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Abstract
In many problems of interest, performance can be evaluated using tests, such as ex-
amples in concept learning, test points in function approximation, and opponents in
game-playing. Evaluation on all tests is often infeasible. Identification of an accurate
evaluation or fitness function is a difficult problem in itself, and approximations are
likely to introduce human biases into the search process. Coevolution evolves the set of
tests used for evaluation, but has so far often led to inaccurate evaluation.

We show that for any set of learners, a Complete Evaluation Set can be determined that
provides ideal evaluation as specified by Evolutionary Multi-Objective Optimization.
This provides a principled approach to evaluation in coevolution, and thereby brings
automatic ideal evaluation within reach. The Complete Evaluation Set is of manageable
size, and progress towards it can be accurately measured. Based on this observation,
an algorithm named DELPHI is developed. The algorithm is tested on problems likely
to permit progress on only a subset of the underlying objectives. Where all compari-
son methods result in overspecialization, the proposed method and a variant achieve
sustained progress in all underlying objectives. These findings demonstrate that ideal
evaluation may be approximated by practical algorithms, and that accurate evaluation
for test-based problems is possible even when the underlying objectives of a problem
are unknown.

Keywords
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1 Introduction

1.1 Evaluation

For some of the most interesting problems that evolutionary computation might ad-
dress, tests whose outcomes reflect some of the qualities of individuals can readily
be performed, while the precise underlying objectives reflected by such tests are un-
known. Examples include concept learning, function approximation, game-playing,
as well as open-ended domains such as the evolution of complex behavior. Human
designed fitness functions for such test-based problems will typically be inaccurate, and
thereby limit the potential of evolutionary computation to address these problems. Se-
lecting a fixed representative set of tests is often infeasible due to the large number
of possible tests. An important question therefore is: how may accurate evaluation for
test-based problems be achieved?

Coevolution (Barricelli, 1962, 1963; Axelrod, 1987; Hillis, 1990) evaluates individu-
als on an evolving set of tests, and may thereby in principle provide accurate evaluation.
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Coevolution has already led to several successful results (Hillis, 1990; Sims, 1994; Juillé
& Pollack, 1996; Pollack & Blair, 1998). So far however, evaluation in coevolution has
often been far from accurate, as indicated by problems such as over-specialization, Red
Queen dynamics, and disengagement (Cliff & Miller, 1995; Watson & Pollack, 2001). In
this article, we investigate how coevolution can be used to achieve accurate evaluation.
This significant aim is approached by viewing test-based problems from the perspec-
tive of Evolutionary Multi-Objective Optimization (EMOO) (Deb, 2001), and consider-
ing what tests are required to determine who dominates who in a given population of
learners.

To illustrate the difficulty of accurate evaluation, we consider the problem of se-
lecting a move in a chess game. If the optimal Minimax (Von Neumann, 1928) values
for this problem were available, it would be sufficient to compare the values of the few
tens of board positions reachable via one of the currently available moves. This is in
sharp contrast with the actual situation, where value estimates of the board evaluation
function must be refined by means of extensive look-ahead search.1 This substantial
amount of required additional computation suggests that board evaluation functions
used in current machine chess must be quite far removed from the optimal (Minimax)
values.

In test-based problems, the quality of an individual is determined by its perfor-
mance on a number of tests. Typically, the set of all possible tests for problems of
this kind is very large, making it infeasible to evaluate individuals on all tests. As the
above example illustrates, the definition of an accurate domain-specific fitness func-
tion is equally problematic, as an accurate specification of the quality of all possible
individuals requires highly detailed knowledge of a problem. Moreover, the use of
a scalar fitness function presumes that individuals can be ranked on a single dimen-
sion of performance. Such rankings cannot yield complete information when quality is
governed by multiple objectives.

1.2 Underlying Objectives

A useful notion for test-based problems is that of the underlying objectives of a problem.
The term objective as used in Evolutionary Multi-Objective Optimization refers to an
indicator of quality returning an element from an ordered set of scalar values, such as
a real number. For any test-based problem, a set of underlying objectives exists such that
knowledge of the objective values of an individual is sufficient to determine the out-
comes of all possible tests. The existence of a set of underlying objectives is guaranteed,
as the set of all possible tests itself satisfies this property.

The notion of underlying objectives becomes more meaningful however when a
limited set of objectives with this property can be identified; if a small set of underlying
objectives exists, it represents important information about the structure of a problem.
The smallest possible size for the set of underlying objectives can be viewed as the in-
herent dimensionality of a problem, and the nature of such a minimal set of underlying
objectives may provide important information about the structure of a problem. Re-
cent work by Bucci and Pollack (2003a, 2003b) provides a formal discussion of closely
related notions based on partial order decomposition.

Samuel (1959) notes that terms for the evaluation polynomial of his learning check-
ers player should ideally be generated by the learning program itself, and mentions the
idea of an orthogonal set of terms to be used in this evaluation polynomial. This idea
is closely related to the notion of underlying objectives. When viewed in this way, it

1State-of-the-art chess programs currently consider from 2 million up to 200 million positions per second.
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appears that many apparently single-objective problems may in fact be multi-objective
problems. If this is so, then many problems currently addressed using one-dimensional
fitness functions may benefit from taking a multi-objective approach. Another indi-
cation in this direction is given by recent research in which modeling single-objective
problems as multi-objective problems is proposed as a technique to improve search per-
formance (Knowles, Watson, & Corne, 2001). Here, it will be shown that coevolution
offers a means to address the multi-objective problem that underlies a given test-based
problem.

1.3 Coevolution

In order to discuss coevolution, some terminology will first be introduced. We will use
the term learner for individuals whose performance we wish to optimize, and evaluator
for tests that can be applied to learners. Learner and evaluator are roles individuals
take on in the context of an algorithm, and a single individual may take on both roles, as
occurs in self-play or single population coevolution. The learner and the evaluator can
be of similar nature, as in two-player games, or the evaluator may be a test case, such
as a test sequence for a sorting network or a test point in function approximation. The
test represented by an evaluator E is applied to a learner A by means of an interaction
function G(A, E) which returns a scalar outcome, such as win/lose or a real number. We
consider any setup where individuals are evaluated based on interactions with a (co-
)evolving set of evaluators as coevolution. Most if not all instances of coevolution may
be fruitfully viewed in this way if the notion of test is interpreted broadly as a procedure
that reveals information about an individual. In coevolution problems, changes to the
set of evaluators can affect the apparent ranking of the learners.

Samuel’s checkers player (1959) repeatedly replaces the evaluator with the learner,
and is the first known instance of what may be called co-learning, distinguished from
coevolution by its use of directed changes. An early instance of coevolution in a com-
puter simulation is by Barricelli (1962). Attention for coevolution only increased after
the appearance of several later papers (Axelrod, 1987; Miller, 1989, 1996; Hillis, 1990;
Koza, 1992; Lindgren, 1992; Kauffman & Johnsen, 1992a). Of these, the work by Hillis
marked the first time a complex problem was addressed by coevolution, and was prob-
ably most influential in spurring further research into coevolution.

Coevolution has meanwhile led to a number of tantalizing results in domains in-
cluding the evolution of complex behavior (Sims, 1994), pursuit and evasion (Koza,
1991; Reynolds, 1994; Miller & Cliff, 1994; Ficici & Pollack, 1998; Cliff & Miller, 1996),
robot behavior (Floreano, Nolfi, & Mondada, 1998; Østergaard & Lund, 2003), explo-
ration by identifying predictable novelty (Schmidhuber, 1999), communication devel-
opment (Werner & Dyer, 1991; Ficici & Pollack, 1998), function approximation and
classification (Pagie & Hogeweg, 1998; Juillé & Pollack, 1996; Paredis, 1996), density
classification using cellular automata (Ficici & Pollack, 2001b; Juillé & Pollack, 1998;
Pagie & Hogeweg, 2000; Paredis, 1997), job shop scheduling (Husbands & Mill, 1991),
backgammon (Pollack & Blair, 1998), Tron (Funes, 2001), and Go (Rosin, 1997; Lubberts
& Miikkulainen, 2001).

