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Abstract. Deception problems are among the hardest problems to solve
using ordinary genetic algorithms. Designed to simulate a high degree
of epistasis, these deception problems imitate extremely difficult real
world problems. [1]. Studies show that Bayesian optimization and explicit
building block manipulation algorithms, like the fast messy genetic algo-
rithm (fmGA), can help in solving these problems. This paper compares
the results acquired from an extended multiobjective fast messy genetic
algorithm (MOMGA-IIa), ordinary multiobjective fast messy genetic al-
gorithm (MOMGA-II), multiobjective Bayesian optimization algorithm
(mBOA), and the non-dominated sorting genetic algorithm-II (NSGA-
II) when applied to three different deception problems. The extended
MOMGA-II is enhanced with a new technique exploiting the fmGA’s
basis function to improve partitioned searching in both the genotype
and phenotype domain. The three deceptive problems studied are: inter-
leaved minimal deceptive problem, interleaved 5-bit trap function, and
interleaved 6-bit bipolar function. The unmodified MOMGA-II, by de-
sign, explicitly learns building block linkages, a requirement if an al-
gorithm is to solve these hard deception problems. Results using the
MOMGA-IIa are excellent when compared to the non-explicit building
block algorithm results of both the mBOA and NSGA-II.

1 Introduction

Algorithms that solve problems by realizing good building blocks (BBs) are
useful in solving extremely difficult problems: Protein Structure Prediction [2],
0/1 Modified Knapsack [3], Multiple Objective Quadratic Assignment Prob-
lem [4, 5], Digital Amplitude-Phase Keying Signal Sets with M-ary Alphabets
and many academic problems [6, 7]. MOMGA-IIa originated as a single objective
messy GA (mGA). It evolved from being a single objective mGA into a multi-
objective mGA called the MOMGA [8]. Many different MultiObjective Evolu-
tionary Algorithms (MOEAs) were produced during this time period; however,
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the MOMGA is the only MOEA explicitly using good BBs to solve problems
– even the Bayesian optimization algorithm (BOA) uses a probabilistic model
to find good building blocks. The MOMGA has a population size limitation:
as the BB size increases so does the population size during the Partially Enu-
merative Initialization (PEI) phase. This renders the MOMGA less useful on
large problems. To overcome this problem, the MOMGA-II, based on the sin-
gle objective fmGA, is designed. The fmGA is similar to the mGA in that it
specifically uses BBs to find solutions; however, it has a reasonable population
size and lower run time complexity (See Table 1) when compared to the mGA.
MOMGA-II includes many different repair, selection, and crowding mechanisms.
Unfortunately, the MOMGA-II is found to be limited when solving large decep-
tion problems [6]. This called for the development of basis function diversity
measures in the MOMGA-IIa which are designed for smart BB searching in
both the geno- and pheno-type domains. Also discussed in this investigation is
the mBOA and the NSGA-II [7] neither of which compares well to MOMGA-IIa
results.

Table 1. Complexity Estimates for serial GAs

Single Objective Algorithm Multiple Objective Algorithm

Phase sGAa ssGAb mGA fmGA NSGA-II mo-BOA MOMGA-IIa

Initialization O(ln) O(ln) O(lk) O(l)
Recombination O(gnq) O(g)

Primordial O(∅) O(∅) O(l2)c

Juxtapositional O(l log l) O(l log l)

Overall O(ln) O(ln) O(lk) O(l2) O(mn3)d O(n3.5)e O(megn2)f

a l is the length of chromosome, n is the size of population, q is group
size for tournament selection, g is the number of generations.

b l is the length of chromosome, n is the size of population, g is the
number of generations of reproduction.

c Building Block Filtering
d m is the number of objectives
e This complexity is problem specific and in this case has been taken

from the spin glass problem.[9]
f e = number of eras, g = max number of generations

The next section discusses in detail the MOMGA-II and MOMGA-IIa algo-
rithm domains. In addition, a short description of the mBOA and the NSGA-II is
provided. The mBOA and NSGA-II have been used to solve these three multiob-
jective problems (MOPs) in previous research [6, 10]. The three MOPs are then
described in detail in Section 3. Next, experimental design, resources, parameter
settings, and algorithm efficiency are discussed briefly in Section 4. Finally, in
the results section, the mBOA, NSGA-II, MOMGA-II and MOMGA-IIa results
are compared and analyzed.



