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Abstract. Genetic algorithms generally use a fixed problem representa-
tion that maps variables of the search space to variables of the problem,
and operators of variation that are fixed over time. This limits their scal-
ability on non-separable problems. To address this issue, methods have
been proposed that coevolve explicitly represented modules. An open
question is how modules in such coevolutionary setups should be evalu-
ated.
Recently, Pareto-coevolution has provided a theoretical basis for evalua-
tion in coevolution. We define a notion of functional modularity, and ob-
jectives for module evaluation based on Pareto-Coevolution. It is shown
that optimization of these objectives maximizes functional modularity.
The resulting evaluation method is developed into an algorithm for vari-
able length, open ended development of representations called DevRep.
DevRep successfully identifies large partial solutions and greatly outper-
forms fixed length and variable length genetic algorithms on several test
problems, including the 1024-bit Hierarchical-XOR problem.
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1 Introduction


Most genetic algorithms employ a single, fixed representation that is given as
part of the problem specification. To apply a genetic algorithm to a problem, a
mapping has to be chosen between genotypes (sequences of binary or other vari-
ables) and the actual individuals they represent, phenotypes. We call this map-
ping the representation of the problem. For most genetic algorithms, the repre-
sentation is chosen once, and does not change during the algorithm’s operation.
The operators of variation are typically constant too. Thus, the search space and
the operators specifying the possible moves in this space cannot be adapted by
the algorithm.


In combination, the use of a fixed representation and fixed operators of vari-
ation make it unlikely that different combinations of large partial solutions will
be explored, see [14]. Partial solutions take the form of schemata, i.e. partial
specifications of a genotype. Both forming large partial solutions and mixing







existing genotypes can be achieved in isolation. However, the standard genetic
algorithm makes it unlikely for mutually exclusive partial solutions1 to per-
sist, since no mechanism for protecting mutually exclusive partial solutions is
present. Methods that cannot represent information about mutually exclusive
partial solutions are unlikely to address non-separable problems2.


When niching is used, mutually exclusive partial solutions can persist. Still,
unless they are explicitly represented, crossover is unlikely to respect the bound-
aries of such partial solutions. This limits the potential to combine large partial
solutions. A solution is to represent partial solutions, modules, explicitly. Several
methods taking this approach have been investigated so far, including GLiB [1],
ADF’s [8], ARL [12], ADSN [7], and SEAM [20].


The development of modules allows algorithms to start searching in terms
of combinations of variables. Thus, such algorithms can be viewed as adapting
the representation of the problem during search [1, 12, 3]. H-BOA, an apparently
quite different approach to address hierarchical problems, also represents par-
tial solutions explicitly, by using decision trees [10].


So far, there has been a lack of theory to guide the development of algo-
rithms forming modules, in particular regarding module evaluation. Methods
that simultaneously evolve modules and assemblies are instances of coevolu-
tion, as module evaluation is based on interactions with assemblies. Recently,
the paradigm of Pareto-coevolution has provided a theoretical basis for evalua-
tion in coevolution [6, 19, 2, 4].


Here, we will apply Pareto-coevolution to the question of how modules may
be evaluated. The first algorithm to use Pareto-coevolution for module evalua-
tion is Watson’s SEAM algorithm [20]. SEAM is designed for fixed length prob-
lems. We study the question of how combinations of large partial solutions
may be explored for variable length problems in an open-ended setup where
modules can be combined into new modules recursively and indefinitely. The
problems we are interested in are large search problems that have structure. A
search problem is large if it requires a long solution, in terms of the original
variables. If information from part of the search space can be used to predict
(better than random) information about other parts of the search space, we will
say the problem has structure.


The structure of the paper is as follows. First, our algorithm is gradually in-
troduced, by discussing structural and functional modularity (2), coevolution
of modules and assemblies and Pareto-coevolution (Section 3), evaluation of
modules based on Pareto-coevolution (Section 4), and finally the algorithm fol-
lowing from this principle (Section 5). The test problems are described in Sec-
tion 6. Experimental results are reported in Section 7, followed by discussion
and conclusions.