A factor that may explain successful results and interest in coevolution is the
avoidance of biases resulting from the use of a human-designed fitness function; the
dynamic evaluation in coevolution may in principle lead to ’arms-races’ and open-
ended evolution (Sims, 1994; Ficici & Pollack, 1998; Nolfi & Floreano, 1998; Stanley
& Miikkulainen, 2002). Other factors proposed to explain positive results with coevo-
lution include the ability to escape local optima due to the changing set of evaluators
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(Hillis, 1990; Pagie & Hogeweg, 1998) and the use of resource-sharing methods (Werfel,
Mitchell, & Crutchfield, 2000).

A particularly interesting application of coevolution is the idea of evolving mod-
ules, evaluated separately based on their ability to contribute to a larger whole. This
results in dependencies between modules and complete individuals. Such setups are
thus forms of coevolution, and many examples of this are available (Angeline & Pol-
lack, 1994; Moriarty & Miikkulainen, 1998; Gomez & Miikkulainen, 1999; Potter & De
Jong, 2000; Rosca & Ballard, 1996; Ahluwalia & Bull, 2001; Watson & Pollack, 2003; De
Jong, 2003).

1.4 Issues in Coevolution

In spite of its successes and promise, coevolution has not yet developed into a reliable
problem solving technique. Problems that have been reported include disengagement,
over-specialization, and intransitivity.

Disengagement means that for one or more objectives, the performance levels rep-
resented by evaluators are outside the range of learner performance. This may occur
when evaluators testing on some underlying objective disappear from the evaluator
population, or pose too high or too low a threshold to distinguish between learners.
Disengagement leads to a loss of gradient (Watson & Pollack, 2001). As a result, learners
cannot be evaluated according to all underlying objectives.

Disengagement will generally lead to over-specialization. Over-specialization,
also known as focusing (Watson & Pollack, 2001), refers to situations where learners
progress on some of the underlying objectives, while not progressing on the remaining
objectives.

Intransitivity signifies that the preference relation between learners is not transi-
tive.2 For example, first B appears preferable to A, then C appears preferable to B, but
next A appears preferable to C. For a fixed set of evaluators, intransitive relations be-
tween learners cannot occur. This can be seen as follows: for any evaluator E, the inter-
action outcomes G(A, E), G(B, E) and G(C, E) are fixed, scalar values (e.g. real num-
bers), and no assignment of values exists for which simultaneously B > A, C > B, and
A > C. Similarly, when multiple evaluators are used, a fixed set of evaluators leads to
fixed vectors of outcomes, and can therefore not lead to intransitive relationships. Ac-
cordingly, intransitivity is the result of a changing set of evaluators, or more specifically
the loss of evaluators for some of the underlying objectives.

A changing set of evaluators, whether related to intransitivity or not, can lead evo-
lution to test on only a subset of the underlying objectives, causing learners to focus on
different objectives over time. Since the performance in untested objectives is likely to
degrade, learners may continuously change without making overall progress, possibly
resulting in cyclic behavior. This phenomenon is known as Red Queen dynamics (Cliff
& Miller, 1995; Pagie & Hogeweg, 2000) or mediocre stable states (Angeline & Pollack,
1993).

In summary, the above observations point to the need to perform accurate evalua-
tion. A lack of evaluators for some underlying objective is a form of inaccurate evalua-
tion. Accurate evaluation thus requires evaluating learners on all underlying objectives.
How this may be achieved is the central question of this article. We will now discuss
previous approaches aimed at improving the accuracy of evaluation in coevolution.

2A relation R is transitive if and only if aRb ∧ bRc =⇒ aRc.
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1.5 Towards Accurate Evaluation

Hillis (1990) used evaluators that consisted of input sequences and were called par-
asites. The parasites were used to test sorting networks on different aspects of their
performance. Juillé (1999) describes an ideal trainer (Epstein, 1994) as an evaluation
function that exposes learners to gradient, and presents problems of increasing diffi-
culty. The ideal trainer is described in an abstract manner, and its instantiation requires
a domain-specific function evaluating the difficulty of tests.

As a step towards automatic ideal evaluation, Rosin (1997) introduced the notion of
a teaching set. For any imperfect learner from a set of learners, the teaching set contains
a teacher defeating this learner, thus detecting any weaknesses in the learners. In the
related covering competitive algorithm (Rosin, 1997), a new strategy must defeat all previ-
ous opposition. For problems with multiple underlying objectives, most improvements
to the population do not meet this strict criterion, and the criterion is thus overly strict
for problems with this property.

Evolutionary Multi-Objective Optimization (EMOO) offers a principled way to
compare individuals in the presence of trade-offs, based on the criterion of Pareto-
dominance. The earliest reference connecting coevolution and multi-objective opti-
mization problems of which we are aware is in work by Husbands (1994). Juillé (1999)
uses the term objectives to refer to test cases.

The specific and important idea of viewing the outcomes of a learner’s interac-
tions as objectives in the sense employed by EMOO is called Pareto-Coevolution (Ficici
& Pollack, 2000; Watson & Pollack, 2000). Since its recent inception, Pareto-Coevolution
has been used in several papers (Ficici & Pollack, 2001a, 2001b; Noble & Watson, 2001;
Watson & Pollack, 2003; De Jong, 2003). The upcoming of the Pareto-Coevolution
paradigm is another indication that problems that have been viewed as having one
objective or fitness function may often be multi-objective problems, and thus benefit
from being treated as such.

Apart from the multi-objective perspective of Pareto-Coevolution employed here,
formalisms employed in the study of coevolution include evolutionary game theory
(Maynard Smith, 1982; Ficici, Melnik, & Pollack, 2000; Ficici & Pollack, 2000, 2001a),
order theory (Bucci & Pollack, 2002, 2003b), Markov models (Bull, 2001; Ficici & Pol-
lack, 2000), and NK-landscapes (Olsson, 2001; Kauffman & Johnsen, 1992b). Finally, a
crucial notion introduced by Ficici (2001b) is that of distinctions. Distinctions take into
account the detectable strengths of learners in addition to their weaknesses. By making
distinctions between learners, evaluators can provide a gradient for learning.

1.6 Ideal Evaluation

We will define ideal evaluation as evaluation according to all underlying objectives,
and study the question of whether coevolution can evaluate according to this ideal
evaluation function. We combine Ficici’s notion of distinctions (2001b) with Rosin’s
idea of a complete set of tests to arrive at the concept of a Complete Evaluation Set. The
resulting set of evaluators is sufficient to detect any differences between learners that
may be relevant to selection under the EMOO framework. We show that by using
distinctions as objectives for evaluators, automatic construction of the ideal evaluation
function can in principle be achieved.

The Complete Evaluation Set, detecting all differences between learners relevant
to learner selection, was first described in a technical report (De Jong & Pollack, 2002).3

3This technical report is an earlier version of the present article.
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Other work from our lab, developed in parallel with the approach presented here, uses
the mathematical formalism of pre-orders to model concepts from Pareto-Coevolution
(Bucci & Pollack, 2002). Within this framework, a concept related to the Complete
Evaluation Set defined here has been described; the set of maximally informative tests or
evaluators (Bucci & Pollack, 2002, 2003b) also makes all distinctions relevant to learner
selection. While closely related in concept, the two sets are distinct; the Complete Eval-
uation Set that will be used here is a maximally informative set of evaluators. This pro-
vides the property that its required size is bounded and small, which is needed for the
approximation of the set by practical coevolutionary algorithms.

We employ the definition of the Complete Evaluation Set to show that ideal eval-
uation can be approximated by practical algorithms, and develop one such algorithm.
The feasibility of the approach is demonstrated in experiments including comparisons
with a range of other coevolutionary methods. On several abstract test problems, the
proposed method is found to lead to stable progress on all underlying objectives, while
other methods over-specialize and progress on only a subset of the underlying objec-
tives. The experiments suggest that methods for coevolution have so far not evaluated
according to all underlying objectives; addressing this issue may be vital in developing
coevolution into a generally applicable problem solving technique.

