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Abstract—Evolutionary algorithms have been very popular
optimization methods for a wide variety of applications. However,
in spite of their advantages, their computational cost is still a
prohibitive factor in certain real-world applications involving
expensive (computationally speaking) fitness function evaluations.
In this paper, we depart from the observation that nature’s
survival of the fittest is not about exact measures of fitness;
rather it is about rankings among competing peers. Thus, by
exploiting this natural tolerance for imprecision, we propose here
a new, fuzzy granules-based approach for reducing the number
of necessary function calls involving time consuming real-world
problems. Our proposed approach is compared with respect to
the standard NSGA-II, using the Set Coverage, Hypervolume and
Generational Distance performance measures. Our results indi-
cate that our proposed approach is a very promising alternative
for dealing with multi-objective optimization problems involving
expensive fitness function evaluations.

I. INTRODUCTION

Optimization using metaheuristics has become a very pop-
ular research topic in the last few years. Real-world problems,
however, frequently have two or more (possibly conflicting)
objectives that we aimed to optimize at the same time. Such
problems are called multi-objective and have been intensively
studied using metaheuristics (particularly, evolutionary algo-
rithms) in the last few years [2].

As opposed to single-objective optimization problems in
which we aim to find a single optimum solution, in multi-
objective optimization problems (MOPs) the notion of opti-
mality changes, since there is normally no single solution that
is the best for all the criteria. The aim in this case is then to
find a set of solutions for which no objective can be improved
without worsening another. This set of solutions is known as
the Pareto optimal set and their vectors are said to be non-
dominated. When plotted in objective function space, these
solutions are collectively known as the Pareto front.

A wide variety of multi-objective evolutionary algorithms
(MOEAs) have been proposed since the inception of this field
in the mid-1980s [7], [2]. However, MOEAs are known to be
computationally expensive, since they normally require a high
number of objective function evaluations in order to produce
a reasonably good approximation of the Pareto front of the
problem being solved. Nevertheless, relatively little research
has been reported so far on the development of techniques

that reduce the computational cost of MOEAs (see [25]). This
paper seeks to contribute to this area by introducing a fuzzy
granules-based approach for reducing the number of objective
function evaluations required by a MOEA.

The remainder of this paper is organized as follows. Sec-
tion II provides some basic multi-objective optimization con-
cepts. The previous related work is discussed in Section III.
Section IV presents the approach proposed in this paper. To il-
lustrate the efficiency of the proposed method, the performance
results on ZDT1-6 test problem is presented in Section V. The
final section draws conclusions and considers implications for
future research.

II. BASIC CONCEPTS

We are interested in solving problems of the type1:

minimize �f(�x) := [f1(�x), f2(�x), . . . , fn(�x)] (1)

subject to:
gi(�x) ≤ 0 i = 1, 2, . . . , q (2)

hj(�x) = 0 j = 1, 2, . . . , p (3)

where �x = [x1, x2, . . . , xm]
T is a vector of decision variables,

fi : IRm → IR, i = 1, ..., n are the objective functions and
gi, hj : IR

m → IR, i = 1, ..., q, j = 1, ..., p are the constraints
of the problem.

To describe the concept of optimality, a few definitions are
introduced.

Definition 1. Given two vectors �x, �y ∈ IRm, �x dominates �y
(denoted by �x ≺ �y) if fi(�x) ≤ fi(�y) for i = 1, . . . , n, and
that �x �= �y.

Definition 2. A vector of decision variables �x ∈ X ⊂ IRm

is nondominated with respect to X , if there does not exist
another �x′ ∈ X such that �x′ ≺ �x.

Definition 3. A vector of decision variables �x∗ ∈ F ⊂ IRm (F
is the feasible region) is Pareto-optimal if it is nondominated

1Without loss of generality, we will assume only minimization problems.



with respect to F .

