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Abstract

In this paper, we study the problem features that may cause a multi-objective genetic
algorithm (GA) difficulty in converging to the true Pareto-optimal front. Identification
of such features helps us develop difficult test problems for multi-objective optimiza-
tion. Multi-objective test problems are constructed from single-objective optimization
problems, thereby allowing known difficult features of single-objective problems (such as
multi-modality, isolation, or deception) to be directly transferred to the corresponding
multi-objective problem. In addition, test problems having features specific to multi-
objective optimization are also constructed. More importantly, these difficult test prob-
lems will enable researchers to test their algorithms for specific aspects of multi-objective
optimization.

Keywords

Genetic algorithms, multi-objective optimization, niching, pareto-optimality, problem dif-
ficulties, test problems.

1 Introduction

After a decade since the pioneering work by Schaffer (1984), a number of studies on multi-
objective genetic algorithms (GAs) have emerged. Most of these studies were motivated
by a suggestion of a non-dominated GA outlined in Goldberg (1989). The primary reason
for these studies is a unique feature of GAs—a population approach—that is highly suitable
for use in multi-objective optimization. Since GAs work with a population of solutions,
multiple Pareto-optimal solutions can be found in a GA population in a single simulation
run. During the years 1993-95, a number of independent GA implementations (Fonseca
and Fleming, 1993; Horn et al., 1994; Srinivas and Deb, 1995) emerged. Later, other
researchers successfully used these implementations in various multi-objective optimization
applications (Cunha et al., 1997; Eheart et al., 1993; Mitra et al., 1998; Parks and Miller,
1998; Weile et al., 1996). A number of studies have also concentrated on developing new
GA implementations (Kursawe, 1990; Laumanns et al., 1998; Zitzler and Thiele, 1998).
Fonseca and Fleming (1995) and Horn (1997) presented overviews of different multi-
objective GA implementations, and Van Veldhuizen and Lamont (1998) made a survey of
test problems that exist in the literature.

Despite these interests, there seems to be a lack of studies discussing problem fea-
tures that may cause difficulty for multi-objective GAs. The literature also lacks a set of
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test problems with known and controlled difficulty measure for systematically testing the
performance of an optimization algorithm. Studies seeking problem features that cause
difficulty for an algorithm may seem a pessimist’s job, but we feel that the true efficiency of
an algorithm is revealed when it is applied to challenging test problems, not easy ones. Such
studies in single-objective GAs (studies on deceptive test problems, NK ‘rugged’ landscapes,
and others) have all enabled researchers to better understand the working of GAs.

In this paper, we attempt to highlight a number of problem features that may cause a
difficulty for a multi-objective GA . Keeping these properties in mind, we show procedures
for constructing multi-objective test problems with controlled difficulty. Specifically, there
exist some features shared by a multi-objective GA and a single-objective GA. Our con-
struction of multi-objective problems from single-objective problems allow such difficulties
to be directly transferred to an equivalent multi-objective GA. Some specific difficulties of
multi-objective GAs are also discussed.

We also discuss and define local and global Pareto-optimal solutions. We show the
construction of a simple two-variable, two-objective problem from single-variable, single-
objective problems and show how multi-modal and deceptive multi-objective problems
may cause difficulty for a multi-objective GA. We present a tunable two-objective prob-
lem of varying complexity constructed from three functionals. Specifically, a systematic
construction of multi-objective problems having convex, non-convex, and discontinuous
Pareto-optimal fronts is demonstrated. We then discuss the use of parameter-space versus
function-space based niching and suggest which one to use when. Finally, future challenges
in the area of multi-objective optimization are discussed.

2 Pareto-optimal Solutions

As the name suggests, Pareto-optimal solutions are optimal in some sense. Therefore, like
single-objective optimization problems, there exist possibilities of having both /oca/ and
global Pareto-optimal solutions. Before we define both these types of solutions, we discuss
dominated and non-dominated solutions.

For a problem having more than one objective function (say, f;, 7 = 1,..., M and
M > 1), a solution z(!) is said to dominate the other solution z(?) if both the following
conditions are true (Steuer, 1986):

1. The solution z(!) is no worse (say the operator < denotes worse and > denotes better)
than () in all objectives, or f;(z(1)) £ f;(z(?)) forall j = 1,2,..., M objectives.

2. The solution (") is strictly better than z(?) in at least one objective, or f;(z(!)) =
f3(z?) for at least one j € {1,2,..., M}.

If any of the above conditions is violated, the solution z(!) does not dominate the
solution z(?). If 2(*) dominates the solution z(?, it is also customary to write z(? is
dominated by 21, or 2(!) is non-dominated by 2(2).

The above concept can also be extended to find a non-dominated set of solutions in
a population of solutions. Consider a set of N solutions, each having M (> 1) objective
function values. The following procedure can be used to find the non-dominated set of
solutions:
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Step O: Begin with i = 1.

Step 1: For all j # i, compare solutions z() and (/) for domination using the above two
conditions for all M objectives.

Step 2: If for any j, () is dominated by (), mark z(9) as ‘dominated’. Increment i by
one and Go to Step 1.

Step 3: If all solutions (that is, when i = N is reached) in the set are considered, Go to
Step 4, else increment i by one and Go to Step 1.

Step 4: All solutions that are not marked ‘dominated’ are non-dominated solutions.

A population of solutions can be classified into groups of different non-domination levels
(Goldberg, 1989). When the above procedure is applied for the first time in a population,
the resulting set is the non-dominated set of first (or best) level. In order to have further
classifications, these non-dominated solutions can be temporarily omitted from the original
set and the above procedure can be applied again. What results is a set of non-dominated
solutions of second (or next-best) level. This new set of non-dominated solutions can be
omitted and the procedure applied again to find the third-level non-dominated solutions.
This procedure can be continued until all population members are classified into a non-
dominated level. It is important to realize that the number of non-domination levels in a
set of N solutions is bound to lie within [1, N]. The minimum case of one non-domination
level occurs when no solution dominates any other solution in the set, thereby classifying all
solutions of the original population into one non-dominated level. The maximum case of
N non-domination levels occurs when there is a hierarchy of domination of each solution
and no two solutions are non-dominated by each other.

In a set of NV arbitrary solutions, the first-level non-dominated solutions are candidates
for possible Pareto-optimal solutions. The following definitions determine whether they
are local or global Pareto-optimal solutions:

Local Pareto-optimal Set: If for every member z in a set P there exists no solution y
satisfying ||y — |loo < €, where € is a small positive number (in principle, y is obtained
by perturbing z in a small neighborhood) dominating any member in the set P, then
the solutions belonging to the set P constitute a local Pareto-optimal set.

Global Pareto-optimal Set: If there exists no solution in the search space that dominates
any member in the set P, then the solutions belonging to the set P constitute a global
Pareto-optimal set.

We describe the concept of local Pareto-optimal solutions in Figure 1, where both objectives
fi and f> are minimized. By perturbing any solution in the local Pareto-optimal set
(solutions marked by ‘x’) in a small neighborhood in the parameter space, it is not possible
to obtain any solution that would dominate any member of the set.

