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Abstract. Designing an adequate fitness function requires substantial
knowledge of a problem and of features that indicate progress towards
a solution. Coevolution takes the human out of the loop by dynamically
constructing the evaluation function based on interactions between
evolving individuals. A question is to what extent such automatic
evaluation can be adequate. We define the notion of an ideal evaluation
function. It is shown that coevolution can in principle achieve ideal eval-
uation. Moreover, progress towards ideal evaluation can be measured.
This observation leads to an algorithm for coevolution. The algorithm
makes stable progress on several challenging abstract test problems.


Keywords: Coevolution, Pareto-Coevolution, Complete Evaluation
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Designing an adequate fitness function requires substantial domain knowledge
and can be a critical factor in evolution, see e.g. [9]. Often though, tests reveal-
ing information about the qualities of individuals can readily be performed. In
chess for example, absolute evaluation of strategies is extremely difficult, while
comparing individuals only requires knowledge of the rules of the game. If indi-
viduals can be evaluated based on tests, coevolution can be used to circumvent
the problem of defining a fitness function.


Coevolution has already produced a number of promising results [10,19,12,
17]. However, there are various ways in which evaluation in coevolution can
become inaccurate [21,2,16]. As a step towards accurate evaluation, Juillé defines
a domain-specific ideal trainer [11]. Rosin provides an automatic mechanism for
accurate evaluation, but the approach is based on a single-objective perspective,
and likely to stall for problems with multiple underlying objectives. Pareto-
coevolution [6,20] uses the outcomes of a learner against coevolving evaluators
(tests) as objectives in the sense of Evolutionary Multi-Objective Optimization.


By combining Rosin’s complete set of tests with Ficici’s important notion
of distinctions [7], we arrive at the concept of a Complete Evaluation Set. The
complete evaluation set was first described in [3], and detects all differences
between learners relevant to selection.
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We prove that given a complete evaluation set as evaluators, Pareto-
coevolution leads to ideal evaluation, i.e. evaluation according to all underlying
objectives of a problem. Using order theory, Bucci has defined a set of maximally
informative evaluators [1]. While this set also makes all distinctions necessary
for learner selection, it is different, as the complete evaluation set is a maximally
informative set of evaluators. By virtue of this, the complete evaluation set has
the property that its required size is bounded and small.


The complete evaluation set provides a practical way for coevolution meth-
ods to approximate ideal evaluation. An algorithm based on this principle is
described, and found to achieve stable progress on a number of test problems
that could not be addressed by standard coevolution methods used for compar-
ison. This paper summarizes the results described in our technical report [3]. A
more extensive account of this work is to appear in [4].


1 Evaluation in Coevolution


We consider problems where multiple objectives may underly performance. This
includes as a special case single fitness value problems. The theoretical ideal eval-
uation function specifies which individuals would be preferred over which other
individuals if the underlying objectives would be available. We demonstrate that
using the outcomes of interactions between coevolving individuals as objectives,
it is possible to construct an evaluation function that is precisely equivalent to
the ideal evaluation function.


1.1 An Ideal Evaluation Function


The problem of evaluating individuals according to multiple objectives is studied
in Evolutionary Multi-Objective Optimization (EMOO), see e.g. [8,5]. We follow
EMOO in using the Pareto-dominance relation to compare individuals:


Definition 1 (Pareto-dominance). An individual a dominates another indi-
vidual b with respect to a set of objectives O if:


dom
O


(a, b) ⇐⇒ ∀i : O(a, i) ≥ O(b, i) ∧ ∃i : O(a, i) > O(b, i) (1)


where O(x, i) returns the value of the ith objective of x, 1 ≤ i ≤ n, and n is the
number of objectives contained in O.


To obtain an evaluation function Fideal that determines for any pair of individuals
a and b whether a is to be preferred over b, we can directly employ the Pareto-
dominance relation based on the (unknown) underlying objectives U :


Fideal(a, b) = dom
U


(a, b) (2)


U(x, i) = xi (3)


In general, the solution to a multi-objective problem is a tradeoff front of in-
dividuals that achieve the different objectives to different degrees. If a single
optimum exists, as in problems with scalar fitness functions, this individual is
also the solution of the corresponding EMOO problem.
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1.2 Coevolution: Interactions as a Basis for Evaluation


The difficulty of evaluation in coevolution is that selection does not have access
to the ideal evaluation function. Instead, selection decisions must be based on
the outcomes of interactions between individuals. We will demonstrate that these
interactions can provide sufficient information for ideal evaluation.


