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Abstract— Coevolution offers adaptive methods for the se-
lection of tests used to evaluate individuals, but the resulting
evaluation can be unstable. Recently, general archive-based
coevolution methods have become available for which monotonic
progress can be guaranteed. The size of these archives may grow
indefinitely however, thus limiting their application potential.
Here, we investigate how the size of an archive for Pareto-
Coevolution may be limited while maintaining reliability. The
LAyered Pareto-Coevolution Archive (LAPCA) is presented, and
investigated in experiments. LAPCA features a tunable degree of
reliability, and is found to provide reliable progress in a difficult
test problem while maintaining approximately constant archive
sizes.

I. INTRODUCTION

For many problems, candidate solutions (learners) are eval-
uated based on their performance on tests; examples include
concept learning, function approximation, and game playing.
If the number of tests for such test-based problems is high,
evaluation has to be based on a selection of tests, but the
identification of an informative subset of the tests can be a
difficult optimization problem in itself.

Coevolution offers an approach to adaptively select tests for
the evaluation of learners [1], [2], [3], [4], [5], [6]. Since an
adaptive test set can render evaluation unstable, an important
question is how coevolution may provide stable progress.
Examples of unstable evaluation include over-specialization,
Red Queen dynamics, and disengagement [7], [8]. While
coevolution has produced interesting results in spite of these
issues [1], [9], [10], [11], [12], [13], most coevolution algo-
rithms that have been used in practice so far are heuristic in
nature and do not offer a guarantee that progress will be made
over time.

Several algorithms are available that do provide a guarantee
of progress. Progress will here be taken to mean that regress
can be avoided; if this can be achieved, then the combination
with a generator of individuals that occasionally makes im-
provements results in a progress guarantee. A first example is
Rosin’s covering competitive algorithm [14], which requires a
new learner to defeat all tests in the archive, and vice versa.
The dominance tournament [15] can be seen as a specific case
of the covering competitive algorithm. While introduced as a
method for tracking progress in coevolution, the method can
also be used as a coevolutionary archive [16]. Finally, Schmitt

[17] presents a stochastic model aimed at demonstrating con-
vergence to global optima with the requirement that for at least
some species, strictly dominant individuals exist that maximize
performance over all possible evaluation environments.

A serious obstacle in applying the above algorithms to test-
based problems in practice, is that the class of problems to
which they are applicable is highly restricted. For most solu-
tion concepts of interest, progress to global optima can only
be guaranteed by these methods in problems where a single
learner exists that solve all solvable tests. This requirement
is very strict, and for many test-based problems of practical
interest it does not hold. It is a desirable goal therefore to
develop archive methods that are more general, in the sense
that they guarantee progress for a broader class of problems.

Recently, two algorithms have been introduced that are
more general, and guarantee progress in coevolution without
requiring the existence of individuals that defeat all previous
opposition. The Nash Memory [16] guarantees progress for
the game-theoretic solution concept of the Nash equilibrium.
The Incremental Pareto-Coevolution Archive [18] guarantees
progress for the solution concept of the Pareto-front. For both
archives, the guarantee of progress requires an unbounded
archive size.

The guarantee that no regress can be made is a valuable
property of coevolution archives. However, if the size of
an archive cannot be limited, the computational costs of
evaluation may increase over time. An important question with
respect to the practical application of coevolution therefore
is how archive size may be limited while still providing
reliability. The Nash Memory can be pruned to limit the
archive size [16], and this may provide a practical method for
symmetric coevolution problems using the Nash equilibrium
as a solution concept. Since pruning is random however, it is
unclear how reliability is affected by limiting the size of the
archive.

We investigate to what extent the size of a reliable archive
may be limited while maintaining reliability. We describe a
layered variant of the Incremental Pareto-Coevolution Archive
(IPCA) with a tunable number of layers. Increasing this
parameter improves reliability at the expense of a larger
archive size. This provides a tunable degree of accuracy, so
that reliability may be maximized given the available compu-



tational resources. The effect of the number of layers on both
performance and archive size is investigated in experiments,
and limitations are discussed.