1 Two partial solutions are mutually exclusive if they assign conflicting values to one
or more variables.


2 A problem is separable if each variable has a single optimal setting, independent of the
other variables [16].







2 Structural versus Functional Modularity


We will distinguish between structural modularity, a characteristic of algorithms,
and functional modularity, the modularity present in a problem. Watson [17] de-
fines notions of structural and functional modularity based on the structure and
behavior of a dynamical system. Here, we will say any method that represents
partial solutions explicitly features structural modularity. While any grouping of
elements leads to structural modularity, the value of a modular representation
strongly depends on the particular grouping that is chosen. Ideally, the struc-
tural modules constructed by an algorithm should correspond to the functional
modules present in the problem.


The primitives of a problem are the basic elements that may occur in a geno-
type, typically numerical values, e.g. {0, 1}, or actions or operators. A module
is a sequence of primitives, and has a unique identifier. We will assume that for
every primitive there is a module containing only that primitive. Thus, without
loss of generality, individuals can be viewed as sequences of modules. Candi-
date solutions are sequences of modules, and are called assemblies.


The compact representation of an assembly describes the assembly in terms
of the modules of which it consists, using the modules’ unique ID’s. The assem-
bly’s expressed form consists of the concatenation of the sequences of primi-
tives represented by its modules. The sizes of the compact and expressed rep-
resentations of an assembly are called its compact and expressed size. Since an
assembly is expressed by concatenating the expressed forms of its modules, the
position of a module, and hence of its primitives, is determined by the number
and size of the modules that precede it in the assembly.


The functional modularity of a module is considered with respect to some
set of assemblies, called the context set. We will use the operation of replac-
ing the module at a given position within an assembly by another module. A
position used in this way will be called an insertion point.


Using the above concepts, a definition for functional modularity in variable
length search problems can now be stated. Let


�
be a context set and let � be a


set of comparison modules.


Definition 1 (Functional Modularity). A module A is functionally modular with
respect to


�
, insertion points iS , and � iff:


∀S ∈
�


: ∀C ∈ � : f(S(A, iS)) ≥ f(S(C, iS))


where S(A, i) specifies placing module A at the ith position of S, and f(S) re-
turns the fitness of an assembly S. Functionally modular modules are also sim-
ply called functional modules.


3 Coevolution of Modules and Assemblies


We study how the development of functional modules can be achieved in a
setup where modules and assemblies coevolve. A coevolutionary approach to







module formation is obtained by using two populations, one containing mod-
ules and one containing assemblies. Assemblies are candidate solutions for the
problem, and hence their evaluation is given by the fitness function of the prob-
lem.


In Evolutionary Multi-Objective Optimization (EMOO [13]), individuals are
evaluated on multiple objectives instead of a single fitness function, and the val-
ues of these objectives are treated separately; for an introduction, see e.g. [5].


The central idea in Pareto-coevolution is to view the outcomes of interac-
tions with other evolving individuals as objectives. Treating the outcomes of
interactions separately provides more specific information about individuals
than a single value such as the average outcome, permiting better-informed
methods of selection.


4 Module Evaluation: Assemblies Provide Objectives


This section shows how the Pareto-coevolution view leads to a principle for
module evaluation. It will be seen that optimization of the objectives corre-
sponds to the optimization of functional modularity. This provides a connection
between Pareto-coevolution and functional modularity.


4.1 Objectives from Pareto-Coevolution


Assemblies provide situations in which modules can perform useful roles, and
thereby implicitly define objectives. The maximal set of objectives that can be
considered for a module therefore consists of the union of the objectives defined
by some set of assemblies, e.g. a subset of the coevolving assembly population.
For an individual assembly, the objective of a module in it is to contribute to
the assembly’s fitness by performing a useful role in it. Assemblies define a
number of positions at which modules can perform a useful role. Thus, in an
assembly containing n modules, each of the n positions defines an objective. For
a module A, the value of the ith objective of assembly S is obtained by using i


as an insertion point, and considering the fitness of the assembly resulting from
placing A at the insertion point: f(S(A, i)).


The numerical value of this objective equals the fitness of the complete as-
sembly, and is not informative by itself. The logic behind this choice of objec-
tives becomes clear when comparing the values these objectives assign to differ-
ent modules. Intuitively, a module A is more valuable than another module B


for a given assembly if using A instead of B has a positive effect on the overall
fitness of the assembly. This is precisely what is measured when the objective
values of two modules A and B are compared; A has a higher objective value
than B for position i of an assembly S if f(S(A, i)) > f(S(B, i)). This compar-
ison turns out positive for A if A, when replacing B at the ith position of S,
results in a higher overall fitness for the assembly.