We distinguish between learners, and evaluators. Learners are to address the
problem at hand. The aim of the evaluators is to distinguish between learners.
The set of all possible learners is denoted as L, and the set of all possible eval-
uators as E. Particular sets of learners and evaluators are denoted as L and
E.


All interactions are assumed to be pairwise. An interaction is a function G :
LxE → O that accepts a learner and an evaluator. It returns an outcome for the
learner from some ordered set of values O, e.g. real numbers or game outcomes.
An interaction G(a, e) may be thought of as a two-player game between a and
e, or as a test or test-case that e poses to a. The interaction between a and e
reveals some information about a’s underlying objectives, while it is unknown
what this information is, or what the underlying objectives are.


Clearly, in order for the interaction function G to be useful in evaluating in-
dividuals, it must bear some relation to the underlying objectives that determine
the quality of individuals. Specifically, we require that any increase in an under-
lying objective of an individual a must be reflected in an increased outcome of
its interaction with some player b. Conversely, the information contained in G
should not provide misleading information by indicating an improvement when
there is none.


Formally, the interaction requirement specifies that for any pair of learners
a, b ∈ L:


∃i : ai > bi ⇐⇒ ∃e ∈ E : G(a, e) > G(b, e) (4)


Each learner is evaluated based on its outcomes against the current set of
evaluators. Following Pareto-coevolution [6,20], these outcomes are treated as
objectives. This results in the following evaluation function Fcoev for learners:


Fcoev = dom
OE


G


(a, b) (5)


where a, b ∈ L are learners, and the kth objective of a learner Li ∈ L is the
outcome of its interaction G with the kth evaluator Ek ∈ E:


OE
G(Li, k) = G(Li, Ek) (6)


2 Principled Evaluation in Coevolution


An evaluator e ∈ E distinguishes between two learners a, b ∈ L if a’s outcome
against e is higher than b’s outcome:


dist(e, a, b) ⇐⇒ G(a, e) > G(b, e) (7)
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We define a Complete Evaluation Set to be a set of evaluators E that make all
distinctions that can be made between the learners in L:


Definition 2 (Complete Evaluation Set). An evaluation set E ⊆ E is com-
plete for an interaction function G and a set of learners L if and only if:


∀a, b ∈ L : [∃e ∈ E : G(a, e) > G(b, e) =⇒ ∃e′ ∈ E : G(a, e′) > G(b, e′)] (8)


We will write E∗
L to denote an evaluation set that satisfies this property for a set


of learners L. The theoretical result of this paper is that the use of a complete
evaluation set E∗


L as objectives for a set of learners L renders the coevolutionary
evaluation function equivalent to the ideal evaluation function:


Theorem 1 (Equivalence with the ideal evaluation function). Let
Fcoev(a, b) = dom


O
E∗


L
G


(a, b) be a coevolutionary evaluation function for L based on


a complete evaluation set E∗
L. Let Fideal(a, b) = dom


U
(a, b) be the ideal evalu-


ation function for L, based on the underlying objectives U . Furthermore, let
G satisfy the interaction requirement for U . Then for any pair of learners
a, b ∈ L : Fcoev(a, b) = Fideal(a, b) .


A proof is given in appendix A. The finding implies that by treating the outcomes
of learners against evaluators as objectives, ideal evaluation can in principle be
achieved. Thus, it may be seen as a motivation for Pareto-Coevolution.


2.1 Approximating the Complete Evaluation Set


We now consider how algorithms may approximate the complete evaluation set.
This is surprisingly tractable, since the number of potential distinctions is the
square of the number of learners. Thus, we can treat all potential distinctions
between learners as objectives, resulting in a setup where evaluators strive to
find all possible distinctions between learners:


O(Ek, nl · i + j) =
{


1 if G(Li, Ek) > G(Lj , Ek)
0 otherwise (9)


where O(Ek, n) is the nth objective of an evaluator Ek ∈ E, Li is a learner,
nl = |L| is the number of learners and G(l, e) is the interaction function accept-
ing a learner and an evaluator. A convenient representation of the objectives of
evaluators is as the entries in a square matrix, where the columns and rows rep-
resent the learners, and each entry represents a distinction between two learners,
see figure 1 and eq. 7.


