance
number of the family is equal to the count.

Step 13: A set of the non-inferior solutions is main-
tained and updated in every generation.

Step 14: A cooling schedule given in [7] has been
employed in this method and is given below:

Toir1 = Toi/(1+ BaTay)
Toiv1 =T /(1 + B Thy) i =1,2,... MAXIT -1
(14)

where B, and B, are constants whose values are speci-
fied as

Ba =
(Tag — Ta,maxir) ] TanTo,maxir(MAXIT — 1))

By =
(Tox — To,maxir) | ToaTo,maxrr(MAXIT — 1))
(15)
This cooling schedule is logarithmic in nature, i.e. the
reduction in the temperature is large in each iteration
at high temperatures but become progressively smaller

at lower temperatures. This implies that more search is
devoted to lower temperatures.

Step 15: The algorithm stops when the maximum
number of iterations (M AXIT) is reached.

3 Resuits of computational experience

The proposed algorithm has been implemented in
MATLAB on a Pentium 133MHz and has been tested
on various test systems available in the literature con-
sidering non-monotonic and discontinuous cost curves.
The versatility and enhanced modelling power of
MOSST is demonstrated by presenting a variety of
examples which include consideration of different
aspects of the ELD problem. In a single run, the pro-
posed heuristic gives:

(1) best solutions with respect to individual objectives;

(ii) the best compromise solution obtained by consider-
ing a specific choice of weights for the two objectives at
hand (equal weightage in this case);

(iii) The complete pareto-optimal set of solutions pro-
viding the trade-off curve (in contrast to other methods
which require multiple runs).

3.1 Examples

In this Section, some of the results of examples taken
from the literature are reported. Transmission losses
are neglected in the examples considered for the sake of
comparison with existing methods, although the
MOSST permits their consideration. The results have
been obtained by setting population size to 50 and the
total number of evaluations to 15,000. In the tables
given below, best cost and best emission indicate the
minimum cost and minimum emission taken individu-
ally. The best compromise indicates the minimum cost
when both objectives are combined with equal weight-
age.
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Table 1: Test results of cost minimisation subproblem for 6-generator,
30-bus system

Generator a b d Pgmin  Pgmax  LP MOSST
1 100 200 10 0.05 1.5 0.15 0.1125
2 120 150 10 0.05 1.5 0.30 0.3020
3 40 180 20 0.05 1.5 0.55 0.5311
4 60 100 10 0.05 15 1.05 1.0208
5 40 180 20 0.05 1.5 0.46 0.5311
6 100 150 10  0.03 15 0.35 0.3625
Operating cost $/h 606.31 605.89

Table 2: Test results of emission minimisation subproblem for 6-generator, 30-bus
system

Generator a B y &g € LP MOSST
1 4.091 -5.654 6.490 2.0E-4 2.857 0.40 0.4095
2 2.543 -6.047 5.638 5.0E-4 3.333 0.45 0.4626
3 4.258 -5.094 4.586 1.0E-6 8.000 0.55 0.5426
4 5.326 -3.5650 3.380 2.0E-3 2.000 0.40 0.3884
5 4.258 -5.094 4.586 1.0E-6 8.000 0.55 0.5427
6 6.131 -5.655 5.151 1.0E-5 6.667 0.50 0.5142
Emission index 0.19424 0.19418

Table 3: Different solutions obtained in a single run of MOSST

MOSST LP
Type of solution

Cost $/hr  Emission index Cost $/hr Emission index
Best cost 605.8890 0.2222 606.314 0.2233
Best emission 644.1118 0.19418 639.6 0.19423
Best compromise 621.7582 0.1968 — —

Table 4: Assumed emission data for 13-generator,
57-bus system

Generator a B y & £

z1 5.326 -3.55 3.38 2.0E-3 20
z2, 23 4.258 -5.094 4.586 1.0E-6 8.0
al-a4, b1, b2 4.091 -5.554 6.490 2.0E-4 2.857
b3, c1-¢c3 2.543  -6.047 5.638 5.0E-4  3.333