"The size and shape of Pareto-optimal fronts usually depend on the number of objective
functions and interactions among the individual objective functions. If the objectives are
‘conflicting’ to each other, the resulting Pareto-optimal front may have a larger span than
if the objectives are more ‘cooperating’t. However, in most interesting multi-objective

IThe terms ‘conflicting’ and ‘cooperating’ are used loosely here. If two objectives have similar individual

optimum solutions and similar individual function values, they are ‘cooperating’, as opposed to a ‘conflicting’
situation where both objectives have drastically different individual optimum solutions and function values.
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Parameter

Figure 1: The illustrated concept of local and global Pareto-optimal sets.

optimization problems, the objectives are ‘conflicting’ to each other and usually the resulting
Pareto-optimal front (local or global) contains many solutions.

3 Principles of Multi-objective Optimization

Itis clear from the above discussion thata multi-objective optimization problem usually hasa
set of Pareto-optimal solutions, instead of one single optimal solution?. Thus, the objective
in a multi-objective optimization is different from that in a single-objective optimization.
In multi-objective optimization the goal is to find as many different Pareto-optimal (or
near Pareto-optimal) solutions as possible. Since classical optimization methods work with
a single solution in each iteration (Deb, 1995), in order to find multiple Pareto-optimal
solutions they are required to be applied more than once, hopefully finding one distinct
Pareto-optimal solution each time. Since GAs work with a population of solutions, a num-
ber of Pareto-optimal solutions can be captured in one single run of a multi-objective GA
with appropriate adjustments to its operators. This aspect of GAs makes them naturally
suited to solving multi-objective optimization problems for finding multiple Pareto-optimal
solutions. Thus, it is no surprise that a number of different multi-objective GA implemen-
tations exist in the literature (Fonseca and Fleming, 1995; Horn et al., 1994; Srinivas and
Deb, 1995; Zitzler and Thiele, 1998).

Before we discuss the problem features that may cause multi-objective GAs difficulty,
let us mention a couple of matters® that are not addressed in the paper. First, we consider
all objectives to be of minimization type. It is worth mentioning that identical properties
as discussed here may also exist in problems with mixed optimization types (some are min-
imization and some are maximization). The concept of non-domination among solutions
addresses only one type of problem. The meaning of ‘worse’ or ‘better’, discussed in Sec-
tion 2, takes care of other cases. Second, although we refer to multi-objective optimization
throughout the paper, we restrict ourselves to two objectives. This is because we be-
lieve that the two-objective optimization brings out the essential features of multi-objective
optimization.

There are two tasks that a multi-objective GA should accomplish in solving multi-

2In multi-modal function optimization, there may exist more than one optimal solution, but usually the interest

is to find global optimal solutions having identical objective function value.
3 A number of other matters which need immediate attention are also outlined in Section 7.
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objective optimization problems:

1. Guide the search towards the global Pareto-optimal region, and

2. Maintain population diversity (in the function space, parameter space, or both) in the
current non-dominated front.

We discuss the above two tasks in the following subsections and highlight when a GA would
have difficulty in achieving each task.

3.1 Difficulties in Converging to Pareto-optimal Front

Convergence to the true (or global) Pareto-optimal front may not occur because of various
features that may be present in a problem:

1. Multi-modality,
2. Deception,
3. Isolated optimum, and

4. Collateral noise.

All the above features are known to cause difficulty in single-objective GAs (Deb et al.,

1993) and, when present in a multi-objective problem, may also cause difficulty for a multi-
objective GA.

In tackling a multi-objective problem having multiple Pareto-optimal fronts, a GA, like
many other search and optimization methods, may converge to a local Pareto-optimal front.
Later, we create a multi-modal multi-objective problem and show that a multi-objective
GA can get stuck at a local Pareto-optimal front if appropriate GA parameters are not used.

Despite some criticism (Grefenstette, 1993), deception, if present in a problem, has
been shown to cause GAs to be misled towards deceptive attractors (Goldberg et al., 1989).
There is a difference between the difficulties caused by multi-modality and by deception.
For deception to take place, it is necessary to have at least two optima in the search space
(a true attractor and a deceptive attractor), but almost the entire search space favors the
deceptive (non-global) optimum. Multi-modality may cause difficulty for a GA merely
because of the sheer number of different optima where a GA can stick. We shall show how
the concept of single-objective deceptive functions can be used to create multi-objective
deceptive problems, which may cause difficulty for a multi-objective GA.

There may exist some problems where the optimum is surrounded by a fairly flat
search space. Since there is no useful information provided by most of the search space, no
optimization algorithm will perform better than an exhaustive search method to find the
optimum in these problems. Multi-objective optimization methods also face difficulty in
solving such a problem.

Collateral noise comes from the improper evaluation of low-order building blocks
(partial solutions which may lead towards the true optimum) due to the excessive noise
coming from other parts of the solution vector. These problems are usually ‘rugged’ with
relatively large variation in the function landscape. Multi-objective problems having such
‘rugged’ functions may also cause difficulties for multi-objective GAs if adequate population
size (adequate to discover signal from the noise) is not used.

Evolutionary Computation Volume 7, Number 3 209



K. Deb

3.2 Difficulties in Maintaining Diverse Pareto-optimal Solutions

As it is important for a multi-objective GA to find solutions near or on the true Pareto-
optimal front, itis also necessary to find solutions as diverse as possible in the Pareto-optimal
front. If most solutions found are confined in a small region near or on the true Pareto-
optimal front, the purpose of multi-objective optimization is not served. This is because,
in such cases, many interesting solutions with large trade-offs among the objectives and
parameter values may have been undiscovered.

In most multi-objective GA implementations, a specific diversity-maintaining operator,
such as a niching technique (Deb and Goldberg, 1989) or a clustering technique (Zitzler
and Thiele, 1998) is used to find diverse Pareto-optimal solutions. However, the following
features might be likely to cause a multi-objective GA difficulty in maintaining diverse
Pareto-optimal solutions:

1. Convexity or non-convexity in the Pareto-optimal front,
2. Discontinuity in the Pareto-optimal front, and

3. Non-uniform distribution of solutions in the Pareto-optimal front.

There exist multi-objective problems where the resulting Pareto-optimal front is non-
convex. Although it may not be apparent, a GA’s success in maintaining diverse Pareto-
optimal solutions largely depends on the fitness assignment procedure. In some GA imple-
mentations, the fitness of a solution is assigned proportionally to the number of solutions
it dominates (Fonseca and Fleming, 1993; Zitzler and Thiele, 1998). Figure 2 shows how
such a fitness assignment favors intermediate solutions, in the case of problems with convex
Pareto-optimal front (the left figure). With respect to an individual champion* solution

f f
@ ! (b) !

Figure 2: The fitness assignment proportional to the number of dominated solutions (the
shaded area) favors intermediate solutions in convex Pareto-optimal front (a), compared to
that in non-convex Pareto-optimal front (b).

(marked with a solid dot in the figures), the proportion of dominated region covered by an
intermediate solution is more in Figure 2(a) than in Figure 2(b). Using such a GA (with
GAs favoring solutions having more dominated solutions), there is a natural tendency to

4Optimum solution corresponding to an individual objective function.
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find more intermediate solutions than solutions near individual champions, thereby causing
an artificial bias towards some portion of the Pareto-optimal region.