3 An Algorithm for Pareto-Coevolution


The above idea can be translated into an outline for algorithms by combining
a current population of learners and a set of offspring into a single set of learn-
ers. To obtain an evaluation set for this set of learners, we invoke a secondary
evolutionary process. This leads to an outline for algorithms, see figure 2.
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L1       0 1 0


L2 0 0 1


L3 1 1 0


E1 E2 E3G(Li,Ek)


G(L2,E3)>G(L3,E3)


Resulting distinctions


dist(Li,Lj)


0 1 0


1 0 1


1 1 0


L1


L2


L3


L1 L2 L3


Interaction outcomes


Fig. 1. Matrix representation of the possible distinctions that can be made between a
set of learners (example). A distinction between learners Li and Lj can be made (1) if
an evaluator Ek exists such that the outcome of Li against Ek exceeds that of Lj .


Convergence to ideal evaluation can be guaranteed in the limit by generating
every possible evaluator with non-zero probability, and collecting any evaluator
making a new distinction; for n learners, this leads to a set of at most n2 evalua-
tors. In practice, we iterate the inner loop for a single step only, so as to balance
the computational effort spent on evolving learners and evaluators.


Concerning learner selection, preliminary experiments led to the finding that
non-dominance is not strict enough as a selection criterion for learners and can
result in regress. Therefore, a learner may replace an existing individual only if
it dominates that individual. This simple technique is sufficient when a global
optimum exists. For an algorithm also striving towards a balanced distribution
of individuals over the tradeoff front, see [14].


1. Lpop:=random population()
2. Epop:=random population()
3. while ¬ performance-criterion
4. Ltot := Lpop ∪ generate(Lpop)
5. while ¬ distinctions-criterion
6. Etot := Epop ∪ generate(Epop)
7. ∀i, k : G[i, k] := G(Li, Ek)
8. ∀k, i, j : d[k, i, j] := (G[i, k] >G[j, k])
9. evaluate(Etot,d)


10. Epop := select (Etot)
11. end
12. evaluate(Ltot,G)
13. Lpop := select (Ltot)
14. end


Fig. 2. Outline for coevolution algorithms that approximate the ideal evaluation func-
tion.
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The strict selection consideration also applies to evaluator selection. In addi-
tion, diverse evaluators must be maintained, representing all underlying objec-
tives. Therefore, an evaluator will be replaced by its offspring only, and only if
this offspring dominates it. This is similar to the deterministic crowding method
for diversity maintenance, see [15]. We call such individuals Pareto-hillclimbers;
the PAES algorithm [13] is another example of a Pareto-hillclimber.


We have arrived at a setup where, given a population of learners L and a
population of evaluators E, new learners are evaluated based on the evaluators
in E and can replace any learner they dominate, while evaluators are Pareto-
hillclimbers that use the distinctions between the learners in L as their objec-
tives. This method will be called delphi, which stands for Dominance-based
Evaluation of Learners on Pareto-Hillclimbing Individuals.


4 Test Problems and Experimental Setup


We will now investigate the algorithm derived from the ideal evaluation principle
in experiments. The test problems employed are variants of the Numbers Game
[21]. Individuals are vectors of real valued variables. The underlying objectives
for the problems correspond precisely to these variables. Hence, the aim should
be to maximize each of the individual’s variables. However, as we aim to study
coevolution, the selection mechanism may not use knowledge of the underlying
objectives, but is based on the outcomes of interactions between individuals. The
difficulty of the task is determined among other factors by the information the
interaction function G provides about the underlying objectives of an individual.


The purpose of the test problems is to test to what extent coevolution algo-
rithms are able to provide accurate evaluation, i.e. evaluation according to all
underlying objectives. To this end, the problems should make accurate evalua-
tion difficult. This is achieved by making it likely for evaluators to represent only
a subset of the dimensions or objectives in the problem. When this occurs, learn-
ers can only progress on a subset of the underlying objectives, a phenomenon
called over-specialization or focusing [21]. In this case the minimum value of
learners will not increase further. By using the minimum value of individuals
as a performance measure, we can detect whether progress is being made on all
underlying objectives.


