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Abstract. In this paper, we suggest an approach for finding multiple Pareto-optimal solutions with a
distributed computing system. When the number of objective functions are more, the resulting Pareto-
optimal set is large, thereby requiring a single processor multi-objective EA (MOEA) approach to use
a large population size to be run for a large number of generations. However, the task of finding the
complete Pareto-optimal front can be distributed among a number of processors, each pre-destined
to find a particular region of the Pareto-optimal set. Based on the guided domination approach, here
we propose a modified domination criterion for this task. The proof-of-principle results obtained with
a parallel version of NSGA-IT shows the efficacy of the proposed approach.

1 Introduction

The importance and efficacy of using multi-objective evolutionary algorithms (MOEAs) have been
well established in the recent past 3, 2]. Not only there exist quite a few efficient MOEAs, there also
exist a number of interesting applications [8]. However, like in the single-objective optimization
studies, the computational time needed for solving multi-objective optimization is usually large
in solving real-world optimization problems. In solving such computationally expensive problems,
distributed computing with multiple processors are often used in the context of single-objective
optimization. However, not much studies have been made in using distributed computing for
multi-objective optimization. A good review of the existing studies can be found in [2].

In this paper, we suggest a parallel MOEA approach based on non-dominated sorting GA (or
NSGA-II), which attempts to distribute the task of finding the entire Pareto-optimal front among
participating processors. This way, each processor is destined to find a particular part of a convex
Pareto-optimal front. With the help of a number of test problems, the efficacy of the proposed
procedure is demonstrated.

2 Need for Distributed Computing in EMO

The task of optimization refers to comparison of a number of solutions before arriving at the op-
timal solutions. Since the evaluation of a solution can be time-consuming for real-world problems,
the use of distributed computing has always been a major thrust in the area of optimization.
Thus, it is needless to reiterate the importance of distributed computing in the case of multi-
objective optimization. In fact, the importance is even greater in multi-objective optimization for
the following reason.

With the increase of the number of objectives, the dimension of the true Pareto-optimal front
increases. For a fixed number N of randomly created solutions in an objective space f; € [0,1],
the proportion of solutions in the non-dominated front is plotted in Figure 1. The figure shows
how quickly the size of the non-dominated front increases with the number of objectives. When
the task is to find a widely-distributed set of solutions on the entire Pareto-optimal front, the
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Fig. 1. The proportion of the best non-dominated solutions versus the number of objective functions

number of solutions needed to represent a large-dimensional surface is also large. This requires an
MOEA to use a large population size, thereby increasing the overall computational time. Thus, it
is all the more necessary to use a distributed computing environment for solving multi-objective
problems.

A good description of different parallel MOEA implementations is presented in [2]. Most past
studies have made a straightforward extension of parallel EA studies in solving multi-objective
optimization problems. The studies mostly concentrate on three different approaches: (i) master-
slave model, (ii) island model, and (iii) diffusion model. In the master-slave model, one master
processor runs the MOEA and slave processors are used for evaluation purposes only. With such
a model, the computational time can be expected to be reduced at most by P times with P
processors. The solutions obtained by this procedure would be the same as that with a single
processor, except that the computational time will be smaller. In the island model, different
MOEAs are run on different processors and some solutions (called the migration rate) are migrated
between processors after every few generations (called the migration frequency). The diffusion
model is a fine-grained approximation of the island model. It is the island model on which our
proposed approach is based. The island model provides a number of flexibilities to be tried:

1. First, each processor can be specifically assigned to search a particular portion of the entire
search space. Care should be taken to ensure that no feasible search space is left out in
the assignment for all processors. Since each processor works on a smaller search region, a
computationally faster search is possible. However, it is not trivial to make such an assignment
in an arbitrary problem and this is a serious bottleneck of this approach.

2. The above suggestion makes the search in each processor independent to each other. However,
with the help of a migration plan each processor can be assigned to work on the entire search
space and made to communicate their best solutions with other processors once in a while.
This way, if some processors get stuck at some sub-optimal locations, the information of
better solutions from other processors can break the stasis and help improve the proceedings.
In the context of multi-objective optimization, since our goal is to find a number of solutions,
there is no guarantee that each processor will find solutions in different parts of the Pareto-
optimal region. Because of the overlapping search effort among multiple processors, the overall
computational time may be large with such a model.