In some multi-objective optimization problems, the Pareto-optimal front may not
be continuous, instead it may be a collection of discretely spaced continuous sub-regions
(Poloni et al., in press; Schaffer, 1984). In such problems, although solutions within each
sub-region may be found, competition among these solutions may lead to extinction of
some sub-regions.

It is also likely that the Pareto-optimal front is not uniformly represented by feasible
solutions. Some regions in the front may be represented by a higher density® of solutions
than other regions. In such cases, there may be a natural tendency for GAs to find a biased
distribution in the Pareto-optimal region.

3.3 Constraints

In addition to the above, the presence of ‘hard’ constraints in a multi-objective problem
may cause further difficulties. Constraints may hinder GAs from converging to the true
Pareto-optimal region and they may also cause difficulty in maintaining a diverse set of
Pareto-optimal solutions. It is intuitive that the success of a multi-objective GA in tackling
both these problems will largely depend on the constraint-handling technique used. Tradi-
tionally, a simple penalty-function based method has been used to penalize each objective
function (Deb and Kumar, 1995; Srinivas and Deb, 1995; Weile et al., 1996). Although suc-
cessful applications are reported, penalty function methods demand an appropriate choice
of a penalty parameter for each constraint. Recent suggestions of penalty parameter-less
techniques (Deb, in press; Koziel and Michalewicz, 1998) may be worth investigating in the
context of multi-objective constrained optimization.

4 A Special Two-Objective Optimization Problem

Let us begin our discussion with a simple two-objective optimization problem having two
variables z; (> 0) and z»:

Minimize fi(z1,22) = 1, 1)
Minimize fo(z1,22) = @, 2)
1

where g(z2) (> 0) is a function of x5 only. Thus, the first objective function f; is a function
of 1 only® and the function f; is a function of both z; and z». In the function space (a
space with (f1, f2) values), the above two functions obey the following relationship:

fi(z1,@2) - fo(wr,22) = g(x2) 3)

For a fixed value of g(z2) = ¢, a f1-f2 plot becomes a hyperbola (f; fo = ¢). There exists a
number of intuitive yet interesting properties of the above two-objective problem:

LEMMA 1: If for any two solutions, the second variables xo (or more specifically g(x2)) are the same,
both solutions are not dominated by each other:

5Density can be measured as the hyper-volume of a sub-region in the parameter space representing a unit
hypercube in the fitness space.
6With this function, it is necessary that f1 and g function values be strictly positive.
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The proof follows from f; fo = ¢ property.

LEMMA 2: If for any two solutions, the first variables x1 ave the same, the solution corresponding
to the minimum g(x=2) dominates the other solution.

PROOF: Since :rgl) = :1:52), the first objective function values are the same. So, the solution
having smaller g(x2) (meaning better f») dominates the other solution.

LEMMA 3: For any two arbitrary solutions **) and =), where :L'El) # m?) fori =1,2, and

g(xgl)) < g(xgz)), there exists a solution (3 = (:1:§2) , xgl)) which dominates the solution x(*).

PROOF: Since the solutions 2(*) and 2(?) have the same z; value and since g(z(")) < g(z(?)),
2(®) dominates z(?), according to Lemma 2.

COROLLARY 1: The solutions xV) and x®) have the same x5 values and bence they are non-
dominated to each other according to Lemma 1.

Based on the above discussions, we can present the following theorem:

THEOREM 1: The two-objective problem described in equations (1) and (2) has local or global
Pareto-optimal solutions (x1,x3%), where x5 is the locally or globally minimum solution of g(x»),
respectively, and x1 can take any value.

PROOF: Since solutions with a minimum g(z3) have the smallest possible g(z2) (in the
neighborhood sense, in the case of local minimum, and in the whole search space in the case
of global minimum), according to Lemma 2, all such solutions dominate any other solution
in the respective context. Since these solutions are also non-dominated to each other, they
are Pareto-optimal solutions, in the respective sense.

Although obvious, we shall present a final lemma about the relationship between a
non-dominated set of solutions and Pareto-optimal solutions.

LEMMA 4: Although some members in a non-dominated set ave members of the Pareto-optimal
fromt, not all members are necessarily members of the Pareto-optimal front.

PROOF: Say, there are only two distinct members in a set of which 2(!) is a member of
Pareto-optimal front and 2(?) is not. We shall show that both these solutions still can
be non-dominated to each other. The solution z(?) can be chosen in such a way that
m?) < :rgl). This makes fi(z(?)) < fi(z™). Since g(mg2)) > g(mgl)), it follows that
Ff2(22) > fo(xM). Thus, (1) and 2(?) are non-dominated solutions.

"This lemma establishes a negative argument about multi-objective optimization meth-
ods which work with the concept of non-domination. Since these methods seek to find
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the Pareto-optimal front by finding the best non-dominated set of solutions, it is important
to realize that all solutions in the best non-dominated set obtained by an optimizer may
not necessarily be the members of the Pareto-optimal set. However, in the absence of
any better approach, a method for seeking the best set of non-dominated solutions is a
reasonable approach. Post-optimal testing (by locally perturbing each member of obtained
non-dominated set) may be performed to establish Pareto-optimality of members in an
experimentally obtained non-dominated set.

The above two-objective problem and the associated lemmas allow us to construct
different types of multi-objective problems from single-objective optimization problems
(defined by the function g). The optimality and complexity of function g is then directly
transferred into the corresponding multi-objective problem. In the following subsections,
we construct a multi-modal and a deceptive multi-objective problem.

4.1 Multi-modal Multi-objective Problem

According to Theorem 1, if the function g(z2) is multi-modal with local (z,) and global
(Z2) minimum solutions, the corresponding two-objective problem also has local and global
Pareto-optimal solutions corresponding to solutions (x1, z,) and (1, Z2), respectively. The
Pareto-optimal solutions vary in z; values.

We create a bimodal, two-objective optimization problem by choosing a bimodal g(z2)

function:
5 —0.2)7 s — 0.6\
g(xe) = 2.0 —exp {— (%) } — 0.8 exp {— (%) } 4

Figure 3 shows the above function for 0 < x> < 1 with 2 ~ 0.2 as the global minimum
and z» = 0.6 as the local minimum solutions. Figure 4 shows the fi-f> plot with local and
global Pareto-optimal solutions corresponding to the two-objective optimization problem.

2 20 . . : .
Global Pareto-optimal front ——
18 Local Pareto-optimal front -<--- <
18 d b Random points

f2

9(x_2)

0.8 -

0.6

Figure 3: The function g(z2) has a global Figure 4: A random set of 50,000 solutions
and a local minimum solution. shown on a fi-f plot.