1.7 Organization

This article is organized as follows. Section 2 defines an ideal evaluation function, and
describes our model of coevolutionary methods, in which the evaluation of individuals
is based on interactions with other evolving individuals. Section 3 shows how the ideal
evaluation function can in principle be constructed from these interactions; the proof is
given in appendix A. In Section 4, a class of algorithms is described where this principle
is employed to approximate the ideal evaluation function. In Section 5, an experimental
setup for testing algorithms of this kind is described. This setup is used in Section
6 to develop a specific algorithm for Pareto-Coevolution by combining the principle
for evaluation with heuristics for search. Experimental results with the algorithm are
presented in Section 7. Section 8 discusses the method in the light of known issues in
coevolution, and Section 9 concludes the article. Following the conclusions section, a
list of symbols and the URL for a MATLABr implementation of the algorithm are
provided.

2 Evaluation in Coevolution

In this section, we first describe what the ideal evaluation function for a problem would
be when multiple objectives underlie performance. Coevolutionary algorithms do not
have access to these underlying objectives, but must use the outcomes of interactions
between evolving individuals to provide an evaluation function. We will demonstrate
that based on this information, it is possible to construct an evaluation function that is
precisely equivalent to the ideal evaluation function.

2.1 An Ideal Evaluation Function

We are concerned with test-based problems, i.e. problems where individuals are eval-
uated using tests. Individuals in such problems can be characterized by a number of
underlying objectives, each of which represents some aspect of the quality of the indi-
vidual. This description includes as a special case the situation where individuals are
characterized by a single fitness value.
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Evaluation functions for single-fitness problems calculate a single value that ex-
presses the quality of an individual, which, after scaling, leads to a fitness value that in-
dicates the probability of selection. When multiple underlying objectives are involved,
the relative strengths and weaknesses of individuals cannot be expressed by a single
value unless strong restrictions are imposed, such as the assumption that quality is
a weighted combination of the objectives. To avoid such assumptions, we may em-
ploy an evaluation function Fideal that determines for any pair of individuals a and b

whether a is to be preferred over b or not.
An objective can be any function such that the quality of an individual increases

monotonically in the objective, all other objectives being equal. Note that no specific
relation is assumed between the underlying objectives and the genetic representation
(genotype) of individuals; the approach is thus applicable to any problem in which
performance can be evaluated based on tests. Furthermore, without loss of generality,
we may assume that all objectives are to be maximized, as opposed to minimized.

The most general evaluation function makes no assumptions other than those
made so far. The preferences following from these assumptions are that when an indi-
vidual a has at least the same value as an individual b for every objective and higher
values for one or more objectives, then a is preferred over b. Other than this, no pref-
erences are specified; if a has a lower value for any objective, it will not be preferred
over b. Thus, whenever a is preferable to b regarding some objective but b is preferable
regarding others, the evaluation function does not attempt to estimate which individ-
ual provides a better trade-off between the objectives; rather, it signals no preference,
so that a and b will both be maintained if possible. This description corresponds pre-
cisely to the Pareto-dominance relation which forms the basis of Evolutionary Multi-
Objective Optimization (EMOO).
Definition 1 (Pareto-dominance) An individual a dominates another individual b with re-
spect to a set of objectives O if:

dom
O

(a, b) ⇐⇒ ∀i : O(a, i) ≥ O(b, i) ∧ ∃i : O(a, i) > O(b, i) (1)

where O(x, i) returns the value of the ith objective of x, 1 ≤ i ≤ n, and n is the number of
objectives contained in O.
The ideal evaluation function is the evaluation function that would result from us-
ing the unknown underlying objectives U as the objectives in evaluation. Following
the above principle of using Pareto-dominance as the evaluation function for multi-
objective problems, this results in the following ideal evaluation function:

Fideal(a, b) = dom
U

(a, b) (2)

If a global optimum exists, i.e. an individual that has the maximum possible value for
each objective, then the ideal evaluation function will prefer it over any other individ-
uals. If different individuals achieve high values for different underlying objectives,
the function will discard all individuals except those for which no objective can be im-
proved without reducing performance on another objective. This leads to a front of
solutions that trade off the different underlying objectives in different ways. Thus, the
solution concept employed here is that of the Pareto-optimal set with respect to the
underlying objectives of the problem. For an introduction into Evolutionary Multi-
Objective Optimization (EMOO), a number of sources are available (Fonseca & Flem-
ing, 1993; Srinivas & Deb, 1994; Fonseca & Fleming, 1995; Van Veldhuizen, 1999; Coello,
2000; Deb, 2001).
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2.2 Coevolution: Interactions as a Basis for Evaluation

Since the underlying objectives of a problem are generally unknown, selection in co-
evolution does not have direct access to the ideal evaluation function. In test-based
problems, decisions must instead be based on the outcomes of tests, i.e. interactions
between learners and evaluators, and coevolution evolves this set of evaluators. Here,
we prove the existence of a small evaluator set that provides all information required
to construct the ideal evaluation function.

We distinguish between learners and evaluators. The aim of learners is to maxi-
mize the outcomes of their interactions with evaluators. The aim of the evaluators is to
provide a basis for learning, such that learner adaptation results in maximization of the
underlying objectives. The set of all possible learners will be denoted as

�
, and the set

of all possible evaluators as � . A particular set of learners will be denoted as L, and a
particular set of evaluators as E.

All interactions are assumed to be pairwise. An interaction is a function G :
�
x � →�

which accepts a learner and an evaluator. It returns an outcome for the learner from
some ordered set of values

�
. Outcomes may for example be real valued numbers such

as (inverted) errors or scores, or ordered labels such as pass/fail, or win/draw/lose.
An interaction G(a, e) may be thought of as a two-player game between a and e, or
as a test or test-case that e poses to a. In either case, the interaction between a and e

reveals some information about a’s underlying objectives, while it is unknown what this
information is, or what the underlying objectives are.

Clearly, in order for the interaction function G to be useful in evaluating individ-
uals, it must bear some relation to the underlying objectives. Specifically, consider an
individual a with a given set of underlying objectives. Then we will require that any
increase in the value of an objective of a, marking an improvement in its skills, must
be reflected in an increased outcome of its interaction with some player e. Conversely,
G may not provide misleading information by indicating an improvement when there
is none, or when the individual’s underlying objectives have in fact decreased. This
requirement is formally stated as follows:

Definition 2 (Interaction Requirement) An interaction function G is consistent with un-
derlying objectives U , with U(x, i) written as xi, if and only if for any pair of learners a, b ∈

�
:

∃i : ai > bi ⇐⇒ ∃e ∈ � : G(a, e) > G(b, e) (3)

Since G is typically given, this requirement does not restrict the class of problems for
which these results apply, but rather defines which functions may validly be seen as
the underlying objectives of a problem. Specifically, we note that intransitivity is not
excluded by the requirement, and the proof that will be presented equally applies to
problems featuring intransitivity.

In coevolution, each learner is evaluated based on its outcomes against a current
set of evaluators. Following Pareto-Coevolution, these outcomes are treated as objec-
tives in the sense employed by Evolutionary Multi-Objective Optimization. A coevo-
lutionary evaluation function will prefer a learner over another if the former learner
dominates the latter, see definition 1. This results in the following coevolutionary evalu-
ation function Fcoev for learning individuals:

Fcoev = dom
OE

G

(a, b) (4)

8 Evolutionary Computation Volume 12, Number 2
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where a, b ∈ L are learners, and the kth objective of a learner Li ∈ L is the outcome of
its interaction with the kth evaluator Ek ∈ E:

OE
G(Li, k) = G(Li, Ek) (5)

The coevolutionary evaluation function Fcoev might be called a subjective evaluation
function (Watson & Pollack, 2001), since it depends on the set of evaluators E and
therefore does not necessarily reflect all underlying objectives. A general, objective
evaluation function which does take all of the underlying objectives into account is
given by the ideal evaluation function Fideal. In the following, it will be shown that
coevolutionary setups can in principle achieve a subjective evaluation that is equal to
the objective evaluation.