3. The migration policy can be used with scheme in which each processor is allocated to find
a particular region of the Pareto-optimal front, although each processor searches the entire
search space. Unlike the difficulties involved in systematically dividing the entire search space
among multiple processors, the allocation of different portions of the Pareto-optimal front to
different processors is not a difficult proposition. In such a scheme, care should be taken to
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ensure that no feasible Pareto-optimal solution is left unallotted to any processor. A number
of such schemes are certainly possible, and in the next section we discuss one such procedure
for problems having convex Pareto-optimal fronts. Since each processor searches the entire
search space, a migration plan will help each other, but since each processor is destined to find
a particular portion of the search space, the agglomeration of solutions obtained by different
processors will constitute a good diverse set of solutions.

Most past parallel MOEA studies based on the island model uses the second approach discussed
above. Although some special action can be taken in each processor to ensure that there is a
minimal overlap in the region searched by different processors, we do not pursue this approach
further here. Instead, we suggest a procedure implementing the third concept discussed above.

3 Distributed Computing of Pareto-Optimal Solutions

Although not directly suggested for distributed computing of Pareto-optimal solutions, a number
of techniques have been proposed for finding a part of the Pareto-optimal front, instead of the
entire Pareto-optimal front with a single processor. In this section, we first briefly discuss a few
such techniques and then suggest how one of them can be used for the distributed computing
purpose, although other methods can also be used for the purpose.

3.1 Biased Sharing Approach

In order to bias a part of the Pareto-optimal front, the sharing approach used in many MOEAs
(such as NSGA, MOGA, and others) can be modified:

f(]))
[Z fmln) ] ) (1)
k—l

This distance metric is nothing but the normalized Euclidean distance between two objective
vectors. In the proposed biased sharing approach [4], an unequal weightage is given to each
objective in computing the Euclidean distance. For example, if wy, (€ (0, 1)) is the weight assigned
to the k-th objective function, then the normalized wj, is calculated for a convex problem as follows:

w;ﬁ _ (1 — wk)
ma,xfn/le(l — W)’

(2)

and the modified distance metric is computed as follows:

(£ - 1Dy
Z k max fmll’l) . (3)

The fitness-based sharing can then be used with this distance metric. It is important to realize
that when a sharing is performed with the second objective alone (with a large ws), more solutions
near the optimum value of f; would be obtained.

3.2 'Weighted Domination Approach

Somewhat different from the above approach, Parmee et al. [7] suggested a weighted dominance
principle. These investigators defined an index function I;(x(!), x(?)) between two solutions x(1)
and x(?) for the i-th objective function as follows:

I(xW x®?) = {1’ fi(xW) < fi(x®); (4)

0, otherwise.
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Now, if solution x(!) dominates solution x(?), then each I; function would take a value equal to
one. In other words, we can write the usual condition for domination in a different way:

M
31, x®) =, (5)

with the condition that f;(x(1)) < f;(x(?) for at least one objective 4. In the original definition of
domination, all objectives are given equal importance. Rewriting the above equation and extending
the relationship to inequality, one may write:

1
Z MIi(x(l),x(Q)) > 1. (6)
=1

Generalizing the above concept for a weight vector w (such that Zf\i L w; = 1) which indicates
a preference relationship among different objectives, we can write the above inequality for the
w-dominating condition as follows:

M
ZwiIi(x(l),x@)) > 1. (7)
i=1

If all objectives are of equal importance, each w; = 1/M and we have the inequality shown in
equation (6). However, for any other generic weight vector, we have the above condition for a
solution x(!) to be w-dominating solution x(?). Generalizing further, these investigators suggested
the condition for a (w,7)-dominance (with 7 < 1) between two solutions, as follows:

M
Z wil;(xM,x?) > 7, (8)
i=1

Based on these conditions for w-dominance and (w, 7)-dominance, a corresponding non-dominated
and a Pareto-optimal set can also be identified. However, if the above weak dominance conditions
are used, the obtained set would be a strict non-dominated one. However, if any one of the in-
dex functions is restricted for the strict inequality condition, a weak non-dominated front will be
found.

