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Abstract. We review and investigate the current status of intransitiv-
ity as a potential obstacle in coevolution. Pareto-Coevolution avoids in-
transitivity by translating any standard superiority relation into a tran-
sitive Pareto-dominance relation. Even for transitive problems though,
cycling is possible. Recently however, algorithms that provide monotonic
progress for Pareto-Coevolution have become available. The use of such
algorithms avoids cycling, whether caused by intransitivity or not. We
investigate this in experiments with two intransitive test problems, and
find that the IPCA and LAPCA archive methods establish monotonic
progress on both test problems, thereby substantially outperforming the
same method without an archive.


Coevolution offers algorithms for problems where the performance of individ-
uals can be evaluated using tests [1–7]. Since evaluation in coevolution is based
on evolving individuals, coevolution setups can suffer from inaccurate evalua-
tion, leading to problems such as over-specialization, Red Queen dynamics, and
disengagement [8, 9].


A problem feature that has received particular interest in the past is that
of intransitivity [9]. A relation R is transitive if aRb ∧ bRc implies aRc; if this
cannot be guaranteed, the relation is intransitive. An example of a problem
where the relation used to compare individuals is intransitive, is Rock, Paper,


Scissors; while scissors beats paper and paper beats rock, scissors is beaten by
rock. The existence of such intransitive relations in a coevolution problem can
lead to cycling, i.e. the recurrence of previously visited states of the population.


Intransitivity has been viewed as an inherent feature of coevolution that can
render algorithms unreliable. Indeed, the resulting problem of cycling has been
thought of as an obstacle that could prevent coevolution from becoming a reliable
problem solving technique, as attested to by the following quote: “We believe
that the cycling problem, like the local minima problem in gradient-descent
methods..., is an intrinsic problem of coevolution that cannot be eliminated
completely” [10].


Recently, it has been shown that coevolution can in principle approximate
ideal evaluation [11], i.e. equivalence to evaluation on the space of all tests. This
result is based on the solution concept offered by Pareto-Coevolution [12, 13],







consisting of all candidate solutions whose performance cannot be improved on
any test without decreasing the individual’s outcome on some other test.


Another approach to achieve reliability in coevolution is to use an archive to
maintain promising candidate solutions and informative tests. If an archive can
avoid regress, then generating all possible individuals with non-zero probability
guarantees that the algorithm can only make progress and will occasionally do
so, thus enabling the coevolutionary goal of open-ended, sustained progress.


Rosin’s covering competitive algorithm [14], alternates between finding a first-
player strategy that beats all second-player strategies in the archive and vice


versa. This guarantees that regress can be avoided, but the strict criterion of
defeating all previous opposition is likely to result in stalling as soon as mutually
exclusive tests exist, i.e. tests that cannot all be solved by a single learner but can
be solved individually by different learners. Ficici and Pollack’s Nash Memory
[15] guarantees progress for the solution concept of the Nash Equilibrium. It is
limited to symmetric games, but extension to the case of asymmetric games
is noted to be straightforward. The Incremental Pareto-Coevolution Archive
(IPCA) [16] guarantees progress for Pareto-Coevolution, and is applicable to
both symmetric and asymmetric problems. All of the above archive methods can
only guarantee progress however if the archive size is unlimited. A layered variant
of IPCA was found empirically to produce reliable progress on test problems
using a bounded archive [17].


Our aim here is to investigate the role of intransitivity in coevolution in the
light of the above developments. It is known that the use of Pareto-coevolution
transforms intransitive superiority relations into transitive relations; we provide
a concise proof demonstrating this. While this transitive relation provides an
appropriate basis for reliable coevolution, cycling is also possible for transitive
relations, as shown in a simple example. We discuss the potential of coevolu-
tion methods to avoid cycling, and investigate the performance of two recent
algorithms on test problems featuring intransitivity.


The structure of this paper is as follows. Section 1 discusses intransitivity and
recent results in achieving reliable progress in coevolution. Section 2 presents
experimental results, and Section 3 concludes.