The structure of the paper is as follows. First, we briefly
describe Pareto-Coevolution (Section II) and the notion of
underlying objectives. The Incremental Pareto-Coevolution
Archive is described in Section III. Next, in Section IV, we
explore the effects of maintaining a limited number of layers.
This leads to a layered variant of IPCA called the Layered
Pareto-Coevolution Archive (LAPCA) described in Section V.
The experimental setup is described in Section VI. Section VII
reports experimental results, followed by conclusions.

II. PARETO-COEVOLUTION

Coevolution has long been seen as the simultaneous adap-
tation of individuals whose fitness measures are interdepen-
dent. While this view is correct and serves to define the
domain of coevolution problems, it does not make clear how
coevolution could be made to provide reliable progress, or
even what progress would mean, precisely because the fitness
measure depends on other evolving individuals. The paradigm
of Pareto-Coevolution [19], [20] offers a coherent view of
coevolution by defining a precise criterion for the evaluation
of learners. Specifically, Pareto-Coevolution proposes that can-
didate solutions (learners) are to be evaluated by viewing the
outcomes of their interactions with other individuals called
tests as objectives in the sense of Evolutionary Multi-Objective
Optimization (EMOO).

As a direct consequence of defining the objectives of
learners as the outcomes of the tests, the optimal solution of a
Pareto-Coevolution problem is the set of all learners that are
non-dominated with respect to these objectives. A learner A

dominates another learner B if A’s outcomes are all at least
as high as B’s, and in addition at least one outcome is higher
then B’s outcome for the corresponding test:

∀T ∈ T : G(A, T ) ≥ G(B, T )

∧

∃T ∈ T : G(A, T ) > G(B, T )

where T is the set of all possible tests and G(L, T ) is the
outcome of learner L on test T . The set of all non-dominated
individuals is called the Pareto-front, and forms the solution
concept [21] of Pareto-Coevolution.

A. Underlying Objectives

The set of objectives in Pareto-Coevolution is given by
the set of all possible tests. This set may be very large or
infinite. For many test-based problems however, a smaller
set of objectives that provides equivalent information can be
defined.

The underlying objectives or underlying dimensions [22],
[6] of a test-based problem can be defined as follows. Let
a dimension be an ordered sequence of tests, such that any
learner failing a test fails all subsequent tests. For any such

sequence, knowledge of the first test Ti failed by a learner
uniquely specifies the outcomes of that learner for all tests
in the dimension, namely a test Tj is failed if and only if
j ≥ i. Given the notion of a dimension, we can define a
coordinate system as a set of dimensions such that each test is
represented in some dimension. The underlying objectives of a
problem can now be defined as a set of dimensions of minimal
cardinality that forms a coordinate system for the problem. The
notion of a coordinate system, and a preliminary algorithm for
extracting the underlying objectives of a test-based problem,
are discussed in detail in [23].

III. THE INCREMENTAL PARETO-COEVOLUTION ARCHIVE

In this section we briefly describe the Incremental Pareto-
Coevolution Archive (IPCA) introduced in [18]. IPCA consists
of a learner archive and a test archive. The algorithm provides
procedures to decide which newly generated learners and tests
will enter the archive. The learner archive is periodically
updated to maintain non-dominated learners only.

The algorithm operates as follows. A newly generated
learner is useful with respect to a set of learners LS and a
set of tests TS if it is not dominated by any learner in LS, and
if there is no learner in LS which has equal outcomes for all
tests in TS:

useful(L, LS, TS) =

@L′ ∈ LS : L′
TS
� L ∧

@L′ ∈ LS : ∀T ∈ TS : G(L, T ) = G(L′, T )

A related function called useful− tests(TG, T t, LG, Lt)
identifies tests in a new generation of tests TG that are
required in addition to T t in order to detect that certain
learners in LG are useful with respect to Lt. Specifically, if
a learner is not useful based on T t but is useful based on
T t ∪ T1, T2, . . . Tk ∈ TG, then T1, T2, . . . Tk contains useful
tests and a subset of TG with this property will be returned
by useful − tests. Additionally, if for any learner L ∈ LG,
there is a test T ∈ TG that defeats the learner and the learner
is not defeated by any test in T t, then L and T are marked
as useful. Using these functions, the IPCA algorithm can be
described as shown in figure 1.