Definition 4. The Pareto Optimal Set P∗ is defined by:

P∗ = {�x ∈ F|�x is Pareto-optimal}
Definition 5. The Pareto Front PF∗ is defined by:

PF∗ = {�f(�x) ∈ IRn|�x ∈ P∗}
The problem is to find the Pareto optimal set from the set

F of all the decision variable vectors that satisfy (2) and (3).
Note however that in practice, not all the Pareto optimal set
is normally desirable (e.g., it may not be desirable to have
different solutions that map to the same values in objective
function space) or achievable.

III. PREVIOUS RELATED WORK

Evolutionary algorithms usually require such a large number
of function calls that this frequently makes them computation-
ally prohibitive in some real-world applications. When dealing
with MOPs, this issue becomes more critical, because more
objectives are involved and this multiplies the computational
cost, while also making the search more difficult. For dealing
with expensive objective functions, it is relatively common to
rely on approximate models that allow us to simplify the rep-
resentation of real-world complex behaviors. 2 Approximation
techniques may estimate each of the individuals’ fitness value
on the basis of previously observed objective function values
of neighboring individuals. A wide range of approximation
and meta-model techniques have been adopted in combination
with evolutionary algorithms, including Kriging [24], artificial
neural networks [26], and radial-basis-function networks [18].
Other authors have adopted fitness inheritance [21], cultural
algorithms [15] and other fitness function approximation tech-
niques [14] for the same purpose. Next, we will briefly review
the most representative work on the use of mechanisms for
handling expensive objective functions with MOEAs reported
in specialized literature.

Fitness inheritance, a popular class of fitness approximation
method, was originally introduced by Smith et al. [27] and is
a very simple technique that works as follows: when assigning
fitness to an individual, some times the objective function is
evaluated as usual, but the rest of the time, the fitness assigned
to the individual is the average (or a weighted average) of
the fitness of its parents. This fitness assignment scheme
operates based on the assumption of similarity between an
offspring and its parents. Clearly, fitness inheritance cannot
be applied all the time, since some true fitness function values
are required in order to obtain enough information to guide
the search. This approach uses a parameter called inheritance
proportion, which regulates how many times the fitness has
to be approximated. Very few authors have reported the use
of fitness inheritance in MOPs. Ducheyne et al. [11] tested

2This is based on the assumption that approximate models require small
computational resources compared to the cost of complex simulations, which
is normally the case when considering real-world problems.

the performance of both average and weighted average fitness
inheritance approaches and concluded that the usefulness of
this technique was limited to cases in which the Pareto front
is convex and continuous. Ducheyne et al. [10] also concluded
that for non-convex Pareto fronts, fitness inheritance produces
a slower convergence to the true Pareto front than when
the approach is not adopted. Other authors, however, have
successfully applied fitness inheritance to more complicated
test problems having non-convex Pareto fronts (see [21]).

Another approach for dealing with expensive objective
functions is based on learning and interpolation from repre-
sentative small datasets of the true objective functions values
in the desired design space which is known as functional
approximation [14]. Function approximation methods provide
a mapping between design space and objective functions space
that may be multi-dimensional. The accuracy of these models
depends greatly on the number of sample data points used and
their location in the multi-dimensional space. Some examples
of this sort of approach are the following: the response surface
methodology that uses low-order polynomials and the least
square estimations [17], [13], [12] and Gaussian processes
(also known as Kriging) that build probability models by
exploiting information recorded and use them to estimate the
function values of new candidate solutions [3].

Artificial Neural networks (ANNs) can also be used for
dealing with expensive objective functions. In fact, ANNs
can be considered one of the best approaches to approximate
a generic �m ⇒ �n function3, where m and n represent
the number of decision variables and number of objectives,
respectively. Although nonlinear interpolation can be used, it is
shown that with a number of decision variables higher than 10,
the interpolation problem becomes almost not tractable [20].
ANNs are successfully used for building approximate models
in a number of complex multiplicative optimization problems.
As an example, in [1], a generic supersonic aircraft configu-
ration with two main goals (maximization of the total range
of the aircraft and minimization of the ground sonic boom)
and a number of buildability and mission constraints (such
as structural integrity of the aircraft, take-off and landing
field length) is optimized using ANNs to generate inexpen-
sive surrogates. The approximation is used only where this
is warranted. Using Latin Hypercube Sampling (LHS), 300
sample data were generate via CFD (Computational Fluid
Dynamics) simulation are fitted using a single hidden layer
perceptron with sigmoid activation functions to provide a
general nonlinear higher fidelity model. In another study,
Poloni et al. [20] used a combination of GAs and ANNs
with a modified backpropagation algorithm, and a local search
method to optimize the design of a sailing yacht fin keel which
is a complex design problem in fluid dynamics. The ANN
acted as a model for 3D Navier-Stokes simulation of the fin
keel while cruising.