3 Ideal Evaluation from Coevolution

Using Ficici’s notion of a distinction (2001b), we will say that an evaluator e ∈ � distin-
guishes between two learners a, b ∈

�
if and only if a’s outcome against e is higher than

b’s outcome:
dist(e, a, b) ⇐⇒ G(a, e) > G(b, e) (6)

This definition is asymmetric, so that higher and lower objective values can be detected
independently. We define a Complete Evaluation Set to be a set of evaluators E that make
all distinctions that can be made between the learners in a set of learners L:

Definition 3 (Complete Evaluation Set) An evaluation set E ⊆ � is complete for an in-
teraction function G and a set of learners L if and only if:

∀a, b ∈ L : [∃e ∈ � : G(a, e) > G(b, e) =⇒ ∃e′ ∈ E : G(a, e′) > G(b, e′)] (7)

We will write E∗

L to denote such a Complete Evaluation Set for a set of learners L.
Regarding the size of the Complete Evaluation Set, we first note that the definition is
a condition that can be satisfied by multiple sets of evaluators. The number of dis-
tinctions can at most be equal to n2

l − nl, where nl is the number of learners. Since
each distinction requires at most one evaluator, the number of evaluators required to
construct a Complete Evaluation Set is bounded by this same number.

While this size is already quite reasonable, it may be reduced by selecting evalua-
tors that make multiple distinctions. If desired, the set could be reduced still further by
removing evaluators for distinctions that do not affect the dominance relations between
learners. For algorithmic purposes however, minimizing the size of the evaluator set
beyond the given limit is not necessarily beneficial, as this may decrease the diversity
of the evaluator population. The primary observation therefore is that the given bound
is sufficiently small to lead to feasible algorithms.

A central theoretical result of this article is that the use of a Complete Evaluation
Set E∗

L as objectives for a set of learners L renders the coevolutionary evaluation func-
tion equivalent to the ideal evaluation function:

Theorem 1 (Equivalence with the ideal evaluation function) Let Fcoev(a, b) =
dom
O

E∗

L

G

(a, b) be a coevolutionary evaluation function for L based on a Complete Evaluation

Set E∗

L. Let Fideal(a, b) = dom
U

(a, b) be the ideal evaluation function for L, based on the

underlying objectives U . Furthermore, let G satisfy the interaction requirement for U . Then
for any pair of learners a, b ∈ L : Fcoev(a, b) = Fideal(a, b) .

Evolutionary Computation Volume 12, Number 2 9
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L1       0 1 0

L2 0 0 1

L3 1 1 0

E1 E2 E3G(Li,Ek)

G(L2,E3)>G(L3,E3)

Resulting distinctions

dist(Li,Lj)

0 1 0

1 0 1

1 1 0

L1

L2

L3

L1 L2 L3

Interaction outcomes

Figure 1: Matrix representation of the possible distinctions that can be made between a
set of learners (example). A distinction between learners Li and Lj can be made (shown
as ’1’ in the right matrix) if the set of evaluators contains an individual Ek such that the
outcome of Li against Ek exceeds that of Lj .

This theorem is proved in Appendix A. It offers a principled approach to evaluation in
coevolution, by guaranteeing ideal evaluation if the evaluator population is a Complete
Evaluation Set and the learners use their outcomes against evaluators as objectives. The
result thereby also provides a theoretical motivation for Pareto-Coevolution.

3.1 Approximating the Complete Evaluation Set

It was seen that Complete Evaluation Sets result in an evaluation function for learners
that is identical to the ideal evaluation function. This leads to the question of whether
a Complete Evaluation Set can be approximated by coevolutionary algorithms. It will
be seen that this may be feasible in practice.

It was observed that the number of potential distinctions is bounded by the square
of the number of learners. Thus, we can treat all potential distinctions between learners
as objectives, resulting in a setup where evaluators strive to find all possible distinctions
between learners:

O(Ek , nl · i + j) =

{

1 if G(Li, Ek) > G(Lj , Ek)
0 otherwise

(8)

where O(Ek , n) is the nth objective of an evaluator Ek ∈ E, Li is a learner, nl = |L| is the
number of learners, 1 ≤ i, j ≤ nl and G(l, e) is the interaction function. A convenient
representation of the objectives of evaluators is as the entries in a square matrix, where
the columns and rows represent the learners, and each non-diagonal entry represents
whether a potential distinction between two learners is made by some evaluator, see
Figure 1 and eq. 6.

In EMOO, this number of objectives is still large. An important observation how-
ever is that whereas generally in EMOO the goal is to combine high objective values
in a single individual, here it is sufficient if each distinction is made by some evaluator.
Thus, given a set of evaluators, we can select a subset that is sufficient for evaluation
purposes by choosing one evaluator for each possible distinction.

4 A Class of Algorithms for Pareto-Coevolution

A Complete Evaluation Set for a given set of learners can be approximated by using
the distinctions between learners as objectives. To translate this idea into an outline
for algorithms, we first combine a population of learners and a set of offspring into

10 Evolutionary Computation Volume 12, Number 2
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1. Lpop:=random population()
2. Epop:=random population()
3. while ¬ learner-criterion
4. Ltot := Lpop ∪ generate(Lpop)

5. while ¬ evaluator-criterion
6. Etot := Epop ∪ generate(Epop)

7. ∀i, k : G[i, k] := G(Li, Ek)
8. ∀k, i, j : d[k, i, j] := (G[i, k] > G[j, k])

9. evaluate(Etot,d)
10. Epop := select (Etot)

11. end
12. evaluate(Ltot,G)
13. Lpop := select (Ltot)

14. end

Figure 2: Algorithm outline for Pareto-Coevolution.

a single set. Next, we identify evaluators that find distinctions among the learners in
this combined set. This provides a basis for evaluating the population of learners and
its offspring. The population of learners and its offspring typically changes over time,
and the identification of an appropriate evaluation set therefore needs to be repeated
every generation.4 To obtain an evaluation set for a given set of learners, we can invoke
a secondary evolutionary process for evaluators within the primary cycle for learner
evolution. This leads to the outline for coevolutionary algorithms shown in Figure 2.

The generate function creates a new generation of individuals given an existing
population. The outcomes of the interactions between learners and evaluators are
stored in the array G. From this array, the distinctions made by each evaluator are cal-
culated and stored in the array d. Evaluate accepts a population of individuals and their
objective values and determines which individuals are preferable over others based on
their objective values. Select removes the non-preferred individuals, thus yielding the
next population of individuals.

Specific instances of this class of algorithms can be generated by selecting stop
criteria for the two loops. The stop criterion for learner evolution (outer loop) will
typically be a domain-dependent performance threshold or a limit on the number of
iterations.

Convergence to the ideal evaluation function can be guaranteed by repeating the
following cycle. First, produce a set of evaluators chosen from the set of all possible
evaluators, where each evaluator has a non-zero probability of being generated. This
can be done by choosing randomly from the latter set. Next, store an evaluator for each
new distinction found by the evaluators and repeat the cycle. In the limit, this process
converges to a set representing all achievable distinctions for a set of nl learners that
contains at most n2

l − nl evaluators.
While this guarantee is of theoretical interest, two practical issues remain. First,

4While a generation-based approach is described here, the same principle can be applied in steady-state
algorithms.
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The compare-on-one game

Learner

Evaluators

Figure 3: The gray areas show all evaluators that are solved by the learner in the figure.
Left: the COMPARE-ON-ALL game. A learner receives a positive outcome if it is equal
or greater than the evaluator in every dimension. Right: the COMPARE-ON-ONE game.
A learner receives a positive outcome if it is equal or greater in the evaluator’s highest
dimension.

since it is generally unknown how many of the distinctions are achievable, a stop crite-
rion must be chosen for the evaluator evolution loop. One possibility is to track statis-
tics of the number of distinctions found over time, and to stop when the probability
of finding additional evaluators drops below a given threshold. Another possibility,
which will be employed here, is to iterate the inner loop for only one step at a time, so
as to balance the computational effort spent on evolving learners and evaluators. Thus,
we obtain an algorithm where a population of learners and a population of evaluators
are both updated once each cycle, as in most two-population coevolutionary setups.

A second issue is search efficiency. The search for new evaluators making addi-
tional distinctions may be made much more efficient if it is based on the set of evalua-
tors found so far. Indeed, the motivation for a population-based algorithm is that apart
from distinguishing between current learners, evaluators may generate offspring that
make new distinctions. The algorithm developed in Section 6.2 is motivated by this.