Table 5: Generator loadings (MW) and operating costs for different algorithms

Generator BGA IGA GAA GAA2 SABED MOSST
z1 638.60 628.32 627.05 628.32 668.40 628.13
22 357.29 356.80 359.40 356.49 359.78 297.34
23 357.15 359.45 358.95 359.43 358.20 299.09
al 110.88 159.73 158.93 159.73 104.28 159.02
a2 152.51 109.86 159.73 109.86 60.36 159.59
a3 160.06 159.73 159.68 159.73 110.64 159.45
a4 161.45 169.73 159.53 159.63 162.12 159.68
b1 161.21 159.73 158.89 159.73 163.03 159.59
b2 116.09 169.73 110.15 159.73 161.52 159.61
b3 76.63 76.92 77.27 77.31 117.09 114.45
cl 75.00 75.00 75.00 75.00 75.00 75.00
c2 60.00 60.00 60.00 60.00 60.00 60.00
c3 93.13 55.00 55.41 55.00 119.58 89.07
Operating cost $/h  24703.32 24398.63 24418.99 24398.23 24970.91 24261
Emission index 0.2948 0.2950 0.2950 0.2950 0.2958 0.2897
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Example 1: A 6-generator, 30-bus standard test system
given in [2] is adopted in this example. The MOSST
algorithm is implemented to minimise the operating
costs as well as the emissions in a single run, unlike the
LP method proposed in [2] which takes two separate
runs for the two objectives. The results of the MOSST
are compared with those obtained from the linear pro-
gramming approach presented in [2] for both cases in
Tables 1 and 2. Table 3 gives all three types of solution
obtained from MOSST.

Example 2: A practical power system with 13 genera-
tors given in [10] is adopted here. The generator data as
given in [10] is utilised. Emission curves are assumed
and are given in Table 4. The best cost of the MOSST
algorithm is compared in Table 5 with those reported
in [8, 10] for different variations in genetic algorithms,
viz. BGA, IGA, GAA, GAA?2 and simulated annealing.
Table 6 gives all three types of solution obtained from
MOSST.

Table 6: Different solutions obtained in a single run of
MOSST

Type of solution Cost $/hr  Emission index
Best cost 24261 0.2897
Best emission 25334 0.2865
Best compromise 24264 0.2896

3.2 Performance evaluation

The most important characteristic of any iterative opti-
misation algorithm is its ability to converge rapidly to
the optimal solution. The convergence graphs of a
single run of MOSST on Example 1 are presented in
Figs. 1 and 2 for best cost, best emission and best com-
promise solutions, respectively. These graphs clearly
indicate that MOSST converges very rapidly to the
optimal solution, while evaluating a small fraction of
the search space.

0.1946
g 0.1945
‘& 0.1944
€ 0.1943
T 0.1942

0.1941 611

605

608 &
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606

1 5 10 15 20 25 30°%

iterations
Fig.1 Convergence of best emission and best cost solutions

The final solutions remaining in the pareto-optimal
set PS are plotted in Fig. 3. In order to validate PS,
several runs of MOSST are performed with varying
weightages of the two objectives. The best compromise
solutions obtained in each case are superimposed on
Fig. 3 and plotted in Fig. 4, which shows that the two
are almost identical. This amply validates that a single
run of MOSST is sufficient to obtain the pareto-opti-
mal set and repeated runs with modified weightages are
not required.

3.3 Perturbation analysis

A further perturbation analysis is carried out to prove
the authenticity of the pareto-optimal set (the points
shown in Fig. 3) obtained by the proposed technique.
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Fig.4 Superimposition of compromise solutions, shown by circles,
obtained by varying the weights ojP the two objectives in multiple runs, on
Fig. 3

Each solution in the pareto-optimal set is subjected to
a systematic perturbation to obtain a reduction in the
cost. This is done by reducing the generation of a gen-
erator in small steps, followed by an equal increase in
the generator with minimum incremental cost, as long
as the total cost of generation reduces. The process is
similar to the cost mutation operator discussed earlier.
However, all the generators, except the one with maxi-
mum incremental cost, are considered in the increasing
order of incremental costs in this analysis. Each step
change is 10% of the maximum change possible until
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one of the two generators reaches its limit. Thus, the
analysis takes a maximum of 10 steps for each pair of
generators, The emission index is also computed for the
modified generations thus obtained. For all the ele-
ments of the pareto-optimal set, a reduction in the cost
is always accompanied by an increase in the emission
index and vice versa. This proves that the final set of
solutions obtained are truly pareto-optimal.

4 Conclusions

A new heuristic MOSST has been developed, with the
incorporation of genetic operators into the generation
process and simulated annealing in the selection proc-
ess, for multi objective optimisation. The versatility and
enhanced modelling power of MOSST has been dem-
onstrated by implementing it for the economic-emis-
sion-dispatch problem. A suitable implementation
restricts the search process to the feasible solution
search space and ensures that the heuristic is very effec-
tive in determining near-optimal solutions, after exam-
ining a small fraction of the total solution space. Thus,
MOSST is extremely fast and is time applicable even to
large practical power systems. The heuristic is general
and can be suitably implemented for a variety of prob-
lems. Unlike the other methods available in the litera-
ture, this method gives optimal values of different
objectives, the best compromise between them, as well
as the pareto-optimal set depicting the trade-offs
involved in a single run. In the examples presented it

outperforms the other methods designed expressly for
the particular problem. This, coupled with the speed of
the algorithm, makes the approach highly suitable for
the multi-objective problems.
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