For more information on approaches for dealing with ex-

3If they are provided with sufficient structural complexity and a rich training
data set.



pensive objective functions in the context of multi-objective
optimization, interested readers should refer to [25].

A. Final Remarks on Fitness Approximation

In most of the fitness approximation models currently avail-
able, the main problem is the lack of sufficient training data
and hence the failure to reach a model with sufficient approx-
imation accuracy. Since the evaluation of the original fitness
function, in many practical problems, is obtained by some
sort of analysis (i.e., fluid mechanics analysis, thermodynamic
analysis) that is computationally expensive, the approximate
model may be of low fidelity. Furthermore, if the training data
does not cover the full domain range, large errors may occur
due to extrapolation. Errors may also occur when the set of
training points is not sufficiently dense and uniform. Here, we
adopt the concept of information granulation as an attempt to
address these difficulties.

IV. ADAPTIVE FUZZY FITNESS GRANULATION (AFFG)

Granular computing is regarded as the processing of gran-
ules of information that are aggregated due to their indis-
tinguishability, similarity, proximity or functionality in some
context [30]. It is a vehicle for handling information, as
well as a lack of it (uncertainty), at a level of coarseness
that can solve problems appropriately and efficiently [5]. In
problems with incomplete, uncertain or vague information,
the practical necessity; and in problems with huge detailed
information, the simplicity are the main reasons of popularity,
respectively, of granular computing. It is widely used in many
fields including interval analysis, Dempster-Shafer theory of
belief functions, cluster analysis, optimization and problem
solving [23], machine learning, bioinformatics, among other
fields [19]. The concept of information granulation was pro-
posed by Zadeh [31] (in the context of fuzzy set theory) as a
technique by which a class of points (objects) is partitioned
into granules. The fuzziness of granules and their attributes
is characteristic of the ways by which human concepts and
reasoning are formed, organized and manipulated. The concept
of a granule is more general than that of a cluster, potentially
giving rise to several conceptual structures in various fields of
science as well as mathematics.

In the present paper, with the aim to reducing the compu-
tational cost of MOPs, the concept of information granulation
and approximation in the context of rough set theory is
studied to exploit the natural tolerance of EAs in fitness
function computations. Nature’s survival of the fittest is not
about exact measures of fitness; rather it is about rankings
among competing peers. By exploiting this natural tolerance
for imprecision and aiming to exploit this uncertainty [16],
optimization performance can be preserved by computing
fitness only selectively and only to keep this ranking among
individuals in a given population.

In the proposed algorithm, a pool of solutions with exact
fitness values are maintained. Based on the maximum simi-
larity of a new candidate solution to this pool, the fitness of
individuals will be either approximated or calculated explicitly.

Fig. 1: A number of gaussian granules with different widths
in a 2-D solution space. Once a new individual is sufficiently
similar to a granule in the granule pool, then that granules’
fitness is used instead as a crude estimate. Otherwise, that
individual is added to the pool as a new fuzzy granule.
Each granules’ radius of influence is determined based on
equation (7).

If a new individual is sufficiently similar to a known fuzzy
granule, then that granules’ fitness is used instead as a crude
estimate. Otherwise, that individual is added to the pool as
a new granule. In this fashion, regardless of the competi-
tions’ outcome, the fitness of the new individual is always a
physically realizable one, even if it is a crude estimate and
not an exact measurement. The pool size as well as each
granules’ radius of influence depends on the utility of each
granule [6].Furthermore, to prevent the pool from growing too
large, pool members are competing for survival and members
with lower life index are gradually replaced by new granules.
By splitting up the pool into two parts, the new granules are
given a chance to survive a number of steps [4].