Using individual assemblies as objectives for the modules they contain al-
lows for the identification of many different specialized roles or tasks. A mod-
ule can in principle be valuable even if it is only used by a small number of







assemblies, or if only some of the assemblies employing it have high fitness,
while an average fitness approach would not detect the value of such a mod-
ule.


Evaluation by replacing a module with other modules and comparing the
overall fitness is a form of differential fitness comparison. This principle has been
used in various forms, e.g. Cooperative Coevolution [11], COIN’s Wonderful
Life Utility [15], and SEAM [20].


4.2 Correspondence between Pareto-Coevolution and Functional
Modularity


The previous subsection has shown how using Pareto-coevolution, assemblies
can provide objectives for modules. An important question is how the resulting
objectives relate to the earlier notion of functional modularity. We show that
there is a direct correspondence between these.


Let A be a candidate module, chosen from a set of all possible modules � ,
and let


�
be a set of assemblies. Then A is functionally modular with respect to�


, insertion points iS , and � if and only if:


∀S ∈
�


: ∀C ∈ � : f(S(A, iS)) ≥ f(S(C, iS)) (1)


Now consider the objectives specified by the same assemblies
�


and insertion
points iS . As defined in the previous section, these are given by f(S(A, iS)) for
all S ∈


�
. A maximizes these objectives simultaneously over � if and only if:


∀S ∈
�


: ∀C ∈ � : f(S(A, iS)) ≥ f(S(C, iS)) (2)


Equation 1 and 2 are identical. Thus, a module is functionally modular for a set
of assemblies and corresponding insertion points if and only if it maximizes the
objectives represented by these assemblies and insertion points.


4.3 Practical Issues in Module Evaluation


For a candidate module AB, we can replace all its occurrences in assemblies
by a compact representation of the candidate module X = AB. After doing so,
each occurrence of X in an assembly defines an objective (assembly and inser-
tion point) that is likely to be relevant in evaluating X . For efficiency reasons,
we limit module evaluation to these objectives, i.e. the objectives specified by
the positions where X actually occurs.


Candidate modules are identified by considering consecutive pairs of mod-
ules that occur frequently in assemblies. One of the assemblies in which such
a frequent candidate module occurs is selected, and defines an objective value
for the candidate module. The candidate module is evaluated by comparing its
value for the objective to that of other possible candidate modules in a compar-
ison set � . It is only accepted as a new module if its value for the objective is
equal or greater than all alternatives in � , and strictly greater than some alterna-
tives. This condition ensures that no better candidate is available, and that the







candidate is an improvement over alternative combinations of modules. Thus,
for given � , S, and insertion point iS :


∀C ∈ � : f(S(A, iS)) ≥ f(S(C, iS)) ∧ ∃C ∈ � : f(S(A, iS)) > f(S(C, iS))


A possible concern is to what extent evaluation based on a single objective is
sufficient. In contrast with most EMOO work, the aim here is to identify mod-
ules maximizing performance in one or more objectives. Thus, we are only in-
terested in the extremes of the tradeoff front. Since modules are added incre-
mentally rather than evolved, the objectives can at least be optimized inde-
pendently. To furthermore promote modules that maximize multiple objectives,
candidate modules are combinations that occur frequently in assemblies.


To avoid unnecessary material, a candidate module is compared to alterna-
tives of the same or smaller expressed length. An efficiency improvement can
be made by viewing the constituents A and B of a module AB as modules. We
thus compare a candidate module AB to all modules A* and *B, observing the
length requirement, and only accept it if it obtains at least as high fitness as all
of these and higher fitness than at least one of these. A final requirement is that
its fitness is at least as high as when either or both constituent modules are left
out; that is, the module is also compared to A, B, and [].


5 The DevRep Algorithm


DevRep()
1. modules:=primitives;
2. assemblies:=generate random sequences(modules);
3. while(¬stop criterion)
4. modules := create modules(assemblies, modules);
5. for i=1:interval
6. assemblies := evolve assemblies(assemblies, modules);
7. end
8. end


Basic cycle of the DevRep algorithm.