1 Intransitivity


1.1 Intransitivity can lead to cycling


A familiar example of intransitivity is provided by the game of Rock, Paper,


Scissors, where scissors beats paper, paper beats rock, and rock beats scissors.
Suppose we administer this problem to the minimal setup that may be called
coevolution, namely a hillclimbing individual that learns by self-play. The ex-
pected transcript of this experiment if the population is initialized with Rock


(R), and a newly generated individual replaces the current individual if and
only if the former beats the latter is R,P, S,R. As this example demonstrates,
the application of a hillclimber to an intransitive problem can lead to cycling.







1.2 Pareto-Coevolution


In Pareto-Coevolution [12, 13], the individuals that are used as tests in eval-
uating other individuals are used as objectives, in the sense of Evolutionary
Multi-Objective Optimization. Table 1 shows an example of interactions be-
tween three different individuals, A, B, and C. The outcomes in the matrix may
be viewed for example as the score of the row player against the column player
in a two-player game G with the row player as first player, so that for example
G(a, a) = 0, G(a, b = 1). The outcomes can be used to define a relation R that
specifies which games result in a win for the first player: aRb, bRa, cRa, cRb.
In standard coevolution, this relation is used directly to assess the quality of
the different individuals by interpreting it as a ’greater than’ relation. Fitness
can then for instance be based on the number of wins an individual achieves.
However, as the example shows, this direct use of the relation can yield con-
flicting information (e.g. aRb and bRa), resulting from the fact that first player
strategies are compared against second player strategies.


Table 1. Example outcomes for three individuals, a, b, and c. Each table entry lists
the outcome of a row player against a column player.


a b c


a 0 1 0
b 1 0 0
c 1 1 0


When Pareto-Coevolution is used, a distinction is made between learners


(candidate solutions) and tests (individuals used to evaluate the quality of learn-
ers). If our aim is to find an optimal first player strategy, then individuals func-
tioning as first (row) players are learners, and the second (column) players are
tests. This shift in perspective is illustrated by renaming the column players as
a′, b′, and c′ respectively to signal their different role when used as a test.


Pareto-Coevolution now evaluates a learner by viewing its outcomes against
tests as objectives. Two learners are compared using the Pareto dominance re-
lation, defined as follows: an individuals x with objective values xi dominates
another individual y with objective values yi if and only if:


∀i : xi ≥ yi ∧ ∃i : xi > yi


Thus, in the example, c dominates a, as c’s score is at least as high as a’s score
for all tests, and higher for at least one test (a′). Likewise, c also dominates b,
while a and b do not dominate any other learners. The dominance relation is a
new relation that can be used to evaluate and compare learners. By viewing a
learner’s outcomes against tests as objectives and comparing learners based on
Pareto-dominance, we have obtained a second relation R′ that can be derived
from R. In this new relation conflicting information, such as aR′b∧ bR′a, cannot
occur.







1.3 Pareto-Coevolution transforms intransitive relations into


transitive ones


The previous section illustrated how Pareto-Coevolution takes a given relation R


between individuals and uses it to define a new relation R′ specifying dominance
relations between learners, and using test outcomes as objectives. It has been
observed that using test outcomes as objectives results in an evaluation function
that is transitive in each objective, and that the relation induced on learners by
Pareto-Coevolution cannot be intransitive for any fixed set of tests [18, 11]. Bucci
and Pollack [19] observe that Pareto-Coevolution induces a preorder relation on
learners which can be embedded into


�
n, and is therefore transitive.


In summary, Pareto-Coevolution transforms a given, possibly intransitive
superiority relation between individuals into a transitive dominance relation.
This can be seen with the following brief proof:


Let R be a relation over a set of individuals I. For any a, b ∈ I, aRb may
be interpreted as stating that a obtains a positive outcome against b. Without
loss of generality, we assume that the first players x in interactions xRy are the
learners whose outcome are to be maximized, and the second players y are tests.
Then Pareto-Coevolution transforms the initial relation R into a new relation R′,
defined as the Pareto-dominance over learners that uses the tests as objectives:


a1R
′a2 ⇐⇒ ∀x ∈ I a1Rx ≥ a2Rx ∧ ∃x ∈ I a1Rx > a2Rx (1)