2 Extended Multiobjective fast messy GA (MOMGA-II)

The MOMGA-II(a)1 is a multiobjective version of the fmGA that has the ability
to achieve a near-partitioned search in both the genotype and phenotype do-
mains during execution. It is an algorithm that exploits “good” building blocks
(BBs) in solving optimization problems. These BBs represent “good” informa-
tion in the form of partial strings that can be combined to obtain even better
solutions. The BB approach is used in the fmGA to increase the number of
“good” BBs that are present in each subsequent generation of the algorithm.
The fmGA algorithm executes in three phases: Initialization, Building Block
Filtering, and Juxtapositional Phase. See Figure 1 for diagram of the program
flow for MOMGA-IIa.

The algorithm begins with the Probabilistically Complete Initialization Phase.
This phase randomly generates a user specified number of population members.
These population members are of the a priori specified chromosome length and
each is evaluated to determine its respective fitness values. Our implementation
utilizes a binary scheme in which each bit is represented with either a 0 or 1.

The fitness functions used to calculate each string’s merit are described in
Section 3. In MOMGA-II each string has m fitness values, while in MOMGA-
IIa each string has f = (c ∗ m + i + o) ∗ m fitness values associated with it –
corresponding to the m objective functions to optimize, c competitive templates,
i inverse templates (equal to c ∗m), and o orthogonal templates.

The Building Block Filtering (BBF) Phase follows by randomly deleting locus
points and their corresponding allele values in each of the population member’s
chromosomes. This process completes once the length of the population mem-
ber’s chromosomes have been reduced to a predetermined BB size. In order to
evaluate these population members a competitive template (CT) is utilized to
fill in the missing allele values. The competitive template is a fully specified
chromosome and evolves, by allowing the best member found to replace the old
competitive template(s), after each BB generation.

In the MOMGA-II, the next competitive template(s) is(are) randomly cho-
sen from among the non-dominated points within the population. This is the
difference between the MOMGA-II and MOMGA-IIa.

Where the MOMGA-II’s competitive template selection mechanism selects
the next competitive template randomly from the non-dominated points with-
out regard to pareto front (PF) point placement, the MOMGA-IIa competitive
template generation, replacement, and evolution is engaged in making sure com-
petitive template selection partitions the search space in both the phenotype
and genotype domain.

The innovative balance is achieved through the use of two mechanisms: Or-
thogonal competitive template generation and Target Vector (TV) guidance.
Orthogonal competitive template generation is directed to partition the geno-

1 When the reader sees MOMGA-II(a) in this report, the sentence is referring to both
the MOMGA-II and the MOMGA-IIa.
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Fig. 1. Illustrated in this figure is the program flow of the MOMGA-IIa. Note the
placement of each phase and where tournament selection is performed. Additionally,
the MOMGA-IIa exploits and partitions in both the phenotype and genotype domains
by updating and generating regular, inverse, and orthogonal competitive templates.
See Section 2 for a detailed description of the algorithm.



type space while keeping a good partitioning of the phenotype space using TV
guidance.

Through the BBF phase the length of the chromosome decreases, yet each
chromosome continues to be evaluated for selection. During this phase these
chromosomes are referred to as “underspecified” since each locus position does
not have an associated allele value. To evaluate an underspecified population
member, the member is overlayed upon the competitive template to fully specify
the member. This process uses the allele values from the template to fill in any
missing allele values in the population member to allow the fitness evaluation to
take place and is repeated any time an underspecified population member needs
to be evaluated. The BBF process is alternated with a selection mechanism
to keep only the strings with the “best” BBs found, or those with the best
number of fitness values. In the case of a tie, where two strings each have an
equal number of better fitness values (ie. each have m

2 “best” fitness values), the
string is randomly selected between the two.