A. Algorithm’s Structure

The preceding section provided a general overview of our
approach. Going in more detail now, the algorithm’s compu-
tation steps are as follows:

Step 1: Create a random parent population P1 = {X1
1 , X

1
2 ,

. . . , X1
j , . . . , X1

t } of decision vectors, where, Xi
j =

{xi
j,1, x

i
j,2, . . . , x

i
j,r, . . . , x

i
j,m} is the jth individual in the

ith generation, xi
j,r the rth component of Xi

j , m the number
of components of decision vector and t is the population size.

Step 2: Define a multi-set G of fuzzy granules
(Ck, σk, Lk) according to G = {(Ck, σk, Lk)|Ck ∈
�m, σk ∈ �, Lk ∈ �, k = 1, . . . , NG}. G is initially empty.
Ck is an m-dimensional vector of centers, σk is the width
of membership functions (WMFs) of the kth fuzzy granule,
and Lk is the granule’s life index. A number of granules with
different widths are shown in Figure 1.

Step 3:

• Choose the phenotype of chromosomes, Xi
j , as the center

of granules, Ck.
• Rank P1 and goto step 8.



Step 4: Define the membership μk,r of each xi
j,r to each

granule member by a Gaussian similarity neighborhood func-
tion according to

μk,r

(
xi
j,r

)
= exp

(
− (

xi
j,r − ck,r

)2
(σk)

2

)
, k = 1, 2, . . . , NG ,

(4)
where NG is the number of fuzzy granules.

Step 5: Compute the average similarity of the new decision
vector Xi

j = {xi
j,1, xi

j,2, . . . , xi
j,r, . . . , xi

j,m} to each
granule Gk using equation (5)

μj,k =

m∑
r=1

μk,r

(
xi
j,r

)
m

(5)

Step 6: Either calculate the exact fitness value of Xi
j or

estimate it by associating it to one of the granules in the pool
in case there is a granule in the pool with similarity value
higher than a predefined threshold, i.e.,

f
(
Xi

j

)
=

⎧⎨
⎩
f (Ck) if max

k∈{1,2,...,NG}
{μj,k} > θi ,

f
(
Xi

j

)
otherwise.

(6)

where f(Cx) is the fitness function value of the fuzzy granule
and f(Xi

j) is the real fitness calculation of the individual.
Remark: θi is a predefined (time-varying) threshold that

controls the minimum similarity a solution has to have with a
pool member to be approximated. Here, θi is considered as a
constant value for all simulations, and is set to 0.9. In general,
as the population matures steadily, the algorithm needs to
be more selective (to calculate the exact fitness more often),
suggesting the need for a gradual increase of θi. Alternatively,
if

max
k∈{1,2,...,NG}

{μj,k} < θi

Xi
j is chosen as a newly created granule.
Step 7: If the population size is not completed, repeat Steps

4 to 7.
Step 8: When termination/evolution control criteria are not

met:
• Create offspring population.
• Rank the granule pool.
• Assign σk based on equation (7).

σk = σmin ∗ ((1− grσ) + grσ ∗ rank(k)) (7)

where rank(k) is the rank of the granule k among the
granule set, and σmin ∈ R>0 is a proportional constant
that defines the minimum spread of granules. σmin is a
problem dependent design parameter.
Remark: σk, the distance measurement parameter that
controls the degree of similarity between two individuals,
controls the radius of influence of each granule. Instead
of drawing the radius directly from the fitness (as in the
single-objective optimization case [4]), as objectives are

often non-commensurable and conflicting, dominance-
based ranking is used. The spread of granules grow as
their rank among granule members increases, with a rate
of grσ. Here, grσ is set to 0.1 and σmin ∈ {2n|n ∈ Z}.

• Goto step 4.