3.3 Guided Domination Approach

In this approach [1], a weighted function of the objectives is defined as follows:

2;(f(x)) = fi(x) + Z aijfj(x)’ i=12,...,M. 9)

J=1.5#1

where a;; is the amount of gain in the j-th objective function for a loss of one unit in the i-th
objective function. The above set of equations require fixing the matrix a, which has a one in its
diagonal elements. Now, we define a different domination concept for minimization problems as
follows.

Definition 1 A solution x(") dominates another solution x| if 2;(f(x())) < 2;(£(x®)) for all
1=1,2,..., M and the strict inequality is satisfied at least for one objective.
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Let us illustrate the concept for two (M = 2) objective functions, as we shall modify this
approach for distributed computing of Pareto-optimal solutions. The two weighted functions are
as follows:

21(f1, f2) = fr + a2 fa, (10)
25(f1, f2) = a1 f1 + fo. (11)
The above equations can also be written as
Q= 1 an f or, 2 = af (12)
a21 1 I I :

Figure 2(b) shows the contour lines corresponding to the above two linear functions passing
through a solution A in the objective space. All solutions in the hatched region are dominated

(a) f2 Doni nat ed

regi on

Fig. 2. The regions dominated by solution A: (a) the dominated region using the usual definition; (b) the dominated
region using definition 1.

by A according to the above definition of domination. It is interesting to note that when using
the usual definition of domination (Figure 2(a)), the region marked by a horizontal and a vertical
line will be dominated by A. Thus, it is clear from these figures that the modified definition of
domination allows a larger region to become dominated by any solution than the usual definition.
It is also interesting to realize that since a larger region is now dominated, the complete Pareto-
optimal front (as per the original domination definition) may not be non-dominated according to
this new definition of domination. For the same value of the matrix a in the two-objective function
illustration (Figure 2(b)), the resulting non-dominated front is depicted in Figure 3. This figure
shows that regions near the individual champions are now not non-dominated. It is clear from
this figure that some portion (shown by a thin continuous curve) of the Pareto-optimal region
is dominated by a member in the middle portion of the Pareto-optimal region (shown by a bold
curve). Thus, an MOEA is expected to find only the middle portion of the Pareto-optimal region,
thereby biasing the search towards a particular region of the Pareto-optimal front. Thus, by
choosing appropriate values for the elements of the matrix a, a part of the Pareto-optimal region
can be emphasized. In the following subsection, we extend this guided domination approach for
a distributed computing of Pareto-optimal solutions.

3.4 Proposed Approach

The idea of distributed computing is to allocate a processor a task of finding a particular region of
the Pareto-optimal front. However, while distributing the task, the following three aspects should
be keep in mind:

1. No Pareto-optimal solution is left to be discovered by all processors,
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Fig. 3. The non-dominated portion of the Pareto-optimal region.

2. The overlap of solutions allocated by any two processors should be as small as possible for
optimum allocation of computing resources, and
3. The procedure must be easy to extend for any number of objectives.

While using the guided domination approach for this purpose, the parameters a;; must be chosen
so as to satisfy the above aspects. The first two aspects can be ensured by choosing appropriate
a-matrices for different processors. For example, for a two-objective problem, the following two

a-matrices can be used
10 11/a
all’ 01

for two processors. The slope a can be any positive real number. However, the third aspect men-
tioned above is difficult to achieve using the guided domination approach directly. For example,
with three objectives, the a-matrix has 3 x 3 elements and six different off-diagonal entries in the
matrix need to be fixed. Moreover, since in this case the modified Pareto-optimal front would be
bounded by tangential planes, instead of lines, it becomes difficult to determine the slopes a;; of
the planes. In the following, we suggest a modified technique for this purpose.

Let us consider a feasible objective space bounded by a circle, as shown in Figure 4. Let us
also consider two other axes {21 and (25 inclined to the objective axes. The direction vectors of
these two inclined axes are given as follows:

m =dVe; +dVe,, (13)
o =dPe, +dPes, (14)

where d® is the direction cosine vector of 7; and &; is the i-th coordinate direction. Now, any

point ( 1(p ), f2(p )) on the circle can also be represented by the 2-coordinate system as (!29J ), Qép ))

and we have the identity:

f1(p)é1 + f2(p)é2 _ 997)7751)) + Q§p)n§p)’
= (2P + 2Pd?) & + (2P + 2Pl ) &,

Comparing terms for é;, we can write the following matrix equation:

f1(p) dgl) d§2) Qgp)
0| = 0 g | | 0| (15)

or, f=TQO. (16)