The local Pareto-optimal solutions occur at 3 = 0.6 and the global Pareto-optimal
solutions occur at 22 = 0.2. The corresponding values for g function values are g(0.6) = 1.2
and ¢(0.2) = 0.7057, respectively. The density of the random solutions marked on the plot
shows that most solutions lead towards the local Pareto-optimal front and only a few
solutions lead towards the global Pareto-optimal front.
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To investigate how a multi-objective GA would perform in this problem, the non-
dominated sorting GA (NSGA) (Srinivas and Deb, 1995) is used. Variables are coded in
20-bit binary strings each, in the ranges 0.1 < z; < 1.0 and 0 < 23 < 1.0. A population of
size 60 is used’. Single-point crossover with p. = 1 is chosen. No mutation is used. The
niching parameter ognare = 0.158 is calculated based on normalized parameter values and
assumed to form about 10 niches in the Pareto-optimal front (Deb and Goldberg, 1989).
Figure 5 shows a run of NSGA which, even at generation 100, gets trapped at the local
Pareto-optimal solutions (marked with a ‘+’). When NSGA is tried with 100 different

14 T T T T
Global Pareto-optimal front ——

12

Local Pareto-optimal front

Initial population <
Population at 100 gen +

10 Y ° e B

f2

Figure 5: A NSGA run gets trapped at the local Pareto-optimal solution.

initial populations, it gets trapped into the local Pareto-optimal front in 59 out of 100 runs,
whereas in the other 41 runs NSGA can find the global Pareto-optimal front. We also
observe that in 25 runs there exists at least one solution in the global basin of function g in
the initial population and still NSGAs cannot converge to the global Pareto-optimal front.
Instead, they get attracted to the local Pareto-optimal front. These results show thata multi-
objective GA can have difficulty even with a simple bimodal problem. A more difficult test
problem can be constructed by using a standard single-objective multi-modal test problem,
such as Rastrigin’s function, Schwefel’s function, or by using a higher-dimensional, multi-
modal g function.

4.2 Deceptive Multi-objective Optimization Problem

Next, we shall create a deceptive multi-objective optimization problem from a deceptive
g function. This function is defined over binary alphabets. Let us say that the following
multi-objective function is defined over ¢ bits, which is a concatenation of N substrings of

variable size ¢; such that E?;l b =10:

Minimize f; =1+ u(fy),

SN gulte))
14+u(l1) ’

®)

Minimize fo =

"This population size is determined to have, on an average, one solution in the global basin of function g in a
random initial population.

214
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where u(f;) is the unitation® of the first substring of length ¢;. To keep matters simple, we
have used a tight encoding of bits representing each substring. The first function f; is a
simple one-min problem, where the optimal solution has all 0s. A one is added to make all
function values strictly positive. The function g is defined? in the following:

24 ’Lt(gi), 1fu(€z) <t

st ={ § R ©

This makes the true attractor (with all 1s in the substring) have the worst neighbors with a
function value g(¢;) = 1 and the deceptive attractor (with all Os in the substring) have the
good neighbors with a function value g(0) = 2. Since most of the substrings lead toward
the deceptive attractor, GAs may find difficulty converging to the true attractor (all 1s).

The global Pareto-optimal front corresponds to the solution for which the summation
of g function values is absolutely minimum. Since at each minimum, g has a value one,
the global Pareto-optimal solutions have a summation of g equal to (N — 1). Since each ¢
function has two minima (one true and another deceptive), there are a total of 2V ~! local
minima, of which one is global. Corresponding to each of these local minima, there exists a
local Pareto-optimal front (some of them are identical since the functions are defined over
unitation), to which a multi-objective GA may be attracted.

In the experimental set up, we used ¢; = 10, ¢y = 5, {5 = 5, £4 = 5, such that £ = 25.
Since the functions are defined with unitation values, we have used genotypic niching with
Hamming distance as the distance measure between two solutions (Deb and Goldberg,
1989). Since we expect 11 different function values in f; (all integers from 1 to 11), we use
guidelines suggested in that study and calculate oghare = 9. Figure 6 shows that when a
population size of 80 is used, an NSGA is able to find the global Pareto-optimal front from
the initial population shown (solutions marked with a ‘+’).

1

T T T — T ==

Global Pareto front — |

All deceptive Pareto front ----—
Initial Population (n=80)

i n=

10 f =60

°
.
s 08 |
n=16 x

0.6

04 -

2
Proportion of Successful GAs

0.2

—

Easy g()
Deceptive g() -+

£ . . . . .
10 50 100 150 200 250 300
Population size

Figure 6: Performance of a single run of Figure 7: Proportion of successful GA runs

NSGA is shown on the deceptive multi- (out of 50 runs) versus population size with

objective function. easy and deceptive multi-objective prob-
lems.

When a smaller population size (n = 60) is used, the NSGA cannot find the true

substring in all three deceptive subproblems. Instead, it converges to the deceptive substring

8 Unitation is the number of 1s in the substring. Note that minimum and maximum values of unitation of a
substring of length ¢; is zero and ¢;, respectively.

91t can be shown that an equivalent dual maximization function G = ¢; + 1 — g(u(¥;)) is deceptive according to
conditions outlined elsewhere (Deb and Goldberg, 1994). Thus, the above minimization problem is also deceptive.
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in one subproblem and to the true substring in the two other subproblems. When a
sufficiently small population (n = 16) is used, the NSGA converges to the deceptive attractor
in all three subproblems. The corresponding local Pareto-optimal front is shown in Figure 6
with a dashed line.

In order to further investigate the difficulties that a deceptive multi-objective function
may cause to a multi-objective GA, we construct a 30-bit function with £, = 10and ¢; =5
fori = 2,...,5 and use ospare = 11. For each population size, 50 GA runs are started
from different initial populations and the proportion of successful runs is plotted in Figure 7.
A run is considered successful if all four deceptive subproblems are solved correctly. The
figure shows that NSGAs with small population sizes could not be successful in many runs.
Moreover, the performance improves as the population size is increased. To show that this
difficulty is due to deception in subproblems alone, we use a linear function for g(u) = u+1,
instead of the deceptive function used earlier. Figure 7 shows that multi-objective GAs with
a reasonable population size worked more frequently with this easy problem than with the
deceptive problem.

The above two problems show that by using a simple construction methodology (by
choosing a suitable g function), any problem feature that may cause single-objective GAs
difficulty can also be introduced in a multi-objective GA. Based on the above construction
methodology, we now present a tunable two-objective optimization problem which may
have additional difficulties pertaining to multi-objective optimization.

5 Tunable Two-Objective Optimization Problems

Let us consider the following N-variable two-objective problem:

Minimize f1(Z) = fi(z1,22,...,2m),

Minimize f2(Z) = g(Tm+1,---,2n) X h(f1,9) @)

The function f; is a function of m (< N) variables (Z1 = (z1, ..., %)), and the function
f2 is a function of all N variables. The function g is a function of (N — m) variables
(Zr1 = (Zm+1,.-.,2n)) which do not appear in the functon f;. The function h is a
function of f; and g function values directly. We avoid complications by choosing f; and
g functions that take only positive values (or fi > 0 and g > 0) in the search space. By
choosing appropriate functions for fi, g, and h, multi-objective problems having specific
features can be created:

1. Convexity or discontinuity in the Pareto-optimal front can be affected by choosing an
appropriate h function.

2. Convergence to the true Pareto-optimal front can be affected by using a difficult ¢
function (multi-modal, deceptive, or others) as demonstrated in the previous section.