The MOMGA-IIa has a more complex selection mechanism than MOMGA-
II because it maintains more fitness values per solution; however, ultimately
it is the same comparing only each string’s best objective fitness value for all
templates considered.

The juxtapositional phase follows and uses the BBs found through the BBF
phase and recombination operators to create chromosomes that are fully speci-
fied. A chromosome is referred to as fully specified if it is not missing any locus
positions, or in other words does not need to use the competitive template for
evaluation.

Furthermore, the algorithms have an outer and inner loop and must com-
pletely iterate through each BB size a number of epochs before it terminates.
For more information on the fmGA and BB theory, see [3, 11].

2.1 Non-dominated Sorting Algorithm-II

The non-dominated sorting algorithm-II (NSGA-II) is a generic non-explicit BB
MOEA applied to multiobjective problems (MOPs) – based on the original de-
sign of NSGA. It builds a population of compete individuals, ranks and sorts
each individual according to non-domination level, applies Evolutionary Opera-
tions (EVOPs) to create new pool of offspring, and then combines the parents
and offspring before partitioning the new combined pool into fronts. The NSGA-
II then conducts niching by adding a crowding distance to each member. It uses
this crowding distance in its selection operator to keep a diverse front by making
sure each member stays a crowding distance apart. This keeps the population
diverse and helps the algorithm to explore the fitness landscape.

2.2 Multiobjective Bayesian Optimization Algorithm

The multiobjective Bayesian optimization algorithm (mBOA) was also used to
solve these MOPs in previous research [12]. mBOA is identical to the single ob-
jective Bayesian Optimization Algorithm (BOA) [12] minus the selection proce-



dure. The mBOA’s selection procedure is replaced by the non-dominated sorting
and selection mechanism of NSGA-II. The BOA generates a child population of
size n from a parent population. The child and parent population is then merged
and the combined population is pareto ranked. Based on the pareto ranking and
crowding distance function a new population is created from which BOA builds
a new probabilistic model to generate children again.

3 Deception Problems
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Fig. 2. This figure illustrates a classical deception problem.

In 1987, Goldberg’s research group introduced deception to test the abilities
of current genetic algorithms [13]. They designed problems having specific dif-
ficulties which genetic algorithms (GAs) might face in problem solving. These
deception problems are often challenging to optimize and involve some degree
of deception – resulting in conflicting objectives (e.g. the k-arm bandit competi-
tions between hyperplanes [14]). Later, Whitley [14] proved deceptive attractors
must have complementary bit patterns to the global optimum pattern in order
to be either fully deceptive or consistently deceptive problems. He then defines a
deceptive problem at least one more relevant lower order hyperplane competitor
that guides a genetic search away from the global winner. Imagine a hill climbing
search algorithm starting anywhere except with the bit configuration 111x. The
hill climbing algorithm always finds the suboptimal fitness of 9 as a solution.
This example illustrates how a competitor hyperplane might guide a GA away
from the optimal solution. Furthermore, it is every GA engineer’s desire to build
an algorithm that finds proper linkages within a problem, overcoming this type
of deception.

We evaluate the following five test functions in this investigation:



1. T1 - Interleaved minimal deception problem
2. T2 - Complement of T1
3. T3 - Interleaved 5-bit trap function
4. T4 - Complement of T3
5. T5 - Interleaved 6-bit bipolar deception function

These test functions are claimed to be difficult in four respects: deception,
loose linkage, mutlimodality, and combinatorially - having a large search space [15–
17]. Sections 3.1 through 3.3 included a detailed discussion of these deceptive
problems.