A Parallel Multi-Objective Evolutionary Approach 7

Q, f2
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Fig. 4. The fi-f2 objective space. Fig. 5. The -2, objective space.
From the above relationship, we can write
Q=T"1f. (17)

Now relating the direction cosine vectors with respect to a;j, we have

1
dY = —— (1, —a)7,
v/ 1 +a%1
1
d(z) = —— (—alz, 1)T

V1+ad2,
Forming the T matrix and taking the inverse, we obtain

l—ai2a21 Q(P)

Vita, b | |1 an f1(p) (18)
1*a12a21Q(P) T lag 1 .
V1+tai,

The (21-£2, space for the fi-fo objective space is shown in Figure 5. The region pg on the orig-
inal circle is bounded by tangents with 2; and {25 direction vectors. Thus, for the transformed
objectives, the entire Pareto-optimal front is bounded within the arc pq. The transformation of
the objective space and the location of the new Pareto-optimal solutions are clearly shown in the
figure. Comparing this equation with equation 12, we observe that the right sides are equal and
the (2-axes are multiplied by different numbers. However, it is interesting to note that multiplying
{21 and (2, values by different non-zero constants may translate or magnify the Pareto-optimal
front in the (2;-(25 space, but it does not change the Pareto-optimal solutions in terms of f; and
fo values. Thus, the original a-matrix can be replaced with the T~ ! matrix, constructed simply
from the direction cosines of the two inclined lines. Here is the procedure:

1. Form the a-matrix from direction cosines of transformed axes,

2. Calculate the inverse of the a matrix and use domination test with the transformed objectives
(with © vector calculated using equation 17).
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In order to ensure the first property of not leaving any feasible solution by the mapping, we
need to ensure that two processors share a common direction. In Figure 6, we show the allocation
plan for choosing direction cosines for 1, 2, 3, and 4 processors in a two-objective problem. The
intersecting point of the two adjacent axes directions indicate the allocation plan of a particular
processor. Note that the left-most plot indicates a single processor with 2, = f; and 25 = f5.

P=1
1

P=2 P=3 P=4
1
1
2
o ? 3
2 3 4

Fig. 6. Allocation plan for two-objective problems.

1

The next figure indicates that two processors share one common direction (the inclined direction),
and so on. Although different schemes can be adopted for assigning common inclined directions,
we suggest a methodology by which equal inscribed angles are assigned to each processor. For P
processors solving a two-objective optimization problem, the included angle (in radians) between
any two adjacent direction vectors is

¢:7r<1—%>. (19)

Extension to higher objectives Interestingly, the above argument can be extended to more
than two dimensions and can be applied easily to any number of objectives. For example, in a
three-objective space, the entire Pareto-optimal front can be determined by tangential properties
of three planes: fi-plane, fo-plane and f3-plane. If three arbitrary (but non-identical) directions
(£21, 25, 23) are chosen, as shown in Figure 7, the modified Pareto-optimal front will be bounded
by the three new planes: 21-{2 plane, (25-23 plane, and (23-{2; plane.

Q
1 Original 1 Transforned

Fig. 7. Original and transformed planes.

The procedure of generating an allocation plan for two objectives illustrated in Figure 6 can be
considered as successive ‘chopping-off’ of the bottom-left corner (or origin) of a square by straight
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edges. Each corner at the bottom-left part of the square corresponds to the a processor for which
the direction cosines are computed from the straight edges forming the corner. When an existing
corner is chopped off, two new corners are added, thereby allowing one more processor to be used.
For example, the P = 2 case is obtained from P = 1 case by chopping off the right-angle corner.
Larger P cases can be considered as further chopping off the bottom-left corner of the square.
The only restriction to the chopping process for P processors is that there must be exactly P
corners generated by the chopping process.

This chopping principle can be extended for higher objectives, except that the bounded square
now becomes a larger-dimensional hyper-box, and hyper-planes are used to chop-off the origin.
Figures 8 to 11 show a number of allocation plans for different number of processors in a three-
objective spherical Pareto-optimal front. Although the systematic chopping of each corner will

Guidance skeleton -~ i Guidance skeleton ----a---

oRrNWATON®
oRNWATTO~N®

Guidance skeleton ----4--- i Guidance skeleton ----4---

oRNWANON®
ORNWAUO~N®

Fig. 10. 7 parts of Pareto-optimal front Fig. 11. 21 parts Pareto-optimal front

generate P = (M — 1)k + 1 corners (where k is any non-negative integer), Figures 12 and 13 also
show some interesting allocation plans for different numbers of processors.