R′ is transitive if ∀a, b, c ∈ I aR′b ∧ bR′c =⇒ aR′c (2)


Assume aR′b ∧ bR′c. Then


∀x ∈ I aRx ≥ bRx ∧ (3)


∃x ∈ I aRx > bRx (4)


∀x ∈ I bRx ≥ cRx ∧ (5)


∃x ∈ I bRx > cRx (6)


From (3) and (5): ∀x ∈ I aRx ≥ cRx (7)


From (4) and (5): ∃x ∈ I aRx > cRx (8)


By combining (7) and (8): ∀x ∈ I aRx ≥ cRx ∧ ∃x ∈ I aRx > cRx


Therefore aR′c.


1.4 Transitive games can lead to cycling


Even in a transitive game, cycling is possible. This can be shown by a small
example, see the payoff matrix for learners (a1, a2) in Table 2; the payoff for
tests (b1, b2) is the inverse. Table 2 shows the sequence of learner and test
populations when two size one populations are initialized with learner a1 as
the learner population and test b1 as the test population. Both populations are
hillclimbers that maximize their score against the other population. Given a1
as a learner, the best strategy for the test population is b2. Given b2, the best
strategy for the learner population is a2, and so on. After four replacement steps,
the populations are back to their initial state, and cycling has thus occurred.







Table 2. Example demonstrating cycling in a transitive problem. Left: payoff matrix.
Right: After four transitions, both population are in their initial state again.


b1 b2


a1 1 0
a2 0 1


L a1 a1 a2 a2 a1
T b1 b2 b2 b1 b1


1.5 Monotonic progress avoids cycling


Recently, an archive method for coevolution has been presented that guarantees
monotonic progress for Pareto-Coevolution. The archive, called the Incremental
Pareto-Coevolution Archive (IPCA) [16] maintains a learner archive and a test
archive. The archive accepts learners and tests from a generator, which can be
any coevolutionary algorithm. The generator can use the reliability of the archive
by using individuals from the archive as a basis for generating new learners and
test, and does not need to be reliable itself.


IPCA provides conditions determining which learners and tests produced by
the generator are accepted into the archive. The learner archive accepts individu-
als that are non-dominated and different from existing individuals in the learner
archive, and discards any individuals dominated by newly introduced individu-
als. The test archive accepts tests required to detect the uniqueness or value of
learners, and grows incrementally. For a detailed description, please consult [16].


IPCA guarantees monotonic progress, i.e. the archive avoids regress. This
criterion is defined as follows. The learner archives obtained over time form a
series of approximations of the solution concept of the non-dominated front of
learners relative to the set of all possible tests. Let these approximations be
denoted as L1, L2, . . . Lt, and let the test archives obtained over time be written
as T 1, T 2, . . . T t. Then progress is monotonic if for any t′ > t:


1. ∀TS ⊆ T t : [∃L ∈ Lt : solves(L, TS) =⇒ ∃L′ ∈ Lt
′


: solves(L′, TS)]


2. ∃TS ⊆ T t
′


: [@L ∈ Lt : solves(L, TS) ∧ ∃L′ ∈ Lt
′


: solves(L′, TS)]


From these definitions, it follows that any archive guaranteeing monotonic
progress avoids cycling. This can be seen as follows. Since each test set in the
sequence must contain a subset of tests that is not solved by a single learner in
any previous learner set yet is solved by some learner in the current learner set,
the learner set must therefore be different from any previous learner set. There-
fore, cycling in the sense of a recurring population state is ruled out. In fact,
the definition of monotonic progress is much stricter than the avoidance of cy-
cling; it guarantees that actual improvements must be made between subsequent
versions of the archive.







2 Experimental Results


As discussed in the previous section, cycling (whether due to intransitivity or
not) can be avoided. This suggests that intransitivity should present no problem
to coevolutionary algorithms with a progress guarantee. To test this conclusion,
we apply the IPCA algorithm to two intransitive problems.


The first problem is the Intransitive Numbers Game introduced in [9]. We
employ the version of the problem defined in [15], and use a value of 0.05 for
the ε parameter. The problem is discretized with a granularity of 0.05. Mutation
randomly adds a constant from [-.065,.035], and when used is applied to ran-
domly selected dimensions twice. This mutation bias makes it more likely that
mutation results in regress than progress, and is meant to model the situation
in problems of practical interest where this is generally the case.