B. Controlling the granule pool length and protecting new
pool members (innovation) through speciation

As the evolutionary procedures are applied, it is inevitable
that new granules are generated and added to the pool.
Depending on the complexity of the problem, the size of this
pool can be excessive and become a computational burden
itself. To prevent such unnecessary computational effort, a life
index is introduced in order to appropriately decrease the size
of the pool. In other words, it is better to remove granules that
do not win new individuals, thereby producing a bias against
individuals that have low fitness and were likely produced
by a failed mutation attempt. Lk is initially set to 0 and
subsequently updated as below,

Lk =

{
Lk +M if k = K ,

Lk otherwise ,
(8)

where M is the life reward of the granule and K is the index
of the winning granule for each individual at generation i.
Here, M is set at 1. At each table update, only the NG

granules with the highest Lk index are kept, and the others are
discarded. In [5], an example has been provided that illustrates
the competitive granule pool update law. Adding a new granule
to the granule pool and assigning a life index to it, is a simple
way of controlling the size of the granule pool, since the
granules with the lowest life index will be removed from the
pool. However, it may happen that the new granule is removed,
even though it was just inserted into the pool. In order to
prevent this, the pool is split into two parts with sizes εNG

and (1 − ε)NG. The first part is a FIFO (First In, First Out)
queue and new granules are added to this part. If it grows
above εNG, then the top of the queue is moved to the other
part. Removal from the pool takes place only in the (1−ε)NG

part. In this way, new granules have a good chance to survive
a number of steps. In all of the simulations that are conducted
here, ε is set to 0.1.

V. NUMERICAL RESULTS

In order to validate our proposed approach, we adopted the
Zitzler-Deb-Thiele (ZDT) test problems [33] and compared
our results with respect to those obtained with the standard
NSGA-II [8]. The following parameters were adopted for our
experiments:

• Population size = 50.
• Crossover rate = 0.9 (SBX).
• Binary tournament selection.
• Mutation rate of 1/m, m = number of decision variables.
• Distribution indices for crossover ηc and mutation ηm:

ηc = 20 and ηm = 20.



Problem σmin NG Reference point
ZDT1 2−4 100 [1.1, 3.5]
ZDT2 2−5 100 [1.1, 5.0]
ZDT3 2−5 100 [1.1, 6.0]
ZDT4 2−6 100 [1.1, 140]
ZDT6 2−5 100 [1.1, 9.0]

TABLE I: AFFG-NSGA-II utilized parameter values and ref-
erence points used for calculating IH .

Problem AFFG-NSGA-II NSGA-II
mean, σ mean, σ

ZDT1 0.010165, 0.005744 0.102095, 0.029859
ZDT2 0.018143, 0.008509 0.716683, 0.365823
ZDT3 0.098656, 0.022421 0.236176, 0.048486
ZDT4 11.160124, 4.239201 20.191547, 11.658247
ZDT6 0.768217, 0.143028 1.328310, 0.224595

TABLE II: Mean and standard deviation of the GD perfor-
mance measure.

For assessing our results we adopted three performance
measures: (1) Generational Distance (GD) [28], which mea-
sures how far the given solutions are, on average, from the true
Pareto front, (2) the Hypervolume indicator IH (also known
as Lebesgue measure or S-metric) [32], which measures
the volume of the dominated portion of the objective space
which is enclosed by the reference set and (3) Set Coverage
(SC) [33], which measures the percentage of solutions from
one algorithm that are covered by the solutions of the other.
To measure the Hypervolume, a single reference point, R =
r ∈ �m was considered in all cases. This point corresponds to
the worst value in each dimension of the fronts. The reference
values we used here are given in Table I.

The performance measures to assess the results are pre-
sented in Tables II, III and IV. The measures are evaluated
by conducting 30 independent runs per test problem per
algorithm. Each run is restricted to 1,000 fitness function
evaluations. Each table displays the average and standard
deviation of each of the performance measures.

Figures 2 to 11 present results of 30 independent runs of
the standard NSGA-II and the AFFG-NSGA-II, respectively,
adopting the test problems ZDT1, ZDT2, ZDT3, ZDT4 and
ZDT6 (ZDT5 is a binary problem and was, therefore, omitted
here), with a budget of only 1,000 fitness function evaluations.
Each color corresponds to a single run.