In addition to solving these five test functions, difficulty is added by combin-
ing these functions together to make three multiobjective problems. By aggre-
gating these test functions together, the order of deception is increased because
the functions are paired in a manner that adds a relevant lower order hyperplane
competitor to guide a genetic search away from the global winner. The following
is the list of the MOPs investigated in this paper:

1. MOP 1: T1 and T2
2. MOP 2: T3 and T4
3. MOP 3: T2 and T5
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Fig. 3. These figures illustrate the fitness landscape for each function. Subfigure a
illustrates deception problems T1 and T2, subfigure b illustrates deception problems
T3 and T4, and subfigure c illustrates deception problems T5 and T2

3.1 Interleaved Minimal Deceptive Problem (T1 & T2)

The interleaved minimal deceptive problems are designed to test an algorithm’s
ability to discover loosely linked bits by dividing the string into two halves and
coupling one bit from each half. Figure 4 illustrates how the bits are correlated.
Bits having the same pattern are rewarded, while alternating couplets are not.
Additionally, Figure 3.a illustrates the bit couplet fitness for T1 and T2.
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3.2 Interleaved 5-bit trap function (T3 & T4)

The interleaved 5-bit trap function is devised to test an algorithm’s ability to
find loose linkages having non-consecutive bits. Bits in problems T3 and T4 both
have correlated bits with a distance of l

5 from one another. Figure 5 illustrates
how the bits in groups of 5 are coupled. Additionally, Figure 3.b graphically
illustrates how the fitness behavior varies according to the number of bits that
are set in the described 5-bit linkage pattern. Notice that T3 in Figure 3.b is
similar to the classical deception problem example illustrated in Figure 2.

1 2 3 4 5 

1 2 3 4 5 6 7 8 9 10 

A) 

B) 









= ∑

−

=

+

1

0

*1
)(

bbsl

i

lbbsibGxf  









+








= ∑∑

−

=

+

−

=

+

1

0

*2

1

0

*1
)(

bbsl

i

lbbsi

bbsl

i

lbbsi bGbGxf  

Fig. 5. This figure illustrates bit linkage in an 5 and 10 bit solution. In the figure, the
fitness function for each set of bits is shown to the right with arrows indicating which
bits contribute to each term of the fitness summation.
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Fig. 6. This figure illustrates 6-bit bipolar linkage in an l bit solution. The bit string
is broken in the middle to enhance the idea that string can be of any size as long it is
a multiple of 6.



3.3 Interleaved 6-bit Bipolar Function (T5)

The interleaved 6-bit Bipolar function is constructed as a loose linkage problem
having correlated bits in variable placement in the string. The first three bits
and the last three bits are correlated, then the 4th, 5th, 6th, (l − 4)th, (l − 5)th,
and (l− 6)th and so on until the middle 6 bits of the string are left. Graphically,
the fitness function for T5 is illustrated in Figure 3.c.

4 Experiments

The experiment for all MOMGA-II MOPs were run simultaneously on the two
computational clusters (ASPEN and Polywells) listed in Table 2. The MOMGA-
IIa ran in serial on one computational cluster (TAHOE). The MOMGA-II is
given 30 to 50 experiments to solve the three MOPs while the MOMGA-IIa
is run for 10 experiments or less. Statistically, 10 runs are required to be able
to compare MOEAs mathematically; however, the MOMGA-II is given more
experiments in attempt to allow it to find all pareto front solutions for the
larger deception problems. Unfortunately, even with the extra experiments, the
MOMGA-II still did not find all pareto front solutions. See Section 5 for results.
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Fig. 7. This figure illustrates the pareto front findings for the T1 vs. T2 and T3 vs.
T4 experiment using a string length of 30, 60, 90, and 120 bits.

4.1 Resources

Table 2 lists the resources used for these experiments. Each MOMGA-II exper-
iment took approximately 1 week to complete including the time to process all



data for presentation. Each MOMGA-IIa experiment took approximately 2 days.
This includes the time jobs sat idle in the scheduler queue and the post mortem
collection of data for analysis. NSGA-II and mBOA run times were not recorded
in this investigation and are unknown [10].