Finally, we consider the number of evaluators required. As seen above, n2
l − nl

evaluators suffice to make all possible distinctions between nl learners. When a pop-
ulation of evaluators is maintained however, we expect that the required number of
evaluators will in practice be determined by the number of underlying objectives.

5 Test Problems and Experimental Setup

The previous section has outlined a class of algorithms that can be used for Pareto-
Coevolution. With an eye on the practical development of principled algorithms for
coevolution, we now investigate to what extent the algorithm is able to overcome prob-
lems encountered in coevolution.

It was seen that many of the difficulties with coevolution can be explained by a
failure to evaluate on all underlying objectives. Thus, a central question is how eval-
uation and performance improvement on all underlying objectives can be achieved.
To investigate this, test problems are designed that are likely to result in incomplete
evaluation.

The problems that will be studied are variants of the Numbers Game (Watson &
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Pollack, 2001). Each individual is specified by a number of real valued variables. These
variables constitute the genome of the individual. The goal of the problem is to maxi-
mize the outcomes of tests posed by evaluators.

The first test-problem is called COMPARE-ON-ALL. In this problem, the learner and
the evaluator are compared based on all of the evaluator’s dimensions. The outcome of
the interaction function for this problem is positive (1) if and only if the learner’s values
are all at least as high as those of its evaluator:

compare− on− all : Gall(a, e) =

{

1 if ∀i : ai ≥ ei

−1 otherwise
(9)

where a is a learner, e is an evaluator, and xi denotes the value of individual x in
dimension i.

The underlying objectives of this game simply correspond to its dimensions; this
can be checked by verifying that the relation between Gall and this choice of underlying
objectives satisfies the interaction requirement. Thus, the underlying objectives corre-
spond precisely to the variables of the problem, and the aim is simply to maximize all
variables. We may use the same notation xi for both the variable values and the un-
derlying objective values of an individual x. As we aim to model actual coevolution
problems however, the selection mechanism may not use knowledge of these values.
Instead, it must be based on the outcomes of interactions between individuals, thus
turning the problem into a coevolutionary problem.

The second test-problem is called COMPARE-ON-ONE. In this problem, the learner
and the evaluator are compared based on only one of the evaluator’s dimensions,
namely the evaluator’s dimension with the highest value. The outcome of the inter-
action function for this problem is positive (1) if and only if the learner’s value in the
evaluator’s highest dimension is at least as high as that of its evaluator:

m = arg max
i

ei (10)

compare− on− one : Gone(a, e) =

{

1 if am ≥ em

−1 otherwise
(11)

where a is a learner, e is an evaluator, and xi denotes the value of individual x in
dimension i. Again, it may be checked that the underlying objectives for this problem
correspond to its dimensions.

The games are illustrated in Figure 3. For the compare-on-all game (left), a learner
solves the tests posed by evaluators that do not exceed its own values. For the compare-
on-one game, there are different classes of evaluators, determined by the highest di-
mensions of the evaluators. Evaluators that have their highest value in the first dimen-
sion, i.e. those below the diagonal, can only compare learners based on their horizontal
position, while those above the diagonal test learners on their vertical position only.

Figure 4 illustrates the evaluators that can make distinctions between two learners
for the two problems. While evaluators in the compare-on-all game can compare learn-
ers based on all of their dimensions, this is not possible in the compare-on-one game.
Therefore, evaluators in different regions must be maintained.

Although evaluators in distinct regions are required to address the problem, a co-
evolutionary setup can easily lead to convergence such that evaluators in only some
regions are maintained, thus leading to incomplete evaluation. Therefore, the problem
is likely to result in a set of evaluators that tests on only some of the underlying objec-
tives. This difficulty makes the problem suitable for the study of methods that aim to
prevent incomplete evaluation.
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Figure 4: Left: distinctions for the COMPARE-ON-ALL game. Evaluators provide infor-
mation about all underlying objectives. Right: distinctions for the COMPARE-ON-ONE
game. Evaluators in different regions test on different objectives. To make progress on
all underlying objectives, evaluators must be maintained in each region.

To detect whether learners progress on only some dimensions, the performance
criterion for both test problems is the individual’s minimum value, rather than for ex-
ample the average value of its variables. Since individuals start with low values in
all dimensions, an increasing performance implies that progress is being made in all
dimensions.

We now discuss the experimental setup. Different methods for evaluation and se-
lection will be studied in the following section. A new generation of individuals is
created using mutation only. Mutation adds a random value x chosen uniformly from
[−d−b, d−b] to a dimension i, where d is called the mutation distance and b is the mutation
bias. The mutation bias reflects the notion that in most problems of practical interest,
mutation is more likely to result in deterioration than in improvement. Mutation is ap-
plied to two randomly chosen dimensions. Mutating one dimension at a time would be
unrealistic, given that we aim to study a model of actual problems; in this case, a higher
interaction outcome would precisely indicate that the performance over all objectives
has improved. By mutating in two dimensions at a time, an increase in one dimension
will often be accompanied by a decrease in another. This renders the problem quali-
tatively more difficult. Further increases in the number of mutated dimensions would
make progress slower, but would not make a qualitative difference. To keep versions of
the problem with different dimensionalities comparable, the number is therefore fixed,
and unrelated to the total number of dimensions.

6 Design of an Algorithm for Pareto-Coevolution: DELPHI

Our aim is to develop an algorithm for Pareto-Coevolution based on the outline for
such algorithms described in Section 4. To this end, specific methods for evaluation and
selection have to be chosen. A difficulty is that learner selection and evaluator selection
are interdependent. However, since the target for evaluator selection is defined by the
Complete Evaluation Set E∗

L, we can study learner selection in isolation by temporarily
assuming that evaluator selection identifies E∗

L and thus provides ideal evaluation. By
retaining the learner selection method found in this way, we can subsequently study
evaluator selection.

14 Evolutionary Computation Volume 12, Number 2
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Evaluator

Learner

Figure 5: Schematic representation of a Complete Evaluation Set described in the text.
Evaluators are selected by projecting the learners onto the axes and placing an evalua-
tor between each pair of subsequent points.

6.1 Learner Selection under Ideal Evaluation

To construct a Complete Evaluation Set, we may choose an evaluator for each learner
that has a higher value in some dimension than some other learner, such that the evalu-
ator is in between the learners in this dimension. The evaluator thus makes a distinction
between the two learners. To ensure that the evaluator tests on this dimension, all of
its other dimensions are given a value of zero, see Figure 5. Any such set satisfies the
definition of a Complete Evaluation Set for both test problems, see eq. 7. As stated
by the equivalence theorem (1), the Complete Evaluation Set provides the same infor-
mation as the objectives themselves; whenever two learners have a different value for
some objective, an evaluator exists that assigns a higher outcome to the learner with
the higher objective value. Thus, evaluation based on E∗

L can simply be implemented
by the Pareto-dominance relation using the values of an individual’s variables as ob-
jectives.

We first use a basic EMOO method for learner selection which evaluates an in-
dividual based on whether it is non-dominated, meaning that no currently existing
individuals dominate it. Specifically, learners are sorted on the number of individuals
by which they are dominated, and selected with a probability that is proportional to
the resulting rank. Figure 6 shows the resulting minimum value, averaged over the
individuals in each population, for the four-dimensional problem5 with mutation bias
(b = 0.05). The graph (bottom line) shows that the method fares poorly even when
given access to the ideal evaluation function. The cause of this failure is that the non-
dominance criterion, when based on a population rather than the set of all possible
individuals, yields only coarse information about the objectives.

Intuitively, it should be possible to ensure progress when given access to the ideal
evaluation function. This can indeed be achieved, by using a stricter selection criterion.
If individuals are only replaced by individuals that dominate it, rather than merely being
non-dominated, then replacements can only result in improvement, and regress can be

5Since the two test problems share the same set of underlying objectives, they become identical under
ideal evaluation.
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Figure 6: Results for evolving learners under a Complete Evaluation Set E∗

L, which
results in evaluation according to the ideal evaluation function. A non-dominance-
based selection fails even under these ideal circumstances, and is therefore not expected
to function when opponents are evolving. The stricter selection criterion of dominance
avoids regress, and is thereby able to improve.

avoided. We therefore use a second selection method that accepts new individuals
into the population if and only if they dominate some existing member, which is then
replaced. As Figure 6 shows, this method, called dominance selection, indeed achieves
progress given a Complete Evaluation Set E∗

L as its objectives.
From the first experiment, we can conclude that non-dominance is insufficiently

strict as a criterion for learner replacement. The criterion of dominance guarantees that
given access to the ideal evaluation function, any change to the population must result
in progress. Accordingly, learner selection will employ the dominance criterion.