A. Monotonicity and Convergence

The operation of any archive inevitably depends on the new
individuals provided by the generator. The criterion required
of a coevolution archive is therefore that progress can be guar-
anteed given the arrival of new individuals which occasionally
represent progress. The latter can be guaranteed by generating
every possible individual with a non-zero probability.

A proof that the IPCA algorithm guarantees monotonic
progress is provided in [18]. If the number of different learners
and tests is finite and all learners and tests are generated
with non-zero probability, then the property of monotonic
improvement implies convergence to the global optimum of
the Pareto-front over all possible tests.



L0 := ∅
T 0 := ∅
t := 0
while ¬done

Lt := non− dominated(Lt, T t)
Lt+1 := Lt

T t+1 := T t

LG := generate− learners(Lt)
TG := generate− tests(T t)
TS := useful− tests(TG, T t, LG, Lt)
T t+1 := T t+1 ∪ TS

for i = 1 : |LG|
if useful(Li, L

t+1, T t+1)
Lt+1 := Lt+1 ∪ Li

end

if Lt+1 6= Lt

t := t + 1
end

Fig. 1. The Incremental Pareto-Coevolution Archive (IPCA). Monotonic
progress is guaranteed for this archive-based Pareto-Coevolution algorithm
[18].

IV. LIMITING THE ARCHIVE SIZE

While IPCA maintains only a single layer of learners, the
size of the test archive can grow indefinitely over time. In
the following, we investigate how archive size may be limited
while still providing reliability as much as possible.

In general, the aim of a Pareto-Coevolution archive is to
maintain high performance learners and informative tests.
However, if only high performance learners are maintained,
the capacity to determine which tests are informative may be
lost. This in turn affects the ability to distinguish high quality
learners from others. Because of this mutual dependency, the
learner and test archives not only serve to maintain valuable
individuals, but must also function as scaffolds for one another.
We present archive update procedures that permit limiting
the size of the archives while achieving a tunable degree of
reliability.

The method that will be described maintains a limited
number of layers of learners, and tests that separate these
layers from one another. For such a layered archive, the archive
sizes are bounded in terms of the sizes of the layers of
learners. While the latter may still be large for problems with
continuous objective functions, it is finite for any test-based
problem with a finite number of underlying objectives and
distinct tests per objective. Below, we describe the criteria for
acceptance of individuals into the archive in detail.

A learner archive is partitioned into layers, as done in the
NSGA algorithm for EMOO [24]. First, all non-dominated
learners are removed from the archive. These form the first
layer. Next, from the remaining learners, we select the learners
that are non-dominated once the first layer has been removed;
these learners form the second layer. Continuing in this
manner, a set of up to n layers can be obtained for a chosen

T2T1

L2
L1 0

1
0
0
1L3

Fig. 2. One-layer example leading to regress. The table lists the outcomes
for the learners.

n.
The subdivision into layers provides a method to select

which learners from the learner archive will be maintained.
The maintenance of the learner archive requires the presence
of certain tests; if important tests are missing, the qualities of
certain learners may not be detected when a second iteration
of the learner archive update procedure is performed, resulting
in the loss of those learners.

The requirement on the test archive is therefore that it must
separate the layers of learners from one another, so that the
layering of the learning archive will be preserved in subsequent
learner update steps. To this end, given two subsequent layers
of learners, we define a separation set as follows. For any
learners Li, Lj in layers i and j where i = j or i = j − 1,
if any available test makes a distinction between Li and Lj ,
then the separation set must contain a test that makes this
distinction. A test makes a distinction [25] between learners
Li and Lj if it assigns a higher score to Li than to Lj :

dist(T, L1, L2) ⇐⇒ G(L1, T ) > G(L2, T )

A. Reliability for 1, 2, and 3 layers

To study the effect of the number of layers maintained on
the reliability of the archive, we consider cases where a small
number of layers is kept and construct examples where the
reliability of the archive cannot be provided.