3. Diversity in the Pareto-optimal front can be affected by choosing an appropriate (non-
linear or multi-dimensional) f; function.

We describe each of the above issues in the following subsections.

5.1 Convexity or Discontinuity in Pareto-optimal Front

By choosing an appropriate h function, multi-objective optimization problems with convex,
non-convex, or discontinuous Pareto-optimal fronts can be created. Specifically, if the
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following two properties of h are satisfied, the global Pareto-optimal set will correspond to
the global minimum of the function g and to all values of the function f;1°:

1. The function h is a monotonically non-decreasing function in g for a fixed value of f;.

2. The function h is a monotonically decreasing function of f; for a fixed value of g.

The first condition ensures that the global Pareto-optimal front occurs for the global
minimum value for g function. The second condition ensures that there is a continuous
‘conflicting’ Pareto-front. However, we realize that when we violate the second condition,
we shall no longer create problems having continuous Pareto-optimal front. However, if
the first condition is met alone, for every local minimum of g there will exist one local
Pareto-optimal set (corresponding value of g and all possible values of f1).

Although many different functions may exist, we present two such functions—one
leading to a convex Pareto-optimal front and the other leading to a more generic problem
having a control parameter which decides the convexity or non-convexity of the Pareto-
optimal fronts.

5.1.1 Convex Pareto-optimal Front

For the following function
Hfi0) = 7 ®
1
we only allow f; > 0. The resulting Pareto-optimal setis (Z5, Z11) = {(Z1, Z11) : Vg(Z1) =
0}. In Section 4, we have seen that the resulting Pareto-optimal set is convex. In the
following, we present another function which can be used to create convex and non-convex
Pareto-optimal sets by simply tuning a parameter.

5.1.2 Non-convex Pareto-optimal Front

We choose the following function for h:

0, otherwise.

With this function, we may allow fi > 0, but ¢ > 0. The global Pareto-optimal set
corresponds to the global minimum of g function. The parameter 3 is a normalization factor
to adjust the range of values of functions f; and g. To have a significant Pareto-optimal
region, 8 may be chosen as 8 > fi max/gmin, Where fi max and gmi, are the maximum value
of the function f; and the minimum (or global optimal) value of the function g, respectively.
It is interesting to note that when « > 1, the resulting Pareto-optimal front is non-convex.
In tackling these problems, the classical weighted-sum method cannot find any intermediate
Pareto-optimal solution by using a weight vector. The above function can also be used to
create multi-objective problems having convex Pareto-optimal sets by setting o < 1. Other
interesting functions for the function h may also be chosen with properties mentioned in
Section 5.1.

10Although the condition for Pareto-optimality of multi-objective problems can be established for other h
functions, here, we state the sufficient conditions for the functional relationships of & with g and f1. Note that this

allows us to directly relate the optimality of g function with the Pareto-optimality of the resulting multi-objective
problem.
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Test problems having local and global Pareto-optimal fronts being of mixed type (some
are convex and some are non-convex shape) can also be created by making the parameter o a
function of g. These problems may cause difficulty to algorithms that work by exploiting the
shape of the Pareto-optimal front simply because the search algorithm needs to adapt while
moving from a local to global Pareto-optimal front. Here, we illustrate one such problem,
where the local Pareto-optimal front is non-convex, and the global Pareto-optimal front is
convex. Consider the following functions (z1, 22 € [0,1]) along with function ~ defined in
Equation 9:

4—3exp (—22722)% | if0 <z, <04,

) = 0.02 10
9(z2) 4 — 2exp (—“%20-7)2, if0.4 <mxy <1, (10)
fi(wy) = 4z, 11

a = 0.25+3.75%, (12)

where ¢g* and ¢g** are the local and the global optimal function value of g, respectively.
Equation 12 is set to have a non-convex local Pareto-optimal front at & = 4.0 and a convex
global Pareto-optimal front at @ = 0.25. The function h is given in Equation 9 with § = 1.
A random set of 40,000 solutions (z1,z2 € [0.0,1.0]) is generated and the corresponding

Global Pareto-optimal Front —
Local Pareto-optimal Front ------
Random points

f2

Figure 8: A two-objective function with a non-convex local Pareto-optimal front and a
convex global Pareto-optimal front. 40,000 random solutions are shown.

solutions in the fi-fs space are shown in Figure 8. The figure clearly shows the nature
of the convex global and non-convex local Pareto-optimal fronts (solid and dashed lines,
respectively). Notice that only a small portion of the search space leads to the global Pareto-
optimal front. An apparent front at the top of the figure is due to the discontinuity in the
g(x2) function at z, = 0.4.

Another simple way to create a non-convex Pareto-optimal front is to use Equation 8
but maximize both functions f; and f». The Pareto-optimal front corresponds to the
maximum value of g function and the resulting Pareto-optimal front is non-convex.
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5.1.3 Discontinuous Pareto-optimal Front

As mentioned earlier, we have to relax the condition for & being a monotonically decreasing
function of f; to construct multi-objective problems with a discontinuous Pareto-optimal
front. In the following, we show one such construction where the function % is a periodic
function of fi:
A f

h(f1,9)=1-— <g - sin(2wqfi) (13)
The parameter ¢ is the number of discontinuous regions in a unit interval of f;. By choosing
the following functions:

fi(z1) =1, g(z2) =14 10zs,

and allowing variables z; and z» to lie in the interval [0,1], we have a two-objective opti-
mization problem which has a discontinuous Pareto-optimal front. Since the h (and hence
f2) function is periodic to z; (and hence to f;), we generate discontinuous Pareto-optimal
regions.

Figure 9 shows the 50,000 random solutions in fi-f»> space. Here, we use ¢ = 4
and o = 2. When NSGAs (population size of 200, ogpare 0f 0.1, crossover probability of
1, and no mutation) are applied to this problem, the resulting population at generation
300 is shown in Figure 10. The plot shows that if reasonable GA parameter values are

1 \ T T T

T
Pareto-optimal front
NSGA <
08 A
0.6 [ 1

04 | 1

f2

0.2 q

oL 4

-0.2 1

-0.4 1

Pareto-optimal front —
Random solutions

L L L L 0.6 L L L L
.5 06 07 08 09 1 0 0.2 0.4 0.6 0.8 1
1

0 01 02 03 04

—~o

Figure 9: 50,000 random solutions are Figure 10: The population at genera-

shown on a fi-f, plot of a multi-objective tion 300 for a NSGA run is shown to have
problem having discrete Pareto-optimal found solutions in all four discontinuous
front. Pareto-optimal regions.

chosen, NSGAs can find solutions in all four discontinuous Pareto-optimal regions. In
general, discontinuity in the Pareto-optimal front may cause difficulty to multi-objective
GAs which do not have an efficient way of implementing diversity among discontinuous
regions. Function-space niching may have difficulty in these problems because of the
discontinuities in the Pareto-optimal front.