6.2 Evaluator Selection

The idea behind the use of a population-based method is that evaluators making useful
distinctions are a good basis for finding evaluators that make new distinctions. This
idea is most clear when evaluators are assumed to test on a single underlying objective.
Experimental evidence supporting this expectation is presented in the next section.

If evaluators test on a single underlying objective, then successful evolution of
learners will at some point lead to a state where all learners pass the threshold value
posed by an evaluator. Once this happens, the evaluator makes no more distinctions,
and a higher threshold is required. If there is any relation between an evaluator and its
offspring, the evaluator is a likely genetic source for evaluators representing this higher
threshold, and conversely the evaluator’s offspring is likely to test on the same objec-
tive as its parent. By only replacing an evaluator when it is dominated by its offspring,
valuable evaluators can be maintained while making no distinctions, and replaced once
a higher threshold for the same objective is found. This replacement criterion is based
on the diversity maintenance technique of Deterministic Crowding (Mahfoud, 1995). By
virtue of this principle, the ability to test on an objective can be preserved even when
it is not detectable in the evaluator’s objective values. We refer to this method as a
Pareto-hillclimber, as it performs hill-climbing based on the Pareto-dominance criterion.
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Another example of a Pareto-hillclimber is the PAES algorithm (Knowles et al., 2001),
which additionally features an archive to estimate dominance rankings.

In summary, we have arrived at a setup where a learner replaces an existing in-
dividual if it dominates that individual, while for evaluators we require in addition
to this that the replacer must be the offspring of the individual that is being replaced.
Thus, given a population of learners L and a population of evaluators E, new learners
are evaluated based on the evaluators in E and can replace any learner they dom-
inate, while evaluators are Pareto-hillclimbers that use the distinctions between the
learners in L as their objectives. This method will be called DELPHI, which stands for
Dominance-based Evaluation of Learners on Pareto-Hillclimbing Individuals.

7 Experimental Results

We examine the DELPHI method on the two test problems that have been described,
and first compare its performance to several competitive coevolution methods. Most
existing methods for coevolution are forms of competitive coevolution (Hillis, 1990;
Rosin & Belew, 1997; Rosin, 1997), although several cooperative alternatives have been
suggested (Potter & De Jong, 2000; Moriarty & Miikkulainen, 1998). In competitive
coevolution, all individuals try to maximize the outcome of their interactions. A typ-
ical approach to dealing with the outcomes of multiple interactions is to calculate an
average score. Thus, in the first comparison setup (AVG E, AVG L), learners use the av-
erage score against evaluators as a fitness value, while evaluators use the average score
against learners as their fitness. Removal selection is done probabilistically by selecting
individuals with a probability proportional to their fitness.

A second method (PROB E, PROB L) views the outcomes as objectives, and employs
a basic EMOO method (Fonseca & Fleming, 1993). The method performs probabilistic
selection based on non-dominance by sorting individuals based on the number of in-
dividuals they are dominated by and using the normalized rank as the probability of
selection. To provide a stricter selection criterion, we also use a method that selects the
best half of the sorted population (HALF E, HALF L). Moving from non-dominance to
dominance as a selection criterion, we arrive at a method that replaces an existing indi-
vidual by any new individual that dominates it (DOM E, DOM L). Finally, we can place
the additional condition that the replacee must be the parent of the new individual. For
this competitive setup (P-HC E, P-HC L), learners are Pareto-hillclimbers evaluated on
the evaluators, and evaluators are Pareto-hillclimbers evaluated on the learners.

The parameters used are as follows. The initial value in each dimension is deter-
mined by uniform random selection from [0, 0.05]. The mutation distance d = 0.1. No
mutation bias is used (b = 0), except where otherwise indicated. The size of learner and
evaluator populations is 50, and so is that of new generations, so that the total learner
and evaluator populations before selection both contain 100 individuals. All experi-
ments are averaged over 100 runs, except for trajectory graphs, which display single
runs.

Figure 7 shows the performance (average minimum value) of the above methods
on the two-dimensional COMPARE-ON-ALL problem. All competitive methods are able
to achieve non-trivial progress; the increases in the average minimum values are sub-
stantial compared to the mutation distance. For the more difficult COMPARE-ON-ONE
game, some progress was still made on the two-dimensional version, but performance
on the five-dimensional variant stalls for most methods, see Figure 8. The most difficult
problem is obtained by employing a mutation bias (b = 0.05) in the five-dimensional
COMPARE-ON-ONE problem, so that values from [−0.15, 0.05] are added to two ran-
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Figure 7: Performance of DELPHI and a number of competitive methods on the 2-
dimensional COMPARE-ON-ALL problem. Performance is measured as the average min-
imum value of an individual’s variables. All methods achieve some progress on this
problem.

domly selected variables. Using this mutation bias, more than half of the mutations are
purely deleterious, and the majority (86%)6 of the mutations that produce an increase
in some dimension cause a (typically larger) decrease in some other dimension. For this
difficult problem, no competitive method produces substantial progress, see Figure 9.

In contrast with the competitive methods, DELPHI displays consistent and consid-
erable progress in all underlying dimensions across all problems. The steady increase
of the minimum value of learners implies that evaluator selection produces stable eval-
uation on all underlying objectives. The experiment thereby demonstrates the practical
relevance of the theoretical result, which stated that identification of all possible dis-
tinctions between learners renders coevolutionary evaluation equivalent to the ideal
evaluation function.

To test whether the main choices made in developing DELPHI are necessary, we
have furthermore performed the following control experiments. All of these employ
the basic setup of using the outcomes of interactions with evaluators as the objectives
for learners, and using the distinctions between learners as objectives for evaluators.

First, to see whether Pareto-hillclimbers are useful in maintaining a diverse set
of distinctions, we can attempt explicitly to make evaluators spread over the possible
distinctions (DOM E, SPREAD DIST L). We do this by assigning to each distinction a fit-
ness contribution of one over the number of evaluators that make the distinction. This
method for sharing fitnesses is known as competitive fitness sharing. It was introduced
by Rosin (1997), and was the most successful of several methods when applied to dis-
tinctions (Ficici & Pollack, 2001b), as it is here. Next, we test whether the learners may
also benefit from the restriction that new individuals can only replace their parents, so
that both learners and evaluators are Pareto-hillclimbers (P-HC E, P-HC DIST L). Fi-
nally, we can remove the parent criterion in evaluator selection, so that both learners
and evaluators are selected based on dominance (DOM E, DOM DIST L).

6Probability of decrease (dec) given an increase (inc): P (dec|inc) =
p(dec+inc)

p(inc)
=

p(dec+inc)
1−p(dec+dec)

= 6
7
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Figure 8: Performance of DELPHI and a number of competitive methods on the 5-
dimensional COMPARE-ON-ONE problem. Most competitive methods stall.

While (DOM E, SPREAD DIST L) performs very well for the two-dimensional
version of COMPARE-ON-ALL, it is surpassed by DELPHI on the more difficult five-
dimensional version, as are the other two methods, see Figure 10. On the COMPARE-
ON-ONE problem, only the two methods employing Pareto-hillclimbers display sus-
tained progress (Figure 11). Both methods still result in sustained progress when mu-
tation bias is added (Figure 12), while the remaining two methods fail on this final
problem.

We conclude that the method that has been developed (DELPHI) provides sus-
tained progress on all versions of the problem, and surpasses all of the other methods
that have been investigated. The results show that using Pareto-hillclimbers on dis-
tinctions as evaluators can result in an evaluation function that continues to test on all
underlying objectives. As a result, learners can achieve sustained progress in all un-
derlying objectives. Disengagement and over-specialization are thereby successfully
avoided.