Need for migration In this study, we have started each processor with a population initialized
from the same bounded region. In order to keep the total number of function evaluations the same,
we have also kept a constant combined population size. Thus, for a study with P processors, we
have used N/P population members in each processor, where N is the population size used
for the single-processor run. With this in mind, it then becomes difficult for each processor to
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Guidance skeleton -~ 4 4 Guidance skeleton ----a---

oRrNWATTON®
orNWAROON®

Fig. 12. 2 parts of Pareto-optimal front Fig. 13. 6 parts of Pareto-optimal front

overcome identical hurdles to reach to the Pareto-optimal front with a smaller population size.
In order to get assistance from other processors in proceeding towards the Pareto-optimal front,
we have introduced a migration policy among the processors. A certain number of solutions
(migration rate) from one processor are sent to each other processor after every a few generations
(migration frequency). Each processor is chosen systematically for its turn to migrate solutions to
other processors. The new solutions replace a randomly chosen set of members from the existing
population. Such information introduced by other processors may help a temporarily stagnant (or
slow progressing) processor.

4 Simulation Studies

In this section, we present simulation results of the proposed parallel MOEA to a number two
and three-objective test problems.

4.1 Two-Objective Test Problems

First, we study the 30-variable ZDT1 test problem [3]:

pragaprd h(f1,9)
X)=g\Xx 1,9),
g(x)=1 >0, (s — 0.5)2, (20)
h(fi,9) =1—+/f1/g.

Here, each z; lies [0, 1]. Figure 14 shows the hyper-area [9] for a serial (with one processor) NSGA-
IT run with a population size of 200. The simulated binary crossover operator (with 7, = 10 and
probability 0.9) and polynomial mutation operator (with 7,, = 50 and probability 1/30) are used
[3]. With a reference point taken as (1.0646,1.0646), the maximum hyper-area calculated for an
infinite population lying on the true Pareto-optimal front is 0.8. The NSGA-II run is terminated
when an hyper-area of 0.794 is achieved. In the particular run shown in Figure 14, 57 generations
were needed to achieve this hyper-area.

Figure 15 shows the distribution of parallel real-parameter NSGA-IT with two processors. The
following two transformation matrices are used for the two processors:

el P e
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Hyper-area

1
10 20 30 40 50 60

-0.1 : ‘
0

Generation Number

Fig. 14. Hyper-area calculated with (1.0646,1.0646) as the reference point.

Each processor is initialized with a population of size 100. Other GA parameters are kept the same
as in the serial NSGA-II run. In this case, 30 solutions from a processor are migrated after every 5
generations to the other processor. At the end of 52 generations, the hyper-area calculated for the
combined population of two processors is 0.794. Thus, it is clear that a similar distribution can
be achieved by the parallel two-processor NSGA-II with more or less similar number of function
evaluations.

i 1 _

/ Processor 3

Processor 2
0.8 / b 0.8 - i
0.6 [ b 0.6 [ % ]
~ Y ~ Y B /Processor 2
< o o =g,
0.4 O%‘% P 1 0.4 =
4 I ocessor 7 .4 7
g, gy
Processor 1
ng@
0.2 1 02 P b
O 1 1 1 1 1 1 1 1 QQ%}J) 0 1 1 1 1 1 1 1 NO—
0O 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
f 1 f_ 1
Fig. 15. Obtained solutions with two processors for Fig. 16. Obtained solutions with three processors for
ZDT1. ZDT1.

Figure 16 shows the distribution of solutions (with a hyper-area of 0.794) obtained with a
three-processor NSGA-II after 57 generations. The following three transformation matrices are

used:
1 —cos(3) cos(3m) —cos(3m) cos(37) 0
0 sin(2m) |’ —sin(2r) sin(37) |’ —sin(Zmr) 1]
In this case, 30 solutions from a processor is sent to two other processors after every 5 generations.
In order to investigate the effect of the migration policy on the distribution of solutions, we have

performed a detailed parametric study on the ZDT1 test problem. The outcome of this study is
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presented in Table 1. In each case, the average and standard deviation of the number of generations

Table 1. Parametric study of migration rate and frequency on ZDT1 to achieve a hyper-area of 0.794.