Table 2. System Configuration

Cluster 1 (TAHOE) Cluster 2 (ASPEN) Cluster 3 (Polywells)

Fedora Core 2 Redhat Linux 9.0 Redhat Linux 7.3
Dual Opteron 2.2 ghz Ath XP 3000+ 2.1ghz Ath XP 2800+ 2.0ghz

Cache(L1 I 64,D 64/L2 1024)KB (64,64/512)KB (64,64/512)KB
Gb Ethernet Fast Ethernet Gb Ethernet

RAM 4 GByte 1 GByte 1 GByte
Crossbar Switch Crossbar Switch Crossbar Switch

RAID 5 RAID 5 RAID 5
48 node,2 CPUS/node 48 node,2 CPUS/node 16 node,1 CPU/node

4.2 Parameter Settings

The MOMGA-II(a) has many parameters for proper program execution. BB
sizes must be determined, elitism percentages, cut probability, splice probabil-
ity, mutate probability, population sizing variable (n a), era generations, and BB
filtering schedule. The program is run x times and pareto front members are col-
lected from each solution set. Table 4 indicates the number of times the program
is run on each MOP. In some cases the experiments were terminated early if all
pareto front solutions were found. All MOMGA-II(a) experiments are executed
using a multiple objective fmGA. Tables 3 and 4 list all the parameters used for
the experiments conducted in this study. n a values for the MOMGA-II can be
found in [6] while n a values were set to 500 for the MOMGA-IIa. Table 3 lists
the constant parameter settings while Table 4 identifies parameters that were
varied for each MOP. In the cases where the programs were run for less than 30
times, this is because the MOMGA-II(a) found the optimal pareto front before
each run completed.

Table 3. Summary of Static parameters set for each experiment regardless of MOP
and problem size. MOMGA-II(MOMGA-IIa)

Static parameter settings for each MOP
Parameter Setting Parameter Setting
Maximization 1(n/a) Thresholding 0(n/a)
mGA(0)/fmGA(1) 1(n/a) Shuffle Number 2(2)

Tiebreaking 0(n/a)
Overflow 2.0(2.0) Reduced initial pop 0(n/a)
Elitism % 25(0) Extra pop members 0(n/a)
Prob cut 0.02(0.02) Stop criteria factor 1.00(n/a)
Prob splice 1.0(1.0) Partition file 0(n/a)
Prob mutation Plotting file 0(n/a)
allelic 0.0(n/a) Pop record file 0(n/a)
genic 0.0(n/a) Copies 5 1 1(n/a)

Inverse Template n/a(Y) CT Guesses n/a(1)

BB size selection for these problems is tricky because the identification of the
length of one particular linkage (say 5 bits long) may not be enough to transform



solutions out of the search basis provided by the resident competitive templates.
This is prominent for MOMGA-II when solving the MOP 2 of size 90 where the
competitive templates used constrict the search into a space where the small BB
sizes cannot overcome the competitive template basis. Normally, a BB size can
be selected upon knowing the length of these linkages; however, in MOP 2 there
are multiple linkages of five bits long each magnifying the difficulty and requiring
a larger BB size to allow the MOMGA-II to find more PFtrue points. It should
be noted here that when the BB sizes increase, population size is also increased
as well as run time for the algorithm to complete. MOMGA-II’s limitation was
found in MOP 2 with a size greater than or equal to 90. This limitation is
overcome by MOMGA-IIa by using specially chosen competitive templates for
search after each BB generation.