1) One layer: Figure 2 shows an example where only a
single layer of learners is kept. Table I specifies in detail
which learners and tests are present in the archive over time.
In addition, individuals which have just been generated are
shown. In the first generation (G1), learners L1 and L2 and test
T1 are supplied to the archive.1 Since L2 dominates L1 when
the set of available tests consist of T1, only L2 is maintained
in the first update step (U1) given that only a single layer of
learners is maintained. Now that L1 has been removed, T1 no
longer makes a distinction between any learners, and is thus
also removed. Next, L3 and T2 arrive. Since L3 dominates
L2 given only the presence of T2, L2 is removed. Since there
is no guarantee that L3 solves T1, this is a potential instance
of regress. We note that while it would be possible to simply
keep all tests that have been solved so far, this would not lead
to an archive of bounded size.

1While learner L1 is not strictly necessary to demonstrate potential regress,
we wish to show an example where a test (T1) has already been found to be
useful but is yet discarded.



G1 U1 G2 U2

L1 +
L2 + + +
L3 + +
T1 +
T2 +

TABLE I

PRESENCE OF LEARNERS AND TESTS OVER TIME WHEN ONLY THE FIRST

(NON-DOMINATED) LAYER OF LEARNERS IS KEPT. Gi REPRESENTS

GENERATION i, Ui REPRESENTS THE SITUATION AFTER UPDATE STEP i. A

’+’ INDICATES THE PRESENCE OF A LEARNER OR TEST AT A GIVEN POINT

IN TIME.
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Fig. 3. Two-layer example leading to regress.

2) Two layers: The previous example showed that the
maintenance of a single layer of non-dominated learners can
be insufficient. If only a single layer of learners is maintained,
there is no way to determine which tests separate these non-
dominated learners from other learners of lower quality. If two
layers of learners are maintained however, we can maintain the
tests that separate these layers from one another, i.e. tests that
show the dominance of learners in the first layer over those
in the second layer.

The maintenance of the first two layers and the tests that
separate them results in an archive that is stable under repeated
application of the update procedure, as long as no new learners
or tests arrive. This can be seen as follows: if tests that separate
the two layers of learners are maintained, then the next update
step for the learner archive will leave the archive unchanged,
as it again selects the first two layers of learners. Likewise, the
second iteration of the test update procedure will again result
in the same set of tests.

A two-layer archive is not stable in general however; when
new individuals arrive, the stability of the archive can be
violated. Figure 3 provides an example of this: first, three
layers of learners (L1 − L3) are present. Once the third layer
(L1) is removed, test T1 becomes superfluous. Next, when
learner L4 arrives, learners L2 through L4 form three layers,
analogous to the initial situation (the outcomes for T2 and T3

are the same as those of the initial learners for T1 and T2).
Thus, the third learner layer (L2) and test T2 are removed.
The same principle is repeated after the arrival of L5, now
resulting in the removal of L3, the last learner known to solve
T1.

3) Three layers: Given the knowledge that two layers
are insufficient to avoid regress, we may consider to what
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Fig. 4. Three-layer example leading to regress.

extent adding additional layers may increase the reliability
of a layered archive. When three layers are maintained, four
layers must be present before a learner can be removed.
The construction of the example is analogous to the previous
examples, and is shown in figure 4.

Since three learners are required to have four layers and
removing these initial learners requires the addition of three
more learners, it appears that the example in figure 4 is
minimal, though we have not proven this.

A comparison of the examples shows that an increasing
number of specific learners and tests must be selected in order
to identify a case where reliability is not provided. Indeed, the
examples represent worst-case scenarios; as soon as one of the
learners solving an early test also solves a later test, e.g. if L2

would solve T4, the learners and tests would be preserved.
These observations suggest that while counter-examples can
be constructed, the maintenance of a small number of layers
may be sufficient for reliable progress in practice, even if
reliability cannot be truly guaranteed. The layered method
that has been investigated may therefore be of practical use,
and will be called the LAyered Pareto-Coevolution Archive
(LAPCA). Below, we summarize the algorithm and investigate
its performance in experiments.