The choices that have been made regarding module construction and eval-
uation lead to an algorithm that Develops a Representation for the problem as
part of the search, and is therefore called DevRep. This method is based on ear-
lier work presented in [3]. The population of modules is initialized to the set of
primitives. The assembly population is initialized to random sequences of these
modules of a given length. Next, the following loop is repeated until a stop cri-
terion: pairs of existing modules occurring consecutively in the assemblies are
considered for consolidation into new modules, and a generation of evolving
the assemblies is performed.







Create modules does the following. Let AB be the pair of existing modules
consecutively occurring most frequently in the assembly population. One as-
sembly in which AB occurs is selected randomly. Let us write this assembly as
XABY , where X and Y represent sequences of modules. We now consider all
assemblies XA · Y and X · BY in which either A or B has been replaced by
some other module, whose expressed length does not exceed that of XABY .
Then the fitness f(XABY ) must be at least as high as that of all of these modi-
fied assemblies, and higher than that of at least one of the modified assemblies:


∀Z : f(XABY ) ≥ f(XAZY ) ∧ f(XABY ) ≥ f(XZBY )


∃Z : f(XABY ) > f(XAZY ) ∨ f(XABY ) > f(XZBY )


If this is the case, we furthermore require that the compact representation of AB
contains no unnecessary elements:


f(XABY ) > f(XAY ) ∧ f(XABY ) > f(XBY ) ∧ f(XABY ) > f(XY )


If these requirements are met, the new module is given a unique ID, and added
to the module population. Furthermore, all occurrences of AB in the current as-
semblies are replaced by the new module, followed by a null module to main-
tain the same assembly length.3 If not, the next max-modules-to-consider
most frequent pairs of modules are considered in order for consolidation until
at most max-modules-per-gen new modules are found.


Evolve assemblies is based on deterministic crowding [9]. The following
cycle is repeated a number of times equal to the assembly population size.
Two assemblies are selected randomly to function as parents. Offspring are pro-
duced by crossover with probability pcross, and by copying otherwise. The
resulting assemblies are mutated at each element with probability pmut. Mu-
tation replaces a module by a randomly selected element of the module pop-
ulation. Next, the parents are paired up with the offspring, such that the sum
of the Hamming distances between the compact representations of the parent-
offspring pairs is minimized. Each offspring replaces its matched parent if its
fitness is equal or higher than that of its parent.


6 Test Problems


6.1 Hierarchical Test Problems


Several authors have recently studied the scalability of evolutionary algorithms
[14, 20, 10]. As part of this, difficult hierarchical test problem were designed that
yet contain structure, such as Hierarchical IF-and-only-iF (H-IFF) [18]. Prelim-
inary experiments showed H-IFF is no longer difficult when modules can be
repeated; 64-bit H-IFF was solved within a few generations, or a fraction of a
second. We therefore test performance on the analogous H-XOR problem [18],
which uses XOR instead of IF and only iF as its basic function, see Table 1. This
problem is much more difficult for variable length methods due to its reduced
potential for exploiting repetitiveness.


3 If AB occurs more than once, all occurrences are replaced.







Level H-IFF H-XOR


4
3
2
1
0


A B
0000000000000000 1111111111111111


00000000 11111111
0000 1111
00 11
0 1


A B
0110100110010110 1001011001101001


01101001 10010110
0110 1001
01 10
0 1


Table 1. Target modules for the H-IFF and H-XOR problems. The target modules at
each level are composed of those at the previous level, and are each other’s inverse. By
using XOR instead of IFF, repetition of a single type of module is no longer sufficient for
solving the problem.
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Fig. 1. Target images used in the experiments: squares, octagon, and path.


6.2 Pattern Generation


In the second test problem, the goal is to generate a picture using turtle graphics
on a toroidal grid. The primitives for this problem are the following commands:
TURN LEFT, TURN RIGHT, MOVE, and PUT PIXEL. The expressed form of an as-
sembly is a sequence of these primitives. The interpretation of a sequence of
primitives produces a bitmap, representing the concept specified by the assem-
bly. The starting point for the interpretation of a sequence is the point from
which the figure is drawn; thus, locating the target figure on the grid is not part
of the task.


The target images are 16x16 bitmaps containing simple line drawings, see
Figure 1. The two objectives are the number of black and white pixels correctly
produced. Perfect solutions for these four problems require between 70 and 160
primitive operators.