Table 4. Summary of Era parameters settings for each experiment using MOMGA-II(MOMGA-IIa)

Experiment Start ERA End ERA Runs CTs Inverse CTs Orthogonal CTs
MOP 1(30) 1 10(4) 30(3) 4(18) 0(18) 0(41)
MOP 1(60) 1 10(4) 30(9) 4(18) 0(18) 0(45)
MOP 1(90) 1 10(4) 30(10) 4(18) 0(14) 0(9)
MOP 1(120) 1 10(4) 30(10) 4(18) 0(14) 0(9)
MOP 2(30) 1 10(4) 30(10) 4(18) 0(18) 0(41)
MOP 2(60) 1 8(4) 50(10) 4(18) 0(18) 0(45)
MOP 2(90) 1 6(4) 50(10) 4(18) 0(18) 0(10)
MOP 2(120) 1 4(4) 30(8) 4(14) 0(14) 0(49)
MOP 3(30) 1 10(4) 10(1) 4(14) 0(14) 0(41)
MOP 3(60) 1 12(4) 10(1) 4(14) 0(14) 0(41)

4.3 Efficiency Finding Pareto-front points

Reduction of relative execution time for MOMGA-IIa is achieved by keeping the
pareto front points (including duplicates) in memory. The MOMGA-IIa benefits
from a creatively designed structure maintained as a dynamic linked list object
which holds all pareto front members. Dominated solutions are deleted from the
structure and from memory including all duplicates for that particular point.
As the program runs, the pareto front point listings can become long. This is
a disadvantage; however, elitism selection is O(p) run time as all solutions, p,
are readily listed. In addition to this enhancement, epsilon-difference dominance,
crowding techniques and dominance linkage can be instantiated. The MOMGA-
IIa also has the ability to trace evolutionary solutions throughout the search
process. This enhanced feature comes at a cost in space (memory or disk) and
efficiency. All experiments in this paper are run with an active trace feature to
allow for post mortem analysis of pareto front point conception.

5 Results

The MOMGA-IIa results are superior. In every case the MOMGA-IIa has ei-
ther found more pareto front solutions or more unique solutions than all other
algorithms tested on these three MOPs. Along with the enhanced algorithm, de-
ception problems of larger sizes are added into this investigation to allow for even



Table 5. Summary of Results for all experiments. Included in this table are the number
of optimal pareto front points, number of unique strings making up these Optimal
points, and the number of points each algorithm (MOMGA-IIa, MOMGA-II, mBOA,
and NSGA-II) have found in each category.

MOP 1

T1 vs. T2 - Sizes: (30/60/90/120)
Unique Strings: {(215/230/245/260)} Pareto Front Strings: (16/31/46/61)

Algorithm Unique Strings Found Pareto Front pts Found

30 60 90 120 30 60 90 120

MOMGA-IIa 32768 300776 57661 32876 16 31 46 61

MOMGA-II 596 21364 28 138 16 31 16 56

mBOA 224 591 16 46

NSGA-II 7 5 6 3

MOP 2

T3 vs. T4 - Sizes: (30/60/90/120)
Unique strings: {(26/212/218/224)} Pareto Front Strings: (7/13/19/25)

Algorithm Unique Strings Found Pareto Front pts Found

30 60 90 120 30 60 90 120

MOMGA-IIa 64 565 1280 3594 7 13 19 25

MOMGA-II 32 98 54 31 7 12 6 14

mBOA 30 102 327 7 13 19

NSGA-II 0 1 0 0 1 0

MOP 3

T5 vs. T2 - Sizes: (30/90)
Unique strings: (1/1) Pareto Front Strings: (1/1)

Algorithm Unique Strings Found Pareto Front pts Found

30 90 30 90

MOMGA-IIa 1 1 1 1

MOMGA-II 1 1 1 1

mBOA 1 1 1 1

NSGA-II 0 0 0 0

more difficult problem resolution. As expected from the last investigation [6], this
investigation found MOP 2 to be the most difficult to solve. Difficulty comes in
the form of time to find all pareto front members.

The following sections describe, in detail, the experiment results for each
MOP. Notice that the pareto front for MOP 1 and MOP 2 is linear. This is
due to the linear slopes of the individual objective functions making up each
of these MOPs. It is also worth noting that each point on the MOP 1 and
MOP 2 pareto front may have many unique strings (solutions) equating to that
particular pareto front point. This phenomena is illustrated in Table 5 where
both the number of pareto front points and unique strings are listed.