V. THE LAYERED PARETO-COEVOLUTION ARCHIVE

The LAyered Pareto-Coevolution Archive (LAPCA) is a
variant of IPCA that maintains the first n layers of learners as
the learner archive, and the tests that separate these layers
as a test archive. The algorithm is based on IPCA, with
two modifications: rather than maintaining non-dominated
learners only, the first n layers of learners are maintained
during archive updates. As in IPCA, only learners satisfying
the useful() condition are accepted into the archive. The
test archive in LAPCA is updated as follows. For any two
subsequent layers of learners, a separation set is determined
and selected to form part of the updated version of the archive.
In addition, for any learner in the learner archive, if the test
archive contains a test that fails it, such a test will be part
of the updated test archive. In determining which tests are to
be maintained, tests are visited in a fixed order, and the first
test to satisfy the selection criterion is selected. Thus, if an
already selected test provides multiple functions, adding an



unnecessary additional test is avoided. The following section
presents experimental results with LAPCA.

VI. EXPERIMENTAL SETUP

A. The COMPARE-ON-ONE problem

The test problem that will be employed is a discretized
version of the COMPARE-ON-ONE problem described in [22],
[6]. The COMPARE-ON-ONE problem is a variant of the
Numbers Game [8]. In the Numbers Games, learners and tests
have equal representations; both are n-dimensional real-valued
vectors. The goal for learners is to maximize their outcomes
on the tests.

In COMPARE-ON-ONE, the learner and the test are compared
based on only one of the test’s dimensions, namely the
dimension with the highest value. The outcome of the test
is positive (1) if and only if the learner’s value in the test’s
highest dimension is at least as high as that of the test:

m = arg max
i

Ti (1)

compare− on− one : (2)

Gone(L, T ) =

{

1 if Lm ≥ Tm

−1 otherwise
(3)

where L is a learner, T is a test, and xi denotes the value of
individual x in dimension i.

The underlying objectives of COMPARE-ON-ONE simply
correspond to the n dimensions of the genotype [22], [6];
any increase in a dimension enlarges the set of tests that are
solved by the learner, and vice versa. Progress on COMPARE-
ON-ONE can therefore be measured simply by considering the
n variable values of an individual. Since we are interested in
progress on all underlying dimensions, the lowest value, rather
than for example the average value, is used as a performance
indicator. If this value consistently increases over time, this
indicates progress is being made over all underlying objectives.

The COMPARE-ON-ONE problem is valuable as a test-
problem for coevolution methods for two reasons. First, since
the underlying objectives are known, progress can be measured
in an objective manner. Second, the progress of learners in
COMPARE-ON-ONE critically depends on the maintenance of
an informative set of tests, especially for more than two di-
mensions and when used in combination with a mutation bias.
As discussed in detail elsewhere [6], tests must be maintained
in different regions of the space in order to obtain information
about all dimensions of the learners. Only by maintaining such
an informative collection of tests, increases and decreases can
be detected for all dimensions of the learners, so that progress
and regress can be distinguished.

In these experiments, the three-dimensional COMPARE-ON-
ONE problem is employed, and a mutation bias of 0.025 on a
mutation range of 0.25 is used, meaning a value x is mutated to
x+ c with c chosen randomly from −0.025, 0.225. Due to the
use of a mutation bias, the values of individuals (and thereby
their evaluation) is more likely to decrease than to increase
under mutation, thereby making regress likely when mutation
is used. When mutation is used, two dimensions of the

individual are mutated; if only one dimension were mutated, it
would still be relatively easy to detect progress, as any detected
improvement would constitute a true overall improvement. By
mutating two dimensions at a time, it becomes substantially
more difficult to determine this, as an increase or decrease
in one of the dimensions may go undetected. As a result,
distinguishing progress from regress requires maintaining an
informative set of tests that provides accurate evaluation. The
form of mutation that has been described renders the test
problem difficult. It is intended to model the property of
problems of practical interest that the variation operator is
typically more likely to produce regress than progress. It is
used to produce 50% of all offspring; the other half is produced
using conventional two-point crossover.

In previous work, several coevolution methods have been
compared on the COMPARE-ON-ONE problem [22], [6]. The
only algorithm found to provide stable progress was the
DELPHI algorithm, and a variant also based on the use of
distinctions for the evaluation of tests. A limitation of DELPHI

however is that the algorithm its restricted in the use of
exploration; since tests can only be replaced by their own
offspring, the algorithm cannot be used as an archive to which
a generator may supply diverse new individuals. The IPCA and
LAPCA methods are designed to overcome this issue.