Migration| Migration Required Generations
Rate |Frequency| Single Processor | Two Processors | Three Processors
Average|Std. Dev.|Average|Std. Dev.|Average|Std. Dev.
0 0 58.9 3.91 66.1 9.63 116.3 45.71
10 5 50.1 3.05 59.6 5.10
10 10 52.5 4.34 66.3 6.10
20 5 48.9 1.51 60.3 3.52
20 10 51.2 3.57 60.8 3.43
30 5 48.3 1.35 59.8 3.66
30 10 50.6 2.46 63.8 3.12
30 15 55.8 5.31 68.7 4.88
40 10 49.3 3.13 61.7 4.43
30 5 57.2 2.99 70.2 4.58

needed to achieve a hyper-area of 0.794 in ten runs are calculated. The first row shows the single
processor result and multi-processor results without any migration. It is observed that the parallel
NSGA-IT does not perform well without migration. Although the outcome of the parallel NSGA-
IT depends on the chosen migration rate and frequency, most of the two-processor runs achieved
the required hyper-area (meaning that a similar combined convergence and diversity measure is
achieved) in a smaller number of generations than that required with a single processor NSGA-II.
The best performance occurs when 30 solutions are migrated after every 5 generations. In this
case, on an average two-processor NSGA-IT requires about 18% lesser function evaluations to
achieve a similar performance. This means that the use of two processors reduce the computation
time by more than two times.

With three processors, however, the required number of generations to achieve a similar perfor-
mance is slightly more. Although the best performance is achieved when 10 solutions are migrated
after every 5 generations, the runs with migration rate of 30 and frequency 5 (as that obtained to
be the best in the two-processor case) is also very close to this optimum performance. In the three-
processor case, each processor is allocated 68 population members. Since all processors tackle the
same ZDT1 problem (but each using a different dominance relationship), the population size allo-
cated to each processor may not be enough for it to reach near the Pareto-optimal solutions. For
every problem, there exists an optimal population size (even with a migration policy) below which
the NSGA-IT may not be able to reach the desired goal. For ZDT1, the two-processor NSGA-II
with 100 population members in each processor seems to have produced an optimal performance.

The last row in the table also shows the performance of an island three-processor NSGA-II
without the transformation procedure. Here, all three processors search the entire Pareto-optimal
front, but 30 solutions are migrated at every 5 generations. Since all processors independently find
solutions on the Pareto-optimal front, the agglomerated set of obtained solutions is not guaranteed
to have adequate diversity. It is clear from the table that this procedure requires more generations
to achieve an identical hyper-area of 0.794 than the proposed transformation approach with both
two and three processors.

Figure 17 shows the obtained agglomerated solutions with four processors, each using 50
population members. The allocation plan is set according to equation 19 and is also shown in the
figure. A migration rate of 20 and migration frequency of 5 are used. It is observed that only three
processors (2 to 4) have found multiple solutions and only one Pareto-optimal solution (f; = 1,
fo = 0) is found by the processor 1. We observe that the Pareto-optimal front follows fo = 1—+/f1
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for f1 € [0,1]. At f; = 1, the slope of the Pareto-optimal front is —0.5, equivalent to an angle of
153.43 degrees from the f; axis. With the allocation plan shown in Figure 17, this extreme solution
is captured by the second processor and there is no new solution left in the Pareto-optimal front
for the first processor to find. When we change the direction cosines with an allocation plan as in
Figure 18, solutions in all four processors are found. Here, 20 solutions are migrated after every
10 generations. The slope of the two axes lines for processors 1, 2, 3, and 4 are (26.565, 42.515),
(42.515, 58.375), (58.375, 74.235), and (74.235, 90) degrees from the negative f; axis, respectively.

T T T T
Al l ocation Plan

1lg Allocation Plan |7 1 Processor 4
B« Processor 4
0.8 b 0.8 _«— Processor 3 R
Processor 3
N 0.6 [ B N 0.6 i
| | _—Processor 2
— % -
(2
04| e 8 04 o .
K /Pr ocessor 2 O
N Processor 1
et S0, [
K <,
0.2 r X6q b 02 ey b
e %
XX e Xg
oo ‘%%
0 I I I RS 0 I I e
0 Ol 02 03 04 05 06 07 08 09 T 0 01 0.2 03 04 05 06 07 08 09 1
f_1 Processor 1 f_1
Fig.17. Obtained solutions with four processors for Fig. 18. Obtained solutions with four processors for
ZDT1. ZDT1 with a different allocation plan.