5.2 Hindrance to Reach True Pareto-optimal Front

It is shown earlier that by choosing a difficult function for ¢ alone, a difficult multi-objective
optimization problem can be created. Some instances of multi-modal and deceptive multi-
objective optimization have been created earlier. Test problems with standard multi-modal
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functions used in single-objective GA studies, such as Rastrigin’s functions, NK landscapes,
and others can all be chosen for the g function.

5.2.1 Biased Search Space

The function g plays a major role in introducing difficulty to a multi-objective problem.
Even though the function g is not chosen to be a multi-modal function nor to be a deceptive
function, with a simple monotonic g function the search space can have adverse density of
solutions toward the Pareto-optimal region. Consider the following function for g:

N i N min
Ei:m«l»l Ti— Zi:m+1 L
N max N min
Dimm1 T = Y iim1 T

where gmin and gmax are the minimum and maximum function values that the function g
can take. The values 2™ and 2®* are minimum and maximum values of the variable z;.
It is important to note that the Pareto-optimal region occurs when g takes the value gmin.
The parameter +y controls the bias in the search space. If v < 1, the density of solutions
away from the Pareto-optimal front is large. We show this on a simple problem with m = 1,
N = 2, and with the following functions:

v

)

g(xm+17 s ,.’,I?N) = Jmin + (gmax - gmin)

filw) =21, h(fr,9)=1- (%)2

We also use giin = 1 and gmax = 2. Figures 11 and 12 show 50,000 random solutions
each with v equal to 1.0 and 0.25, respectively. It is clear that for v = 0.25, no solution
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Figure 11: 50,000 random solutions are Figure 12: 50,000 random solutions are
shown for y = 1.0. shown for v = 0.25.

is found in the Pareto-optimal front, whereas for v = 1.0, many Pareto-optimal solutions
exist in the set of 50,000 random solutions. Random-like search methods are likely to face
difficulty in finding the Pareto-optimal front in the case with y close to zero, mainly due to
the low density of solutions towards the Pareto-optimal region.

5.2.2 Parameter Interactions

The difficulty in converging to the true Pareto-optimal front may also arise because of
parameter interactions. It was discussed before that the Pareto-optimal set in the two-
objective optimization problem described in Equation 7 corresponds to all solutions of
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different f; values. Since the purpose of a multi-objective GA is to find as many Pareto-
optimal solutions as possible and, since in Equation 7 the variables defining f; are different
from variables defining g, a GA may work in two stages. In one stage, all variables Z; may
be found and in the other, optimal #;; may be found. This rather simple mode of a GA
working in two stages can face difficulty if the above variables are mapped to another set of
variables. If M is a random orthonormal matrix of size N x N, the true variables % can first
be mapped to derived variables ¥ using

=My (15)

Thereafter, objective functions defined in Equation 7 can be computed using the variable
vector Z. Since the components of Z can now be negative, care must be taken in defining
f1 and g functions so as to satisfy restrictions suggested on them in previous subsections. A
translation of these functions by adding a suitable large positive value may have to be used
to force these functions to take non-negative values. Since the GA will be operating on
the variable vector ¥, and the function values depend on the interaction among variables of
¥/, any change in one variable must be accompanied by related changes in other variables
in order to remain on the Pareto-optimal front. This makes this mapped version of the
problem difficult to solve. We discuss more about mapped functions near the end of the
following section.

5.3 Non-uniformly Represented Pareto-optimal Front

In all the test functions constructed above (except the deceptive problem), we have used
a linear, single-variable function for f;. This helped us create a problem with a uniform
distribution of solutions in f;. Unless the underlying problem has discretely spaced Pareto-
optimal regions (as in Section 5.1.3), there is no bias for the Pareto-optimal solutions to be
spread over the entire range of f; values. However, a bias for some portions of range of
values for fi may also be created by choosing any of the following f; functions:

1. The function f; is non-linear, or

2. The function f; is a function of more than one variable.

It is clear that if a non-linear f; function (whether single or multi-variable) is chosen, the
resulting Pareto-optimal region (or, for that matter, the entire search region) will have
bias towards some values of fi. The non-uniformity in distribution of the Pareto-optimal
region can also be created by simply choosing a multi-variable function (whether linear
or non-linear). Multi-objective optimization algorithms, which are poor at maintaining
diversity among solutions (or function values), will produce a biased Pareto-optimal front
in such problems. Thus, the non-linearity in function f; or dimension of f; measures how
well an algorithm is able to maintain distributed non-dominated solutions in a population.
Consider the single-variable, multi-modal function f;:

fi(@1) = 1 — exp(—4z1) sin* (5ra1), 0<az; <1 (16)

The above function has five minima for different values of z; as shown in Figure 13. The
figure also shows the corresponding non-convex Pareto-optimal front in a f;-f» plot with
h function defined in Equation 9 having 3 = 1 and « = 4 (since « > 1, the Pareto-optimal
front is non-convex) . The right figure is generated from 500 uniformly-spaced solutions
in z1. The value of x> is fixed so that the minimum value of g*(z2) is equal to 1. The figure
shows that the Pareto-optimal region is biased for solutions for which f; is near one.
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Figure 13: A multi-modal f; function and corresponding non-uniformly distributed non-
convex Pareto-optimal region. In the right plot, Pareto-optimal solutions derived from 500
uniformly-spaced z; solutions are shown.

5.3.1 Function-Space and Parameter-Space Niching

The working of a multi-objective GA on the above function provides interesting insights
about function-space niching (Fonseca and Fleming, 1993) and parameter-space niching
(Srinivas and Deb, 1995). Itis clear that when function-space niching is performed, diversity
in the context of objective function values is anticipated, whereas when parameter space
niching is performed, diversity in the phenotype (or genotype) of solutions is expected.
We illustrate the difference by comparing the performance of NSGAs with both niching
methods on the above problem. NSGAs with a reasonable parameter setting (population
size of 100, 15-bit coding for each variable, ogpare 0f 0.2236 (assuming 5 niches), crossover
probability of 1, and no mutation) are run for 500 generations. A typical run for both
niching methods are shown in Figure 14. Although it seems that both niching methods are
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Figure 14: The left plot is with parameter-space niching and the right is with function-
space niching. The figures show that both methods find solutions with diversity in the fi-f>
space.

able to maintain diversity in function space (with a better distribution in f;-f» space with
function-space niching), the left plot (inside figure) shows that the NSGA with parameter-
space niching has truly found diverse solutions, whereas the NSGA with function-space
niching (right plot) converges to about 50% of the entire region of the Pareto-optimal
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solutions. Since the first minimum and its basin of attraction spans the complete space for the
function f1, the function-space niching does not have the motivation to find other important
solutions. Thus, in problems like this, function-space niching may hide information about
important Pareto-optimal solutions in the search space.

It is important to understand that the choice between parameter-space or function-
space niching depends entirely on what is desired in a set of Pareto-optimal solutions in
the underlying problem. In some problems, it may be important to have solutions with
trade-off in objective function values without concern for the similarity or diversity of the
actual solutions (z vectors or strings). In such cases, function-space niching will, in general,
provide solutions with better trade-off in objective function values. Since there is no induced
pressure for the solutions to differ from each other, the Pareto-optimal solutions may not
be very different, unless the underlying objective functions demand them to be so. On the
other hand, in some problems the emphasis could be on finding more diverse solutions and
with a trade-off among objective functions. Parameter-space niching would be better in
such cases. This is because, in some sense, categorizing a population using non-domination
helps to preserve some diversity among objective functions and an explicit parameter-space
niching helps to maintain diversity in the solution vector.

