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Abstract

A novel methodology is presented to structured yield–
aware synthesis. The trade–off between yield and
the unspecified performances is explored along the
design space boundaries, while respecting specifica-
tions on the other performances. Through the unique
combination of multi–objective evolutionary optimiza-
tion techniques, multi–variate regression modeling and
sensitivity–based yield estimation, the designer is given
access to this trade–off, all within transistor–level accu-
racy. Even more, a large reduction in required com-
puter resources is obtained compared to alternative ap-
proaches.

1 Introduction

When observing the design methodology to size analog
and RF integrated circuits, a transition has emerged from a
’pencil and paper’ approach to a simulation–based method-
ology. For certain types of circuits even an optimization–
based synthesis approach has become feasible. The evalu-
ation of yield, incorporated in an automated synthesis flow,
is still at an early stage of research, mainly due to com-
puter resource limitations. This work provides in a method
to explore the trade–off between yield and unspecified per-
formances (typically power consumption), while respecting
performance specifications. The accuracy of the resulting
trade–off curve targeted in this work approaches transistor–
level results very closely. The paper is organized as follows.
In section2, an overview of the problem and the proposed
methodology is presented. Section3 gives a brief summary
of multi–objective optimization techniques. Multi–variate
regression techniques are outlined in section4. Yield cal-
culation and trade–off analysis is discussed in section5. In
section6 this method is applied to an operational transcon-
ductance amplifier. Finally conclusions are drawn in sec-
tion 7.

2 Overview

2.1 Problem formulation

In general, a circuit design problem can formulated in
the following manner1:

1Unless otherwise stated, all optimization problems in this paper are
considered to be minimization problems; translation into maximization
problems is trivial.

optimize {φ
d
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)
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The designer’s task is to find the vector of nominal de-
sign variablesχ, for which all functional performancesφ

f

meet their specifications, all constraintsη(ζ, φ
f
) are satis-

fied, and the combination of dissipative performancesφ
d

and yieldY is optimized in some sence.ζ represents the
vector of constraint variables (e.g. drain–source voltage of
a MOS transistor) andη is a vector of functions expressing
all constraint equations and performance specifications.

Notice that the dissipative performance vector is higher–
dimensional (e.g. power consumption and silicon area allo-
cation). Moreover, an optimal value for one of the compo-
nents ofφ

d
does not guarantee optimal values for the other

components at all. In other words, a trade–off exists be-
tween the different dissipative objectives. From a design
automation point of view, however, it would be preferable
to generate not a single solution to (1), but to construct the
whole trade–off curve between the competing dissipative
performances and yield.

Statistical process variations2 ξ cause physical quantities
of a circuit to differ from the nominal design pointχ. Due to
this mismatch, the circuit’s functional performance deviates
from the nominal performance. This might cause one or an-
other specification to be violated; hence the circuit becomes
infeasible. For this reason, aspects of yield estimation and
yield optimization need to be taken into account from the
very beginning.

2.2 Existing solutions

Basically two separate methodologies exist for yield–
aware design automation. These differentiate by the de-
gree of integration of the yield estimation into the design
automation phase.

On the one hand, yield–aware design automation is split
up in two distinctive steps: first a nominal design, fol-
lowed by a local optimization to improve yield. For each
of these two steps, several methods are available. [2] sum-
marizes different research tracks targeting the nominal de-

2In most process fluctuation models (e.g. [7]), the variance of certain
physical quantities is related to the nominal design point. Henceσξ =

f
(
χ
)

.
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sign of analog integrated circuits. Most of these methods
are based on stochastic optimization algorithms. Once the
nominal design point is determined, direct yield estimation
methods are used to fine–tune this nominal design point lo-
cally. These yield–estimation methods calculate the volume
(or surface) integral of the (cumulative) probability density
function in the disturbance space of the volume (or surface)
confined within the so–calledacceptability region. This is
the set of disturbance vectorsξ for which the circuit meets
all specifications, given the nominal design point [6,11,13].
Monte–Carlo algorithms are most suited to calculate these
integrals in a high–dimensional space.

As stated in [10], gradient–based yield optimization
starting from a nominal optimizer–driven design often gets
obstructed in a local optimum. Also it is not always capable
to find sufficiently high yield estimates. To anticipate this
situation, yield estimation is integrated into the circuit syn-
thesis step. Two examples of this methodology appeared:
a single–objective simulation–based approach [10] and a
single–objective symbolic approach [5]. Both methodolo-
gies result in a single design point satisfying all perfor-
mance specifications and constraints and having some op-
timal combination of dissipative performance values and
yield. However, these methods don’t allow for examin-
ing the trade–off between different dissipative performances
and yield. In [9] a design space boundary exploration
method is presented, using successive single–objective op-
timization sessions. Aspects of yield were not considered.
Moreover, the required computer resources are much higher
than for the proposed method.