The generator that supplies candidate learners and tests to IPCA produces
offspring using crossover (50%) and mutation (50%). With probability 0.1, it
uses an archive member as a parent. For IPCA, archive members are chosen
for this purpose based on recency, where x = index+1


archivesize
is used as the relative


probability of an archive member in a Boltzmann distribution with temperature
1, i.e. Prel = ex. The generator maintains a learner and test populations, both
of size 10. The objectives for learners are their outcomes against tests and the
distinctions between tests. The learner objectives are based on the union of the
current population and new generation of tests. The objectives for the tests are
analogous, namely their outcomes against and distinctions between individuals in
the current population and new generation of learners, resulting in a symmetric
setup.


For each objective achieved by an individual, a score is assigned that equals
one over the number of other individuals that achieve the objective, as in com-


petitive fitness sharing [14]. The weighted sum of an individual’s scores on the
n outcome objectives (weight 0.75 for learners and 0.25 for tests) and on the
n2 distinction objectives, where n is the size of the population plus the new
generation, are added to yield a single total score for the individual.


The highest scoring individuals of the new generation are lined up with the
lowest scoring individuals of the current population. Then k is determined as the
highest number for which the summed scores of the first k generation members
is still at least as high as that of the first k population members. The lowest scor-
ing k population members are discarded and replaced by the k highest scoring
individuals from the new generation.


As a control experiment, we also measure the performance of the generator
by itself, without the use of the IPCA archive. In addition to these two methods,
the LAPCA method is used. This is a layered variant of IPCA design to achieve
reasonable (but not guaranteed) reliability while maintaining limited archive
sizes. LAPCA is described in detail elsewhere [17]. Briefly, the learner archive
in LAPCA maintains a number n of layers of learners, analogous to the NSGA
algorithm for EMOO [20], while the test archive maintains tests that separate


these layers from one another; for each distinction [7] between learners in the
same or subsequent layers, tests are kept that maintain the distinction.
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Fig. 1. Performance on the Intransitive Numbers game. IPCA and LAPCA converge
to the optimum of 1, and LAPCA with two layers is most efficient in doing so. The
archive methods perform substantially better than the method that does not use an
archive.


The performance criterion is the lowest value among all dimensions of an in-
dividual; if this value increases, progress is made on all dimensions. Performance
is plotted as a function of the number of actual generations, and averaged over
50 runs.


Figure 1 shows the performance of the different methods on the two-dimensional
version of the Intransitive Numbers Game with mutation bias. The results vali-
date the expectation that monotonic progress can be made.


The second test problem is the LINT game, introduced by Richard Watson
[21]. LINT stands for Locally INTransitive game, and can be defined as follows.


G(a, b) =


{


a < b if |a− b| < d


a > b otherwise
(9)


Figure 2 shows the results of the methods on the LINT problem. Again, all
archive methods achieve sustained progress, and the two-layered LAPCA is most
efficient in doing so.


3 Conclusions


Intransitivity has long been seen as a substantial obstacle to progress in co-
evolution, as it can lead to cycling. Recent developments in coevolution clarify
how reliable progress can be guaranteed. Informed by these developments, we
review and investigate the remaining significance of intransitivity and cycling
for coevolution research.
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Fig. 2. Performance of the same methods on the LINT game. Again, all archive meth-
ods achieve sustained progress.


Pareto-Coevolution transforms intransitive problems into transitive prob-
lems, as known and as shown with a concise proof. Apart from intransitivity,
the loss of informative tests can also lead to cycling. Several recent coevolution
archives provide a guarantee of permitting progress only. Since cycling is thereby
avoided, it is expected that intransitivity no longer presents an insurmountable
obstacle to coevolution methods. This expectation is confirmed in experiments
with two intransitive problems, where the IPCA and LAPCA archive methods
achieved sustained progress and the same method without an archive fails to do
so. A main further question regarding reliable algorithms for coevolution is how
methods can be made more efficient while retaining reliability.
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