To show the effect of parameter interactions (Section 5.2.2), we map the solution
vector & into another vector § (obtained by rotation and translation). Now the distinction
between parameter-space and function-space niching is even more clear (see Figure 15).
GA parameter values identical to those in the unmapped case above are used here. Clearly,
parameter-space niching is able to find more diverse solutions than function-space niching.
However, an usual fi-f> plot would reveal that the function-space niching is also able to
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Figure 15: Solutions for a mapped problem are shown. The plots are made with all 100
solutions at generation 500.

find diverse solutions. A plot as in Figure 15 truly reveals the diversity achieved in the
solutions.

6 Summary of Test Problems

The two-objective optimization problem discussed above requires three functions—fi,
g, and h—which can be set to various complexity levels to create complex two-objective
optimization test problems. In the following, we summarize the properties of a two-
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objective optimization problem due to each of above functions:

1. The function f; tests a multi-objective GA’s ability to find diverse Pareto-optimal
solutions. Thus, this function tests an algorithm’s ability to handle difficulties along
the Pareto-optimal front.

2. The function g tests a multi-objective GA’s ability to converge to the true (or global)
Pareto-optimal front. Thus, this function tests an algorithm’s ability to handle diffi-
culties /ateral to the Pareto-optimal front.

3. The function h tests a multi-objective GA’s ability to tackle multi-objective problems
having convex, non-convex, or discontinuous Pareto-optimal fronts. Thus, this func-
tion tests an algorithm’s ability to handle different shapes of the Pareto-optimal front.

In the light of the above discussion, we summarize and suggest in Tables 1, 2, and 3 a
few test functions for the above three functionals, which may be used in combination with
each other. Unless specified, all variables z; mentioned in the tables take real values in the
range [0,1]. The functions mentioned in the third column in each table are representative

Table 1: Effect of function f; on the test problem.

Function fi(z1,...,Zm) (>0)
Controls search space along the Pareto-optimal front

Type Example and Effect

FI-I | Single- Example: 6y + ciz1 (65,c1 > 0)
variable Effect: Uniform representation of solutions in the Pareto-optimal
(m = 1) and | front. Most of the Pareto-optimal region is likely to be found.
linear

F1-II | Muld- Example: 67 +> 7" cixi (87,ci > 0)
variable Effect: Non-uniform representation of Pareto-optimal front.
(m > 1) and | Some Pareto-optimal regions are not likely to be found.
linear

FI1-III | Non-linear Example: Eqn (16) for m = 1 or, 1 — exp(—4r)sin®(57r) where
(any m) r= /Yyt

Effect: Same as above.

F1-IV | Muld-modal | Example: Eqn (4) with g(z2) replaced by fi(z1) or other standard
multi-modal test problems (such as Rastrigin’s function, see Table 2)
Effect: Same as above. Solutions at global optimum of fi and
corresponding function values are difficult to find.

F1-V | Deceptive Example: fi =) 7" f(¢:), where f issame as g defined in Eqn (6)
Effect: Same as above. Solutions at true optimum of f; are difficult
to find.

functions which will produce the desired effect mentioned in the respective fourth column.
While testing an algorithm for its ability to overcome a particular feature of a test problem,
we suggest varying the complexity of the corresponding function (f1, g, or h) and fixing
the other two functions at their easiest complexity level. For example, while testing an
algorithm for its ability to find the global Pareto-optimal front in a multi-modal, mult-
objective problem, we suggest choosing a multi-modal g function (G-III) and fixing f;
as in F1-I and A as in H-1. Similarly, using g function as G-I, h function as H-I, and by
first choosing fi function as F1-I, test a multi-objective optimizer’s capability to distribute
solutions along the Pareto-optimal front. By only changing the f; function to F1-III (even
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Table 2: Effect of function g on the test problem.

GAs

Function g(zm+1,...,2n) (>0),sayn=N—m
Controls search space lateral to the Pareto-optimal front
Type Example and Effect
G-I | Uni-modal, Example: 8, + caz2 (84,c2 > 0), or Eqn (I4) with v =1
single- Effect: No bias for any region in the search space.
variable (n =
1), and linear
G-II | Uni-modal Example: Eqn (14) with v # 1
and Effect: With v > 1, bias towards the Pareto-optimal region and
non-linear with v < 1, bias against the Pareto-optimal region.
G-III | Multi-modal | Rastrigin:
Example: 1+ 10n + Y . a? — 10 cos(2mai) @i € [—30,30]
Effect: Many (61" — 1) local and one global Pareto-optimal fronts
Schwefel:
Example: 1+ (6.57)%n — vazmﬂ x;sin(y/|zi])
i € [-512,511]
Effect: Many (8" — 1) local and one global Pareto-optimal fronts
Example: 2 + Zf]:mﬂ x7 /4000 — 1L, cos(zi/ V)
w; € [-512,511]
Effect: Many (163" — 1) local and one global Pareto-optimal fronts
G-IV | Deceptive Example: Eqn (6)
Effect: Many (2" — 1) deceptive attractors and one global attractor
. . W) 24e, ife<ti/2,
G-V | Muld- Example: g(u(4;)) = 1, ife=1t,/2
modal,
deceptive where e = |u(;) — ¢ /2|
Effect: Many (TT2L,, 14 [([f;z) + 2] — 2™) deceptive attractors and
2" global attractors
Table 3: Effect of function A on the test problem.
Function A(f1,9) (> 0)
Controls shape of the Pareto-optimal front
‘Type Example and Effect
H-I | Monotonically non- | Example: Eqn (8) or Eqn (9) witha <1
decreasing in g and convex | Effect: Convex Pareto-optimal front
on fi
H-IT | Monotonically non- | Example: Eqn 9) with a > 1
decreasing in g and non- | Effect: Non-convex Pareto-optimal front
convex on f
H-III | Convexity in fi as a func- | Example: Eqn (9) along with Eqn (12)
tion of g Effect: Mixed convex and non-convex shapes for local
and global Pareto-optimal fronts
H-IV | Non-monotonic periodic | Example: Eqn (13)
in fi Effect: Discontinuous Pareto-optimal front
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with m = 1), the same optimizer can be tested for its ability to find distributed solutions in
the Pareto-optimal front.

Along with any such combination of three functionals, parameter interactions can be
introduced to create even more difficult problems. Using a transformation of the coordinate
system as suggested in section 5.2.2, all the above-mentioned properties can be tested in
a space where simultaneous adjustment of all parameter values is desired for finding an
improved solution.