The first test-problem is called compare-on-all. In this problem, the
learner and the evaluator are compared based on all of the evaluator’s dimen-
sions. The outcome of the interaction function for this problem is positive (1) if
and only if the learner’s values are all at least as high as those of its evaluator:


Gall(a, e) =
{


1 if ∀i : ai ≥ ei


−1 otherwise (10)


where a is a learner, e is an evaluator, and xi denotes the value of individual x
in dimension i. In the compare-on-one problem, the learner and the evalua-
tor are compared based on only one of the evaluator’s dimensions, namely the
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The compare-on-one game


Fig. 3. The grey areas show all evaluators that are solved by the learner in the figure.
Left: the compare-on-all game. A learner receives a positive outcome if it is equal
or greater than the evaluator in every dimension. Right: the compare-on-one game.
A learner receives a positive outcome if it is equal or greater in the evaluator’s highest
dimension.


evaluator’s dimension with the highest value. The games are illustrated in figure
3.


m = arg max
i


ei (11)


Gone(a, e) =
{


1 if am ≥ em


−1 otherwise (12)


While evaluators in the compare-on-all game can compare learners based
on all of their dimensions, this is not possible in the compare-on-one game.
Therefore, evaluators in different regions of the space must be maintained. This
results in a strong risk of maintaining evaluators for only some of the underlying
objectives, as desired.


5 Experimental Results


The setup is as follows. Initial values in each dimension are chosen uniformly from
[0, 0.05]. A new generation of individuals is created using mutation. Mutation
adds a value chosen uniformly from [−d − b, d − b] to a dimension i, where
d = 0.1 is the mutation distance and b = 0.05 (where used) is the mutation
bias. Mutation is applied to two randomly chosen dimensions. Thus, an increase
in one dimension will often be accompanied by a decrease in another, and an
improved interaction outcome does not imply improvement on all objectives. The
size of learner and evaluator populations and of new generations is 50, resulting
in learner and evaluator sets of size 100. All experiments (except the trajectory
graph) are averaged over 100 runs.


We performed experiments with the compare-on-all and compare-on-
one game in 2-dimensional and 5-dimensional form, with and without mutation
bias. Due to space limits, we present results for the easiest and most difficult
variants in the problem set: 2-dimensional compare-on-all without mutation
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Fig. 4. Left: Performance of delphi and a number of competitive methods on the
2-dimensional compare-on-all problem. All methods achieve some progress on this
problem. Right: delphi and comparison methods on 5-dimensional compare-on-one
with mutation bias. Only the methods employing Pareto-Hillclimbing still achieve sus-
tained progress; the other methods overspecialize, and neglect one or more objectives.


bias and 5-dimensional compare-on-one with mutation bias. For the latter
problem, 86% of the mutations that produce an increase in some dimension
cause a (typically larger) decrease in some other dimension.


We first compare delphi to several competitive coevolution methods. In
avg E, avg L, the fitness of learners is the average score against evaluators,
vice versa. Individuals are selected into the next population with a fitness-
proportional probability. prob E, prob L views the outcomes as objectives,
and employs a standard EMOO method [8] sorting individuals based on the
number of individuals they are dominated by and using the normalized rank as
the probability of selection. A stricter variant half E, half L selects the best
half of the population. Still more strict is a method replacing an existing indi-
vidual by any new individual that dominates it (dom E, dom L). Finally, we
require that the replacer must be the offspring of the replacee(P-HC E, P-HC
L), so that both learners and evaluators are Pareto-hillclimbers.


Figure 4 shows the average minimum value for the two-dimensional
compare-on-all problem. All competitive methods are able to achieve some
progress. delphi outperforms all of these, and makes remarkably constant
progress.


To test whether choices made in developing delphi are necessary, we perform
several control experiments. This time, the much more difficult compare-on-
one problem is used with five dimensions and with mutation bias. All methods
use the outcomes of interactions with evaluators as the objectives for learners,
and use the distinctions between learners as objectives for evaluators. dom E,
spread dist L attempts to make evaluators spread over the possible distinc-
tions. The fitness contribution for making a distinction is shared with other
evaluators making the distinction. This competitive fitness sharing [18] method
was the most successful of several methods used in [7] when applied to distinc-
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Fig. 5. Trajectories in version of the compare-on-one problem where the underlying
objectives have been rotated 30 degrees anti-clockwise. The evaluators still identify the
underlying dimensions when these do not correspond to the variables of the problem.


tions, as it is here. P-HC E, P-HC L tests whether learners may also benefit
from the parent criterion; both learners and evaluators are Pareto-hillclimbers.
To test if the parent criterion is necessary in evaluator selection, dom E, dom
dist L uses dominance for both learner and evaluator selection.