The results clearly show that the proposed AFFG ap-
proach outperforms the standard NSGA-II. According to the

Problem AFFG-NSGA-II NSGA-II
mean, σ mean, σ

ZDT1 3.408204, 0.052768 2.689226, 0.164173
ZDT2 4.524421, 0.110119 2.227951, 0.350130
ZDT3 6.106243, 0.198963 4.516725, 0.267211
ZDT4 108.878924, 10.460062 100.619288, 9.466605
ZDT6 3.229885, 0.896935 1.178803, 0.176150

TABLE III: Mean and standard deviation of the IH perfor-
mance measure.

Problem AFFG-NSGA-II NSGA-II-AFFG
mean, σ mean, σ

ZDT1 1.000000, 0.000000 0.000000, 0.000000
ZDT2 1.000000, 0.000000 0.000000, 0.000000
ZDT3 0.995745, 0.023307 0.003401, 0.018630
ZDT4 0.613805, 0.455574 0.324147, 0.427815
ZDT6 0.891819, 0.134759 0.033209, 0.081798

TABLE IV: Mean and standard deviation of the SC perfor-
mance measure.
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Fig. 2: 30 independent runs of the NSGA-II for the ZDT1 test
problem using 1,000 real fitness function evaluations.
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Fig. 3: 30 independent runs of the AFFG-NSGA-II over the
ZDT1 problem using 1,000 real fitness function evaluations.
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Fig. 4: 30 distinct runs of the NSGA-II over the ZDT2 problem
using 1,000 real fitness function evaluations.
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Fig. 5: 30 distinct runs of the AFFG-NSGA-II over the ZDT2
problem using 1,000 real fitness function evaluations.

Wilcoxon rank-sum test, the results of our proposed approach
are better with a significance level of 5%. To further investigate
the convergence speed of the proposed approach, in Figure 12,
the changes in hypervolume metric is plotted against the
number of fitness function evaluations, for the ZDT1 problem.

VI. CONCLUSIONS AND FUTURE WORK

By combining the concepts of survival of the fittest and
fuzzy granulation, which enables a faster convergence without
degrading the estimated set of solutions, this paper presents an
approach to speed up convergence towards the Pareto optimal
front of multi-objective optimization problems. With the pro-
posed approach, we can exploit the information obtained from
our previous objective function evaluations. Our results indi-
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Fig. 6: 30 independent runs of the NSGA-II over the ZDT3
problem using 1,000 real fitness function evaluations.
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Fig. 7: 30 distinct runs of the AFFG-NSGA-II over the ZDT3
problem using 1,000 real fitness function evaluations.

cate that the proposed approach is very promising, since it can
achieve a faster convergence than the standard NSGA-II in the
test problems adopted. However, a more thorough validation
is still required (adopting other problems such as the DTLZ
test problems [9]). It is also desirable to perform comparisons
with respect to other fitness approximation methods such as
curve fitting, fitness inheritance and artificial neural networks.
As part of our future work, we are interested in studying the
effect of the number of granules on the convergence rate.
Additionally, in order to further test the robustness of our
proposed approach, we want to study its sensitivity to its
parameters and its scalability when increasing the number of
decision variables and objectives. Adaptively changing θi and
being more selective as the population matures (to calculate
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Fig. 8: 30 independent runs of the NSGA-II over the ZDT4
problem using 1,000 real fitness function evaluations.
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Fig. 9: 30 distinct runs of the AFFG-NSGA-II over the ZDT4
problem using 1,000 real fitness function evaluations.

the exact fitness more often), is indeed part of our ongoing
research. Finally, we wish to apply our proposed approach to
real-world problems in the field of multi-objective network
design problems [29] and supplier selections [22].
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Fig. 10: 30 independent runs of the NSGA-II over the ZDT6
problem using 1,000 real fitness function evaluations.
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Fig. 11: 30 distinct runs of the AFFG-NSGA-II over the ZDT6
problem using 1,000 real fitness function evaluations.
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