7 Future Directions for Research

This study suggests a number of immediate areas of research for developing better multi-
objective GAs. A list of them are outlined and discussed in the following:

1. Compare existing multi-objective GA implementations

2. Understand dynamics of GA populations with generations

. Investigate scalability issue of multi-objective GAs with number of objectives
. Develop constrained test problems for multi-objective optimization

Study convergence properties to the true Pareto-optimal front

Introduce elitism in multi-objective GAs

. Develop metrics for comparing two populations

Apply multi-objective GAs to more complex real-world problems

. Develop multi-objective GAs for scheduling and other kinds of optimization problems

As mentioned earlier, there exists a number of different multi-objective GA implementations
primarily varying in the way non-dominated solutions are emphasized and in the way the
diversity in solutions are maintained. Although some studies have compared different GA
implementations (Zitzler and Thiele, 1998), they all have been done on a specific problem
without much knowledge about the complexity of the test problems. With the ability
to construct test functions having controlled complexity, as illustrated in this paper, an
immediate task would be to compare the existing multi-objective GAs and to establish
the power of each algorithm in tackling different types of multi-objective optimization
problems.

The test functions suggested here provide various degrees of complexity. The con-
struction of all these test problems has been done without much knowledge of how multi-
objective GAs work. If we know more about how such GAs work based on a non-domination
principle, problems can be created to test more specific aspects of multi-objective GAs. In
this regard, an interesting study would be to investigate how an initial random population of
solutions moves from one generation to the next. An initial random population is expected
to have solutions belonging to many non-domination levels. One hypothesis about the
working of a multi-objective GA would be that most population members soon collapse
to a single non-dominated front and each generation thereafter proceeds by improving
this large non-dominated front. On the other hand, it may also be conjectured that GAs
work by maintaining a number of non-domination levels at each generation. Both these
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modes of working should provide enough diversity for the GAs to find new and improved
solutions and are likely candidates, although the actual mode of working may depend on the
problem at hand. Thus, it will be worthwhile to investigate how existing multi-objective
GA implementations work in the context of different test problems.

In this paper, we have not considered more than two objectives, although extensions of
the concept to problems having more than two objectives can also be done. Itis intuitive that
as the number of objectives increases, the Pareto-optimal region is represented by multi-
dimensional surfaces. With more objectives, multi-objective GAs must have to maintain
more diverse solutions in the non-dominated front in each iteration. Whether GAs are able
to find and maintain diverse solutions (as demanded by the search space of the problem) with
many objectives would be an interesting study. Whether population size alone can solve
this scalability issue or a major structural change (implementing a better niching method)
is required would be the outcome of such a study.

We also have not considered constraints in this paper. Constraints can introduce
additional complexity in the search space by inducing infeasible regions in the search
space, thereby obstructing the progress of an algorithm towards the global Pareto-optimal
front. Thus, creation of constrained test problems is an interesting area which should be
emphasized in the future. With the development of such complex test problems, there is
also a need to develop efficient constraint handling techniques that would be able to help
GAs to overcome hurdles caused by constraints.

Most multi-objective GAs that exist to date work with the non-domination ranking of
population members. Ironically, we have shown in Section 4 that all solutions in a non-
dominated set need not be members of the true Pareto-optimal front, although some of
them could be. In this regard, it would be interesting to introduce special features (such as
elitism, mutation, or other diversity-preserving operators), the presence of which may help
us to prove convergence of a GA population to the global Pareto-optimal front. Several
attempts have been made to achieve such proofs for single-objective GAs (Suzuki, 1993;
Rudolph, 1994) and similar attempts may also be made for multi-objective GAs.

Elitism is a useful and popular mechanism used in single-objective GAs. Elitism ensures
that the best solutions in each generation will not be lost. What is more important is that
these good solutions get a chance to participate in recombination with other solutions in
the hope of creating better solutions. In multi-objective optimization, all non-dominated
solutions of the first level are the best solutions in the population. Copying all such
solutions to subsequent generations may make GAs stagnate. Thus, strategies for copying
only a subset of non-dominated solutions must be developed.

Comparison of two populations in the context of multi-objective GAs also raises
some interesting questions. As mentioned earlier, there are two goals in a multi-objective
optimization—convergence to the true Pareto-optimal front and maintenance of diversity
among Pareto-optimal solutions. A multi-objective GA may have found a population which
has many Pareto-optimal solutions but with less diversity among them. How would such
a population be compared with respect to another which has a fewer number of Pareto-
optimal solutions but with wider diversity? Although there exists a suggestion of using a
statistical metric (Fonseca and Fleming, 1996), most researchers use visual means of com-
parison which causes difficulty in problems having many objectives. The practitioners of
multi-objective GAs must address this issue before they would be able to compare different
GA implementations in a reasonable manner.
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Test functions test an algorithm’s ability to overcome a specific aspect of a real-world
problem. In this respect, an algorithm which can overcome more aspects of problem
difficulty is naturally a better algorithm. This is precisely the reason why so much effort is
spent on doing research in test function development. As it is important to develop better
algorithms by applying them on test problems with known complexity, it is also equally
important that the algorithms are tested in real-world problems with unknown complexity.
As mentioned earlier, the advantages of using a multi-objective GA in real-world problems
are many and there is a need for interesting application case studies which would clearly
show the advantages and flexibilities in using a multi-objective GA, as opposed to a single-
objective GA.

With the advent of efficient multi-objective GAs for function optimization, the con-
cept of multi-objective optimization can also be applied to other search and optimization
problems such as multi-objective scheduling and other multi-objective combinatorial opti-
mization problems. Since in tackling these problems using permutation GAs, the main dif-
ferences from binary GAs are in the way the solutions are represented and in the construction
of GA operators, an identical non-domination principle along with a similar niching concept
can still be used in solving such problems having multiple objectives. In this context, similar
concepts can also be implemented in developing other population-based, multi-objective
EAs. Multi-objective evolution strategies, multi-objective genetic programming, or multi-
objective evolutionary programming may better solve specific multi-objective problems
which are ideally suited for the respective evolutionary method.

8 Conclusions

For the past few years, there has been a growing interest in the studies of multi-objective
optimization using genetic algorithms (GAs). Although there exists a number of mult-
objective GA implementations and applications to interesting multi-objective optimization
problems, there is no systematic study to speculate what problem features may cause a multi-
objective GA to face difficulties. In this paper, a number of such features are identified
and a simple methodology is suggested to construct test problems from single-objective
optimization problems. The construction method requires the choice of three functions,
each of which controls a particular aspect of difficulty for a multi-objective GA. One
function, (f1), tests an algorithm’s ability to handle difficulties along the Pareto-optimal
region; function (g) tests an algorithm’s ability to handle difficulties lateral to the Pareto-
optimal region; and function (h) tests an algorithm’s ability to handle difficulties arising
because of different shapes of the Pareto-optimal region. This allows a multi-objective GA
to be tested in a controlled manner on various aspects of problem difficulties. Since test
problems are constructed from single-objective optimization problems, most theoretical
or experimental studies on problem difficulties or on test function development in single-
objective GAs are of direct importance to multi-objective optimization.

This paper has made a modest attempt to reveal and test some interesting aspects of
multi-objective optimization. A number of other salient and related studies are suggested
for future research. We believe that more studies are needed to better understand the
working principles of a multi-objective GA. An obvious outcome of such studies would be
the development of new and improved multi-objective GAs.
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