B. The Discretized COMPARE-ON-ONE problem

To test whether an archive-based approach can confer ben-
efit for problems requiring exploration, we define a variant of
COMPARE-ON-ONE for which exploration is required; this is
achieved by discretizing the search space before the outcome
of a learner on a test is computed.

The discretization procedure operates as follows. We define
a regular grid consisting of hyper-cubes of size δ = 0.25 in
each dimension, starting at the origin. To discretize the individ-
uals, we round the value in each dimension of the learner and
test to the first grid-point below it before evaluation, without
affecting the genotype. Thus, a learner [0.23, 0.30, 0.47] would
be mapped to [0, 0.25, 0.25] before computing its outcome on
a test, which is discretized likewise.

The discretization makes it necessary to perform explo-
ration. Suppose there are two individuals; one existing indi-
vidual with a value of 0.1 for some dimension, and another
individual with a value of 0.15 for the same dimension. Now
whereas in the continuous version the difference between these
individuals can be detected by any test whose highest value
is in the same dimension and lies between these values, for
the discretized version no test can detect the benefit conferred
by the new individual. Thus, the only way to progress is by
performing random exploration until progress can be detected.
This furthermore requires the simultaneous availability of
appropriate tests. The discretization procedure thus greatly
reduces the amount of gradient present in the problem.

C. Generator

Archive algorithms operate in conjunction with a generator
of new individuals. The generator in these experiments is an



explorative coevolutionary algorithm that maintains a popula-
tion of learners and a population of tests, and will now be
described.

The objectives for learners are their outcomes against tests
and the distinctions between tests. The learner objectives are
based on the union of the current population and new genera-
tion of tests. The objectives for the tests are analogous, namely
their outcomes against and distinctions between individuals
in the current population and new generation of learners,
resulting in a symmetric setup.

For each objective achieved by an individual, a score is
assigned that equals one over the number of other individuals
that achieve the objective. The idea behind this form of
competitive fitness sharing [14] is that objectives addressed
by very few individuals count more than objectives addressed
by all individuals. The sum of an individual’s scores on the n

outcome objectives and on the n2 distinction objectives, where
n is the size of the population plus the new generation, are
added to yield a single total score for the individual.

Selection is based on the scores of individuals. Given a
current population and a new generation of individuals, the
number of population members k to be replaced is determined
adaptively. To compute k, the highest scoring individuals
of the new generation are lined up with the lowest scoring
individuals of the current population. Then k is determined as
the highest number for which the summed scores of the first k

generation members is still at least as high as that of the first
k population members. Based on this procedure, the lowest
scoring k population members are discarded. The population
members are replaced by k randomly selected individuals from
the new generation, thus yielding an explorative generator.
Preliminary experiments suggested that using this exploratory
method as a generator, reliability can be achieved at a lower
number of layers than when the more greedy generator method
of selecting the n highest scoring generation members is used.

Both the learner and the test population have population-size
10. Offspring is generated using crossover (50%) and mutation
(50%). Mutation has been described above. When choosing a
parent to generate offspring, with probability 0.1 an archive
member is used as a parent. When selecting a parent from
the archive, a learner is always chosen from the first layer, as
these learners have the best performance obtained so far. Test
archive parents are selected uniformly, as early tests may still
be required to provide informative evaluation. Performance is
plotted as a function of the number of generations, and is
averaged over 50 runs.

VII. EXPERIMENTAL RESULTS

In previous work, the performance of the DELPHI algorithm
and IPCA on the COMPARE-ON-ONE problem has been com-
pared [18]. It was found that whereas DELPHI is able to address
the continuous version of the problem efficiently, it is unable to
make progress on the discretized version. The IPCA algorithm
makes sustained progress on both versions of the problem.

Here, we aim to see whether sustained progress on the
discretized COMPARE-ON-ONE problem can be made using
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Fig. 5. Performance of LAPCA on the discretized COMPARE-ON-ONE

problem.

a size-limited archive. To this end, the LAPCA algorithm is
employed using 1, 2, 5, 10, and 20 layers. Figure 5 shows the
results. For very small numbers of layers (1 or 2), progress
cannot be guaranteed, as expected. For 5 layers, progress is
made for over 5,000 generations, after which the minimum
value drops, indicating tests for some underlying objective are
no longer present in the test archive. For 10 and 20 layers
however, progress continues to be made up to the end of the
runs. LAPCA thereby provides a size-limited algorithm that
is found to be reliable on a difficult test problem.