For this difficult test problem, only methods employing Pareto-Hillclimbing
for the evaluation of evaluators achieve sustained progress on all objectives, see
fig. 4. The comparison methods are unable to do so, and even deteriorate due to
overspecialization, i.e. values are not maintained or improved for all objectives
simultaneously. In summary, only delphi displays consistent and considerable
progress across all test problems.


Finally, we investigate whether evaluators identify the underlying objectives
when these have no direct correspondence to the variables of the problem. To
test this, individuals in compare-on-one are projected onto a rotated coor-
dinate system. The variables and operators of variation remain unchanged. As
the trajectories in figure 5 show, the evaluators approximately identify the new
underlying objectives of the problem, while learners progress evenly in both of
the extracted underlying dimensions. Thus, the identification of the underlying
objectives was not merely due to a correspondence between the variables and
objectives of the problem.


6 Conclusions


Coevolution in principle offers a potential for learning in problems where no
adequate evaluation function is known. We began by considering what the ideal
evaluation function would be if one would have access to the underlying objec-
tives of a problem. Since these underlying objectives are not available, actual
evaluation in coevolution must be based on interactions between individuals.
The theoretical result of the article is that in the limit of finding all possible
distinctions, this evaluation becomes equal to the ideal evaluation function.
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The result immediately suggests a practical operational criterion for approx-
imating the ideal evaluation function in the form of Ficici’s distinctions [7].
We have developed an algorithm based on this principle called delphi. The al-
gorithm evaluates learners by using coevolving evaluators as objectives, while
these evaluators are evaluated by using their ability to make distinctions be-
tween learners as objectives. Strict criteria for learner and evaluator selection
are found to be instrumental in delphi’s ability to achieve sustained progress.


delphi was found to substantially outperform comparison methods on sev-
eral abstract test problems of varying difficulty. Experimental evidence was pre-
sented indicating that the evaluators identify the underlying objectives of the
problem. While the current article has explored one particular algorithm, the
idea of approximating the ideal evaluation function can be taken up in many
different ways, and provides a principled approach to evaluation in coevolution.
We therefore hope that this work may stimulate the development of new, reliable
algorithms for coevolution.
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Appendix A: Proof of the Equivalence


Proof (Equivalence with the ideal evaluation function). To prove the equivalence
theorem, we show that given the interaction requirement for G, the coevolu-
tionary evaluation function Fcoev equals the ideal evaluation function Fideal:


Fcoev(a, b) ⇐⇒ Fideal(a, b) (13)
dom
O


E∗
L


G


(a, b) ⇐⇒ dom
O


(a, b) (by (5) and (2)) (14)


[∀e ∈ E∗
L : G(a, e) ≥ G(b, e) ∧ ∃e ∈ E∗


L : G(a, e) > G(b, e)] (15)
⇐⇒ [∀i : ai ≥ bi ∧ ∃i : ai > bi] (by (6) and (3)) (16)


Assume: ∀e ∈ E∗
L : G(a, e) ≥ G(b, e) ∧ ∃e ∈ E∗


L : G(a, e) > G(b, e) (17)
Assume: ∃i : bi > ai (18)


⇒ ∃e ∈ E : G(b, e) > G(a, e) (by (4)) (19)
⇒ ∃e ∈ E∗


L : G(b, e) > G(a, e) (by (8)) (20)
This contradicts (17). Therefore (18) cannot hold, so: (21)
�i : bi > ai (22)


⇒ ∀i : ai ≥ bi (23)
Furthermore: ∃i : ai > bi (by (17, right) and (4)) (24)


Combining (23) and (24) proves the implication. To show the reverse implication:


Assume: ∀i : ai ≥ bi ∧ ∃i : ai > bi (25)
Assume: ∃e ∈ E : G(b, e) > G(a, e) (26)
∃i : bi > ai (by (4)) (27)
This contradicts (25). Therefore (26) cannot hold, so: (28)
�e ∈ E : G(b, e) > G(a, e) (29)


⇒ ∀e ∈ E : G(a, e) ≥ G(b, e) (30)
And since E∗


L is a subset of E: (31)
⇒ ∀e ∈ E∗


L : G(a, e) ≥ G(b, e) (32)
∃e ∈ E : G(a, e) > G(b, e) (by (25, right) and (4)) (33)
∃e ∈ E∗


L : G(a, e) > G(b, e) (by (33) and (8)) (34)


Combining (32) and (34) proves the reverse implication, and completes the
proof.
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