The variant that uses Pareto-hillclimbers on distinctions for evaluators and on out-
comes for learners (P-HC E, P-HC DIST L) also displays sustained progress for all
problems, but at a lower rate. While the current experiments do not demonstrate
this, we believe that this variant may be of relevance when the evaluation provided
by evaluators is unstable, for instance in problems with a large number of underly-
ing objectives. For such problems, Pareto-hillclimbers may be able to retain valuable
characteristics that are not discerned by the current evaluator population. The lower
rate of progress may be explained from the reduced number of opportunities for new
individuals to replace existing ones.

Finally, we investigate the behavior of the method by plotting the trajectories of
learners and evaluators in the COMPARE-ON-ONE problem. Since only mutation is
used, each individual has a single chain of ancestors that leads back to the initial pop-
ulation. We plot this chain for all individuals present in the final population, after
running the method for a hundred generations. Figure 13 shows the resulting trajecto-
ries. To avoid influencing the trajectories, we do not cut off variable values at zero as in
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Figure 9: Performance of DELPHI and a number of competitive methods on the five-
dimensional COMPARE-ON-ONE problem with mutation bias. None of the competitive
methods provides sustained progress, DELPHI does.

the normal experiments, and use no mutation bias.
The most striking observation is that the evaluators follow the axes, while learners

progress in all dimensions simultaneously. This provides support for the earlier sug-
gestion that each underlying objective is identified by evaluators that focus on a single
objective.

As a comparison, we plotted the same information for a competitive experiment
(AVG E, AVG L), see Figure 14. While learners have made some initial progress in the
vertical dimension, they have over-specialized by progressing mainly in one dimen-
sion, the horizontal one. Since no evaluators making vertical distinctions persist and
all current evaluators are far away from the diagonal, it is unlikely that the potential
for making vertical progress will be regained.

The trajectories in Figure 13 provide some experimental evidence for the sugges-
tion that evaluators can potentially identify the underlying objectives. However, part
of the observed behavior may be a result of the direct correspondence between vari-
ables and objectives. We therefore test whether evaluators still identify the underlying
objectives when these do not correspond directly to properties of the problem other
than the outcomes of interactions. To this end, we rotate the underlying objectives.
Both learners and evaluators are rotated clockwise 30 degrees with respect to the origin
before determining the outcomes of interactions. As a result, the underlying objectives
of the problem are rotated 30 degrees anti-clockwise; by following these rotated direc-
tions, the evaluators will end up at the optimal directions of progress when evaluated.
The variables of the problem and the operators of variation remain unchanged. We
run the experiment longer (a thousand generations) in order to determine whether the
directions in which the evaluators move are stable. As Figure 15 shows, the evaluators
approximately identify the new underlying objectives of the problem. This indicates
that the discovery of the underlying objectives by the algorithm was not dependent on
a correspondence between the variables and objectives of the problem.
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Figure 10: Performance of DELPHI and other distinction-based methods on the 5-
dimensional COMPARE-ON-ALL problem. All methods achieve substantial progress.

8 Discussion

To assess the applicability of the approach that has been described, we examine to what
extent the assumptions that have been made hold in problems of practical interest. A
first question is whether the interaction function corresponds to the intended underly-
ing objectives. We have identified three issues that could be thought to threaten this:
the outcomes of interactions may be influenced by structural influences or by noise,
and interactions may be non-transitive. Secondly, we expect that the most important
issues with respect to practical application are general search issues that will be de-
tailed. These four topics will be discussed in turn below.

8.1 Structural Influences

Since interactions are modeled as functions, we implicitly assume deterministic interac-
tions. In stochastic problems, different encounters between the same pair of individu-
als can lead to different outcomes. If the factors governing the outcomes are structural,
e.g. whether a checkers player plays first or not, then the different circumstances under
which the opponent is faced should be viewed as distinct interactions. In the example,
the test posed by playing first against said checkers player should be viewed as distinct
from the test posed by letting the player go first, and these tests would therefore be
distinct evaluators.

8.2 Noise

Apart from structural influences, interactions may be affected by noise, resulting from
dice rolls for example. Such influences may be addressed by sampling over a number
of interactions, and using the average outcome as an indication of the relation between
the skills of the individuals. Given enough samples, any non-structural influences can
be averaged out. As a result, the averaged outcome of the interactions between one pair
of individuals will come to bear a consistent relation (lower, equal, or higher) to that of
any other pair, resulting in equivalence classes of averaged outcomes. When viewed in
terms of these equivalence classes, rather than of the particular averaged outcome, the
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Figure 11: Performance of DELPHI and other distinction-based methods on the 5-
dimensional COMPARE-ON-ONE problem. The methods employing Pareto-hillclimbers
achieve sustained progress, while the other two methods stall.

resulting evaluation is deterministic. Such equivalence classes are obtained when the
ranges of average outcomes of individuals become non-overlapping or identical. Since
the outcomes must in the limit converge to the expected value, such a sample size is
guaranteed to exist, though it may be very large. The downside of this approach is the
computational cost, which must be weighed against the benefits of accurate evaluation.

8.3 Intransitive Superiority

A third known problem is that of intransitive superiority relationships (Cliff & Miller,
1995; Watson & Pollack, 2001). This refers to problems where an individual b > a,
c > b, and a > c, such as the Rock, Paper, Scissors game. As in other problems, a
non-minimal set of underlying objectives can be obtained by considering the outcomes
against all possible evaluators as objectives. Thus, intransitive problems can be viewed
as multi-objective problems, where the ability to address each opponent is a separate
objective. In the example, a would have a high value for the objective represented by
c, and a low value for the objective represented by b. The method will strive to find
individuals that maximize or trade off these objectives.

Individuals in an intransitive cycle such as Rock, Paper, Scissors are mutually non-
dominated. If no other individuals exist, the solution to the resulting EMOO problem
contains all individuals in the cycle. Interestingly, such cycles can also become irrele-
vant. When other individuals are identified that dominate all of the individuals in the
cycle, these are preferable, and the cycle need no longer be maintained.

A question to be verified is whether the constraint on the interaction function G

(eq. (3)) holds in the presence of intransitivity. This is the case, since by choosing the
evaluators themselves as objectives, a distinction between two learners always corre-
sponds to a higher value for some objective, and vice versa. We therefore see no ob-
structions in using the presented approach for problems featuring intransitive superi-
ority.
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Figure 12: Performance of DELPHI and other distinction-based methods on the 5-
dimensional COMPARE-ON-ONE problem with mutation bias. The methods employing
Pareto-hillclimbers still achieve sustained progress, while the other two methods now
fail entirely on this most difficult problem in the set.

8.4 Search and Exploration

The selection criterion for both learners and evaluators is strict, as it is based on domi-
nance. However, it may not always be possible to find dominating individuals within
a single step of mutation (or other variation operators) from the current population.
We believe this limited degree of exploration is the most important limitation of the
algorithm that has been presented, and that it will have to be addressed before the
principles demonstrated here can be applied in practice.

We expect that accurate evaluation and exploration can be achieved by combin-
ing an archive that is updated using strict replacement criteria with a population in
which exploration is allowed. The archive achieves a form of elitism for multi-objective
optimization, while the population provides exploration. For the explorative popula-
tion, a number of methods for diversity maintenance in evolutionary multi-objective
optimization in general are available (Zitzler & Thiele, 1999; Knowles & Corne, 1999;
Corne, Knowles, & Oates, 2000; Deb, Agrawal, Pratab, & Meyarivan, 2000).

The particular algorithm that has been investigated, DELPHI, replaces existing
learners only once they are dominated. For the class of test problems that have been
investigated, this works effectively, as higher performance for a learner objective is al-
ways possible. For general multi-objective problems however, trade-offs between the
different objectives typically exist, and this criterion may be too strict. Suitable methods
for this situation have recently been developed within Evolutionary Multi-Objective
Optimization (Laumanns, Thiele, Deb, & Zitzler, 2002), and may readily be applied
within the current framework.