The performance of the 10-layer archive improves at a
slightly faster pace than that of the 20-layer archive. Since per-
formance is measured in terms of the number of generations,
this is not due to an increased number of fitness evaluations
that must be processed due to a larger archive size. Instead,
we hypothesize that the difference may be due to the selection
of parents from the test archive.

Figure 6 compares the results for IPCA with the 10-layer
version of LAPCA. The comparison shows that while for
IPCA the rate of progress levels off over time, this is not
the case for IPCA. Thus, even when performance is measured
in terms of generations, and thus doesn’t reflect the increasing
evaluation times for IPCA due to a growing archive, LAPCA
improves at a higher rate.

A central factor of interest here is the development of
archive sizes over time. The size of the learner archive is
of some importance as new learners must be compared on
all objectives against the learner archive. The main factor of
interest however is the test archive size, as new learners must
be evaluated on every test in the archive.

Figure 7 shows the size of the learner and test archives
for IPCA. While the learner archive is limited in size, as
determined to a large extent by the test problem, the test
archive grows steadily over time. This results in increasing
evaluation times over the course of a run, and ultimately limits
the potential for application of IPCA.
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Figures 8 and 9 show the learner and test archive sizes for
LAPCA. As expected, the size of the archive increases with
the number of layers. A surprising feature however is that the
sizes of both the learner and test archives do not continue to
grow, but level off over time. This can be explained by the
fact that the Pareto-front and further layers need not be large
in size; if a cluster of individuals moves along the diagonal
of the space, sustained progress is possible while maintaining
small layers.

A further observation is that the size of the test archives
is substantially smaller than that of the learner archives and
remains much smaller than for IPCA. Thus, for the problem
at hand, the LAPCA algorithm is successful at reducing the
archive size, while still providing stable progress.

Finally, we compare the computational cost of the different
algorithms that have been investigated. Figure 10 shows the
number of fitness evaluations as a function of the number
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Fig. 8. Size of learner archives for LAPCA.
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Fig. 9. Size of test archives for LAPCA.

of generations. While this number is closely linked to the
archive sizes, it is dependent on factors such as the number of
individuals that must be compared in determining dominance.
The comparison shows that while the computational costs
for IPCA grow at an increasing rate, the costs for LAPCA
increase approximately linearly over time, and the amount of
computational expense per generation is thus approximately
constant.

While the results that have been presented are problem-
dependent, they show that reliable progress on a difficult
test problem can be achieved using limited size archives.
Hopefully, the LAPCA algorithm may thus form a step to-
wards reliable coevolution techniques for practical problems.
A main limitation of LAPCA is that the size of layers may
still be large. Since this is also a problem in EMOO in
general, techniques used to address this issue in standard
EMOO algorithms can in principle be transferred to Pareto-
Coevolution.
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Fig. 10. Size of test archives for LAPCA.

VIII. CONCLUSIONS

Recently, archive methods have been introduced that guar-
antee progress in coevolution without posing overly strict
conditions on the acceptance of individuals into the archive.
An important question in the practical application of these
archives is how the size of an archive may be limited while
still providing reliability.

We investigate a variant of the Incremental Pareto-
Coevolution Archive called the LAyered Pareto-Coevolution
Archive (LAPCA). LAPCA maintains the first n layers of
learners along with tests that separate these layers from one
another. By varying the number of layers, the reliability of
the archive can be tuned. Thus, reliability may be maximized
given an available amount of computational resources.

The LAPCA algorithm is investigated in experiments,
and found to provide reliable progress on the discretized
COMPARE-ON-ONE problem which requires exploration. This
is achieved using only small learner and test archives, and
the archive sizes were moreover found to be approximately
stable for the problem that has been investigated. While
practical problems may feature much larger layers and thereby
result in a larger archives, LAPCA represents the first general
Pareto-Coevolution archive of tunable reliability that features
a bounded size, and may thereby bring practical, reliable
algorithms for coevolution a step closer.
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