7 Experimental Results


Here, we report experiments with the DevRep algorithm. Assemblies are of
length 2 (H-XOR) or 10 (pattern generation). Other parameters are as follows:
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Fig. 2. Performance on the 1024-bit H-XOR problem (left) and the squares (right) problem.


max-modules-to-consider = 5, max-modules-per-gen = 2, interval
= 50, pcross = .9, pmut = .1. All curves are averaged over ten runs.


A genetic algorithm variant of DevRep is obtained simply by omitting the
module formation procedure. Furthermore, while in DevRep a child replaces
its parent when all of its objective values are equal or higher, for the genetic
algorithm we employ the standard Pareto-dominance criterion. We employ two
genetic algorithm methods using fixed length representations of 100 and 200
primitives, and a variable length method, initialized with size 10 assemblies.


The experimental results are as follows. On the 64-bit H-XOR problem (not
shown), all algorithms progressed substantially, while only DevRep reached the
maximum score within the given number of bit evaluations and for all runs. On
the 1024-bit version of the same problem, see figure 2, the difference in scala-
bility between the methods becomes clear; while the genetic algorithm variants
all stall at a low fitness level, DevRep is able to progress by repeatedly forming
larger modules, and subsequently searching in terms of these modules. Dev-
Rep thereby again achieves maximum performance on the problem for all runs.
Inspection of a run showed that the modules formed over time correspond pre-
cisely to the target modules for the problem, shown in table 1.


On the pattern generation tasks, fig. 2-3, all genetic algorithm variants per-
formed poorly. Apparently, the biases of the genetic algorithm do not corre-
spond well to those required for these problems, which are characterized by
long range dependencies and by sequential structure. DevRep greatly improves
over this performance. The average score substantially improved over the ge-
netic algorithm methods, and while the GA methods were unable to find a cor-
rect solution for any of the problems, DevRep found perfect solutions for all
problems, and in all runs except three of the ’path’ problem runs.
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8 Discussion


The DevRep algorithm shares several features with SEAM [20], most impor-
tantly the use of recursive module formation, leading to hierarchy, and the use
of Pareto-coevolution for module evaluation; the latter distinguishes these al-
gorithms from other methods for representation development. Compared to
SEAM, the main new contribution is the application of this evaluation princi-
ple in a variable length setting. A related difference is the use of assemblies
evolved on fitness, rather than random assemblies; in additional experiments,
fitness based selection was found to be a necessary component.


A crucial idea in defining modularity for variable length problems was to
consider modularity relative to specific subsets of all possible assemblies. This
possibility is required to address non-separable problems such as H-IFF and
H-XOR.


Search algorithms can be characterized by the types of patterns they are able
to discover. For DevRep, these include the following:


– Functional modularity By maximizing the module objectives, the algorithm
searches for modules that are functionally modular, as defined in section 2.


– Hierarchical modularity By looking for useful modules recursively, the al-
gorithm searches for modules of hierarchical structure.


– Repetitive modularity Modules can be used repeatedly, i.e. a combina-
tion of two consecutive primitives or operators can be used multiple times
within a single individual, due to the use of position-independent coding.


9 Conclusions


Problems that require long solutions pose difficulties to standard genetic algo-
rithms, due to the size of the associated search spaces. Still, if such problems







have structure, they can in principle be addressed. While several authors have
investigated the simultaneous development of modules and assemblies, prin-
cipled evaluation of such partial solutions has long been an open issue. Here,
we have derived objectives for module evaluation in variable length problems
from Pareto-coevolution.


Functional modularity is defined, and it is shown that optimization of the
objectives derived from Pareto-coevolution corresponds to optimization of func-
tional modularity. Based on this evaluation principle, the DevRep algorithm for
variable length problems is developed.


DevRep was tested on Hierarchical XOR (H-XOR) up to size 1024, and on
pattern generation tasks. It was found to develop large and ideal partial solu-
tions and greatly improve performance compared to a genetic algorithm ap-
proach. DevRep is able to exploit structure in certain large search problems, in
particular functional modularity, hierarchical modularity, and repetitive modularity.
This is achieved by recursively forming modules and searching the space of
combinations of such modules, thus forming modules in an open ended way.


We conclude that certain forms of structure in large search problems can
be exploited by gradually consolidating learned information. Here the patterns
that are detected are templates, but in principle any type of detectable pattern
can be considered. According to this view, a challenge for research into large
search problems is to identify the patterns present in problems of interest, and
to develop corresponding algorithms exploiting those patterns.
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