The class of algorithms that has been defined requires evaluators to find distinc-
tions among learners as part of the evolutionary cycle. Since this is not required in
conventional coevolutionary algorithms, one question is how difficult it is to find such
distinctions. The feasibility of this can only become clear through practical applica-
tions, but promising results with the use of distinctions for the evaluation of evaluators
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Figure 13: Trajectories of the individuals in the final population of a run of DELPHI on
the two-dimensional COMPARE-ON-ONE problem. Each of the underlying objectives is
identified by some evaluator.

have already been obtained (Ficici & Pollack, 2001b).
For symmetric problems, one way to find an evaluator distinguishing between

learners a and b may be to take a and apply a small mutation to it. This will result
in an individual that typically performs less well than a and that, if the mutation is
appropriate, still performs better than b. Thus, evaluators may be identified based on
the learners, rather than by an independent search process.

A question is whether evaluators can be found for all underlying objectives. First,
we note that this question is relevant to any approach, and that mechanisms to promote
more complete evaluation can only be helpful. If evaluators for certain objectives are
not present in the initial population, the algorithm that has been described contains
no specific mechanisms to search for such missing objectives, although it will identify
them when found. For many problems, a sufficiently large population will display at
least some variance in the performance achieved by learners and tested by evaluators.
If this is not the case, e.g. because objectives only start to play a role for high-quality
individuals, the addition of an explicit exploration mechanism may be necessary.

Evaluation is based on Pareto-dominance, and thus discards any scaling informa-
tion in interaction outcomes. Since multiple objectives can provide more information
than a single value and since fitness ranking methods are used with success even in
scalar fitness genetic algorithms, we do not expect this difference to be of importance,
but it is possible that scaling information may be useful for certain problems.

The solution concept we have employed is the Pareto-front. For certain problems,
it may not be feasible to maintain a representative subset of this front. Even then, a
multi-objective approach may still be useful as a means to circumvent local optima.
While single-objective methods search in one direction, EMOO methods explore sev-
eral directions simultaneously. This may help to identify a promising direction.

Finally, a note on computational complexity. DELPHI employs the outcomes of
interactions between all learners and all evaluators. For large populations, this may
be costly. To improve efficiency, multiple explorative pairs of learner and evalua-
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Figure 14: Trajectories for the competitive method on the same problem. Only one of
the underlying objectives is identified. No progress is made in the vertical dimension
as result.

tor subpopulations can be used in combination with a learner and evaluator archive
that preserves overall improvements and provides complete evaluation. Such multi-
population setups also have a clear potential for parallel implementations.

8.5 Application

One question is what problems may benefit most from the coevolutionary approach
that has been described. A minimal condition is the availability of tests, i.e. ways to
extract information from learners. It has been shown that a set of evaluators that is
squared in the number of learners is sufficient for ideal evaluation. In practice, the
number of evaluators may depend more on the number of underlying objectives; if
each evaluator tests on one objective, then existing evaluators can be used to generate
new evaluators for the same objective. If this is the case, the approach will be suited
most for problems with a limited number of objectives. We expect coevolution to be
most valuable in problems where multiple objectives underlie performance, while the
nature of these objectives is unknown.

9 Conclusions

In the past, co-evolution has been set up as a process where the unary fitness of evolv-
ing individuals is judged not with an absolute yardstick but by a sum or average of
values which are calculated relative to a current population. Next to a limited num-
ber of successes at getting co-evolution to proceed, researchers have found a variety
of self-limiting behaviors such as disengagement, the Red Queen effect, and mediocre
stability.

Following a line of research aimed at accurate automatic evaluation, which arose
out of work by Juillé, Rosin, and Ficici and takes into account the possibility that mul-
tiple objectives may underlie a problem, we have now discovered that it is possible to
determine a complete evaluation set. This theoretical set of evaluations is the perfect
teacher which can precisely determine whether one individual dominates another. It
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Figure 15: Trajectories in a version of the COMPARE-ON-ONE problem where the under-
lying objectives have been rotated 30 degrees. The evaluators still identify the underly-
ing objectives when they do not correspond to the variables of the problem.

allows an evolutionary system to tease apart those individuals which should be main-
tained and those which can be safely discarded.

Moreover, we found that for a given population this set is of manageable size,
namely quadratic in the number of individuals. By virtue of this, the set can not only
be identified in the theoretical limit, but also be approximated in practice. Using our
algorithm, DELPHI, we demonstrate that with appropriate heuristics, a dynamic set of
evaluators can be maintained which drive a population forward without reference to a
fixed external fitness function, which is the goal of coevolutionary learning.

The Complete Evaluation Set evaluates according to the underlying objectives of a
problem. In experiments, the evaluators were observed to identify the underlying ob-
jectives. For most problems of interest, the question of what the underlying objectives
are has not yet been asked. An intriguing consequence of Pareto-Coevolution therefore
is that it may help uncover the hidden structure of problems.
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Online Appendix: MATLABr implementation of DELPHI

Detailed pseudo-code, movies of two experiments, and a MATLABr implementation
of the DELPHI algorithm are available online from the homepage of the first author.7

Symbols

Objectives and dominance:
O a set of objectives
O(x, i) value of the ith objective in O for individual x

xi ith underlying objective of individual x

U set of underlying objectives U(x, i) = xi

OE
G objectives given by the outcomes against E using interaction function G

dom
O

(a, b) a Pareto-dominates b with respect to objectives O

Populations and individuals:
Small letters, e.g. x, a, b, denote individuals.

� set of all possible evaluators
E a particular set of evaluators
Ei ith individual in the set of evaluators E

E∗

L Complete Evaluation Set for a set of learners L�
set of all possible learners

L a particular set of learners
Li ith individual in the set of learners L

Function:
F (a, b): evaluation function, specifying whether a is to be preferred over b

Fcoev(a, b): coevolutionary evaluation function, resulting from interactions of a

and b with evaluators
Fideal(a, b): ideal evaluation function
G(a, b): interaction function, yields the outcome of an interaction between a

learner a and an evaluator b

7URL: http://www.cs.uu.nl/∼dejong

Evolutionary Computation Volume 12, Number 2 27



E.D. de Jong and J.B. Pollack

Appendix A

Proof 1 (Equivalence with the ideal evaluation function) To prove theorem 1, we show
that given the assumption (eq. (3)) on the interaction function G, the evaluation function Fcoev

that results from using E∗

L as objectives for learners equals the ideal evaluation Fideal.

Fcoev(a, b) ⇐⇒ Fideal(a, b) (12)
dom
O

E∗

L

G

(a, b) ⇐⇒ dom
U

(a, b) (by (4) and (2)) (13)

[∀e ∈ E∗

L : G(a, e) ≥ G(b, e) ∧ ∃e ∈ E∗

L : G(a, e) > G(b, e)] (14)
⇐⇒ [∀i : ai ≥ bi ∧ ∃i : ai > bi] (by (5) and (1)) (15)

First we show the implication:

Assume: ∀e ∈ E∗

L : G(a, e) ≥ G(b, e) ∧ ∃e ∈ E∗

L : G(a, e) > G(b, e) (16)
Assume: ∃i : bi > ai (17)

⇒ ∃e ∈ � : G(b, e) > G(a, e) (by (3)) (18)
⇒ ∃e ∈ E∗

L : G(b, e) > G(a, e) (by (7)) (19)
This contradicts (16). Therefore (17) cannot hold, so: (20)
@i : bi > ai (21)

⇒ ∀i : ai ≥ bi (22)
Furthermore: ∃i : ai > bi (by (16, right) and (3)) (23)

Combining (22) and (23) proves the implication. To show the reverse implication:

Assume: ∀i : ai ≥ bi ∧ ∃i : ai > bi (24)
Assume: ∃e ∈ � : G(b, e) > G(a, e) (25)
∃i : bi > ai (by (3)) (26)
This contradicts (24). Therefore (25) cannot hold, so: (27)
@e ∈ � : G(b, e) > G(a, e) (28)

⇒ ∀e ∈ � : G(a, e) ≥ G(b, e) (29)
And since E∗

L is a subset of � : (30)
⇒ ∀e ∈ E∗

L : G(a, e) ≥ G(b, e) (31)
∃e ∈ � : G(a, e) > G(b, e) (by (24, right) and (3)) (32)
∃e ∈ E∗

L : G(a, e) > G(b, e) (by (32) and (7)) (33)

Combining (31) and (33) proves the reverse implication, and completes the proof.
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