Test Problem ZDT4 Next, we solve the test problem ZDT4 with n = 10 variables:

f1(x) = 21,

fa(x) = g(x)h(f1,9),

g(x) = 1+ 10(n — 1) + 3" (2 — 10 cos(drz;)), (21)
h(fi,9) =1—+/fi/g.

Here, z; lies [0,1] and all other variables z; lie in [—5,5]. Figure 19 shows the obtained solutions
with two processors with each having 100 population members. The allocation plan is based in
equation 19. Here, 30 population members are migrated in every 5 generations. The figure shows
that the two processors combined has found the entire Pareto-optimal front.

Figure 20 shows the results with three processors. This time, each processor is run with 70
solutions each and 40 population members are migrated in every 10 generations. Once again, the
three processors combined have found the entire Pareto-optimal front. Since the Pareto-optimal
front for ZDT4 is identical to that in ZDT1 and since identical allocation plans are chosen in both
experiments, very similar plots are obtained (compare Figure 15 with 19 and Figure 16 with 20).



14 Deb, Zope, and Jain

12 T T T T T T 12

" Parefo Front ' ' ' ' ' ' " Parefo Front
Processor 1 x Processor 1 x
Processor2 o Processor2 a
4 1 Processor3 o |
3
0.8
0.6 S,
..I
.I
"
., 2
041} .,
-,
I~-
"y
0.2} ..,
% - 1
0 e 0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig.19. Obtained non-dominated solution with 2- Fig.20. Obtained non-dominated solution with 3-
processor Parallel NSGA-II on ZDT4 problem. processor Parallel NSGA-II on ZDT4 problem.

Test Problem CTP7 The CTP7 test problem is a constrained test problem which makes the
Pareto-optimal front a combination of a number of disconnected regions [3]:
Minimize fi(x) = z1,
Minimize fo(x) = g(x) (1 — %) ,
subject to C(x) = cos(0)[f2(x) — e] — sin(0) f1(x) >
x

a |sin {br [sin(8) (f2(x) — €) + cos(8) f1(x)]°}|* .
The following parameter values are used:
0=-0.05m, a=40, b=5 c=1, d=6, e=0.

Each of the five variables z; lies in [0, 1]. Figure 21 shows the obtained front with a single processor.
It is clear that not all regions are found by the NSGA-IT with a population size of 200. This result
agrees with the original result reported in [5]. However, when NSGA-II is run with three processors,
each processor has a shorter Pareto-optimal region to discover. As a result, the parallel NSGA-II
(with processor-wise population of 70) is able to find all the disconnected Pareto-optimal regions
(Figure 22). Here, 30 solutions are migrated after every 5 generations. This example illustrates how
the proposed approach can also be used in problems having a disconnected set of Pareto-optimal
regions.

4.2 Three-Objective Test Problems

Next, we consider two three-objective test problems.

DTLZ2 test problem The first one is a modified DTLZ2 test problem having n = 12 variables:

Minimize f1(x) =2 — (1 — g(x)) cos(z17/2) cos(zom/2),
Minimize fo(x) =2 — (1 — g(x)) cos(z17/2) sin(zem/2), (23)
Minimize fo(x) =2 — (1 — g(x)) sin(z17/2),

where g(x) = o5 D i3

Here, each variable z; lies in [0, 1]. The modification makes the Pareto-optimal front a convex
spherical surface. Figure 23 shows the solutions obtained with a single processor NSGA-II using
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Fig. 21. Obtained non-dominated solution with single- Fig.22. Obtained non-dominated solution with 3-
processor NSGA-II on CTP7 problem. processor Parallel NSGA-II on CTP7 problem.

a population of size 300. Other NSGA-II parameters are the same as before, except that the
crowding operator of NSGA-II is replaced with a clustering operator similar to that used in the
SPEA [9]. Although this replacement increases the computational time by almost an order of
magnitude, the obtained diversity in solutions is better. Figure 24 shows a typical distribution of
solutions obtained by a three-processor clustered NSGA-II. The following transformation matrices
are used:

1 1 1 1
177 75 00 7% 00
0 L 0 -1i1-L 0 L0
V2 ’ V2T V2| V2
00 0 0 & -L L1

2 V2 NV

In each processor, 100 population members are used and 30 solutions are migrated after every 10
generations. In both cases, NSGA-IIs are run for 200 generations so that solutions converge very
close to the Pareto-optimal front. The figure shows that each processor finds an adequate number
of well-distributed set of solutions in its own designated region in the Pareto-optimal front. The
computational time needed for the three-processor case is about 25 times lesser than that required
with the single processor.

f3 Processor 3

Processor 1 Processor 2

Fig. 23. Obtained solutions with a single processor for

the modified DTLZ2. Fig. 24. Obtained solutions with three processors for the

modified DTLZ2.



16 Deb, Zope, and Jain

To investigate further, we have applied the clustered NSGA-II with six processors with an
allocation plan shown in Figure 13. Figure 25 shows the agglomeration of solutions found in all
six processors. Once again, a migration plan with 30 solutions migrating after every 10 generations
is used. Each processor finds a well-distributed set of solutions in a particular region on the Pareto-
optimal front.

Processor 3 Processor 4

f3 16

ST

1

Processor 1 Processor 6

Fig. 25. Obtained solutions with six processors for the modified DTLZ2.

DTLZA4 test problem Finally, we apply the proposed technique to a modified DTLZ4 test
problem having n = 12 variables:

Minimize f;(x) = 2 — (1 — g(x)) cos(z{n/2) cos(z§7/2),
Minimize fo(x) = 2 — (1 — g(x)) cos(z{n/2) sin(z37/2), (24)
Minimize fo(x) =2 — (1 — g(x)) sin2(:c‘f7r/2),

where g(x) = 715 ¥iL (%552) -

Here too, each z; is initialized in [0, 1] and « = 100 is used. The reason for choosing this function
is that an earlier study [6] has experienced difficulties in maintaining a diverse set of solutions
in the original DTLZ4 problem due to the excessive density of solutions near 1 = 0 and z5 = 0
values. That study also experienced identical difficulties with SPEA (which uses the clustering
approach for maintaining diversity). We have also observed a similar difficulty here with the
clustered NSGA-II. However, Figure 26 shows one case (with a particular initial population) in
which a good distribution is observed. All parameters used in this study are the same as that
used in DTLZ2. Interestingly, the parallel clustered NSGA-IT with three processors has always
found good distribution of solutions on this problem. Figure 27 shows a typical agglomeration
of solutions from all three processors after 200 generations. Here, 30 solutions are migrated after
every 10 generations. Each processor used 100 population members, while the single-processor
NSGA-II used a population of size 300.

5 Conclusions and Extensions

The study of multi-objective EAs with multiple processors has received a luke-warm interest so
far. In this paper, we have proposed a technique in which each processor has been assigned the task
of finding only a particular portion of the Pareto-optimal region. A simple yet effective allocating
plan has been suggested by using direction cosines of transformed coordinate systems. Since all
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Fig. 26. Obtained solutions with a single processor for
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the modified DTLZA. ig. 27. Obtained solutions with three processors for the

modified DTLZ4.

processors have to tackle the same complexities of the search space (starting from more or less the
same region in the search space and overcoming similar hurdles to reach near the Pareto-optimal
front), a migration policy of sending a few good non-dominated solutions from one processor to
other processors has also been suggested. On a number of two and three objective test problems,
the efficacy of the proposed technique has been demonstrated using NSGA-II. It has been observed
that the use of multiple processors may be found beneficial in getting a widely distributed set of
solutions with a super-linear computational speed-up.

The transformation technique proposed in this paper is illustrated for solving problems having
a convex Pareto-optimal front. The approach can also be applied to problems having a non-
convex Pareto-optimal front with appropriate choice of coordinate transformations. However, a
different transformation technique can be tried with Tchebyshev metrics [3] and with other biasing
techniques presented in Section 3. In an another island approach, an emphasis of the population
members dissimilar to the migrated individuals may lead to formation of non-overlapping clusters
of Pareto-optimal solutions. Nevertheless, since in most real-world applications convex Pareto-
optimal fronts are encountered, the technique proposed in this paper should have a wide-scale
applicability.
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