5.1 T1 vs. T2 (MOP 1)

Figures 7a∼d reflect the results of the MOP 1 of sizes 30, 60, 90, and 120.
Diamonds indicate the pareto front solutions found. Notice that these points
are linear and discrete. For problem sizes 30, 60, 90, and 120 there are 16, 31,
46, and 61 total pareto front points. Not only does MOMGA-IIa find the same
or more true pareto front points for MOP 1 than every other algorithm tested,
it also finds more unique strings making up each of these pareto front points.
Table 5 numerically shows in bold that MOMGA-IIa is the front runner in this
experiment. In the problem size 30, the MOMGA-IIa has actually found all
unique strings corresponding to each of the 16 pareto front solutions.

5.2 T3 vs. T4 (MOP 2)

Figures 7e∼h illustrate the results of the MOP 2 experiment. Similarly, dia-
monds indicate the pareto front solutions found. Notice that these points are
linear and discrete. For the problem sizes 30, 60, 90, and 120 there are 7, 13,
19, and 25 total pareto front points in the entire search space. Not only does
MOMGA-IIa find the same or more true pareto front points for MOP 1 than
every other algorithm tested, it also finds more unique strings making up these
pareto front points. Specifically, MOMGA-IIa overcomes the problem size issue
and finds more pareto front points than its predecessor, MOMGA-II. Table 5
numerically shows in bold that MOMGA-IIa is the front runner in this exper-
iment. In addition to finding all the pareto front solutions for MOP 2 size 30,
the MOMGA-IIa finds all corresponding unique strings.

5.3 T5 vs. T2 (MOP 3)

No figures in this paper reflects the results of MOP 3 for it is rather uninteresting.
See [6] for an example. There is only one point on the pareto front. All algorithms
but the NSGA-II found the one and only pareto front point and the only unique
string representing this solution.

5.4 Comparison

MOMGA-IIa results are excellent. The MOMGA-IIa finds all pareto front mem-
bers in every MOP and at every size. Additionally, the MOMGA-IIa also finds
more unique strings than any other algorithm tested in this investigation. Clearly,
the MOMGA-IIa outperforms the MOMGA-II and is able to scale up to solve
larger deception problems by having a pool of better competitive templates.

6 Conclusion

In conclusion, this experiment illustrates an explicit building block genetic algo-
rithm’s ability to solve deception problems. MOMGA-IIa’s capabilities to explic-
itly find and use good multiobjective Building Blocks (MOBBs) is illustrated.



MOMGA-IIa can find the loosely linked bits in deceptive problems using its
manipulation of BBs and it has been shown to scale when “good” competi-
tive templates are selected. The pedagogical problems solved in this report are
limited in testing the capabilities of MOMGA-IIa; however, they do show that
the MOMGA-IIa can solve difficult problems with ease. The MOMGA-IIa im-
plicitly solves problems by identifying good MOBBs when iteratively selecting
“good” competitive templates that partition both the geno- and pheno-type do-
mains. Important aspects of this algorithm are the BB size, BB schedule and,
competitive template numbers (regular, inverse, and orthogonal). An important
conjecture learned from this investigation is the fact that as the search space
increases it is important to increase the number of competitive templates - thus
limiting the largest required BB size and ultimately limiting the population size
generated by the MOMGA-IIa. In addition, a second long standing conjecture
that finding larger BBs allows for more pareto front points along the extremes
of the front to be found [18]. The new innovative tracing technique has identified
interesting results concerning this second conjecture.

7 Future Work

Future work includes the results of algorithm runs on larger deception problems
found in Table 5. Additionally, a detailed description of design on the MOMGA-
IIa is in order along with the correction of the count of unique strings found.
Finally, an examination of the evolutionary trace function that is embedded
within the MOMGA-IIa is needed to illustrate where solutions are drawn from
with respect to operators and BB sizes.
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