2.3 Proposed methodology

This work integrates yield–estimation in the circuit syn-
thesis phase. As a result, the trade–off between unspecified
dissipative performances and yield can be examined. The
proposed design flow is depicted in Fig.1.

1. Given the topology and technology at hand, the
boundaries of the functional and dissipative perfor-
mance space are explored. Samples are generated
which are located at the boundaries. From these sam-
ples, the relationship between design variables and
performances is retrieved within transistor–level ac-
curacy.

2. Next the relationship between performancesφ and
circuit parametersx is captured in a mathematical
formulation. Not only the performances, but also the
imposed constraints are captured in models for pur-
poses that become clear later on. Here, multi–variate
regression techniques are used.

3. Only at this phase, specifications are introduced ac-
cording to the application in which the circuit will be
plugged.3 Specifications can either be single–sided

3Only at this moment, the boundaries on the functional performances
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Figure 1. Proposed methodology towards
yield–aware design space boundary explo-
ration

(i.e. a lower or an upper bound) or double–sided
(both upper and lower bound specified). Fig.2 shows
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Figure 2. Illustration of yield near the de-
sign space boundaries with all performances
specified

a generic case of the performance space boundaries
for a functional performanceφ1 and a dissipative per-
formanceφ2, which both need to be minimized. Also,
a specification is set onφ1. The white area represents
the feasible design space.

4. At this phase, the trade–off between unspecified per-
formances (typically the dissipative performances)

are known. Hence, one can judge whether or not this topology is feasible
for the given set of specifications. Notice that this is often overlooked
in most published design automation approaches. Typically, one imposes
a set of specification on the performances, and then launches a single–
objective optimization session. However, when these specifications were
set too tight, the optimizer is not able to find a feasible solution.
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Figure 3. Trade–off between yield and dissi-
pative performance φ2

and yield is explored.4. E.g. by moving the optimal
pointA to pointB, yield can be improved drastically.
In this phase of the design flow, sensitivity–based
yield estimation techniques are used to explore the
trade–off between the unspecified performances and
yield in another multi–objective optimization step.
Here, the evaluations needed by the optimizer are re-
trieved from polynomial performance models, which
result from the previous step. Fig.3 conceptually de-
picts the resulting trade–off between the dissipative
performanceφ2 and yield.

3 WATSON: exploring design space
boundaries

This section depicts how the relationship between design
variables and performances is explored at the boundaries of
the design space. The method aims to provide results within
transistor–level accuracy. Therefore a simulation–based ap-
proach is adopted in this work to evaluate the circuit perfor-
mances.

3.1 Why multi–objective optimization ?

The traditional approach in analog design automation
to solve the design space exploration problem formulated
in (1) is the single–objective optimization technique, using
a cost function in which all objectives are combined (2) 5

C (x) =
i=kd∑
i=1

ωiφdi (x) +
j=l∑
j=1

ωjηj

(
ζ (x) , φ

f
(x)

)
(2)

It is shown in [1] that such an approach performs only
moderately for exploration purposes. In one optimiza-
tion session, only a single solution is generated. More-

4Notice that the concept of yield only becomes meaningful at this mo-
ment in the flow. Either the constraints (e.g. correct biasing of transis-
tors) or the specifications on the functional performances might be violated
when considering disturbances.

5Typically, this cost function consists of a penalty portion (e.g. penalty
functions to steer a circuit into a feasible biasing point, or to penalize spec-
ifications below their target value) and a true objective portion (e.g. the
combination of power consumption and area of an integrated circuit), all
combined with proper weighting coefficients. The value of this global cost
function is then minimized.

over, this approach is unable to capture non–convex per-
formance space boundaries. Recent research in the domain
of multi–objective optimization techniques has resulted in
algorithms which are capable to track the complete design
space boundary and therefore are also applicable to analog
design automation to overcome the above drawbacks of the
single–objective optimization methods. These techniques,
which are based on evolutionary algorithms, are described
in the following subsections. But first, a few new concepts
are introduced.

3.2 Concepts for multi–objective optimization

In an N–dimensional space, the inequality operator is
redefined in (3). A decision vectorx is said to bePareto–
dominantover another decision vectory if and only if (4)
holds. Moreover a decision vectorx is a Pareto–optimal
decision vector with respect to a setA of decision vectors,
if and only if x is not dominated by any of the decision
vectors in the setA (5).

a < b ⇔ ai < bi ∀i ∈ {1, 2, . . . , N} (3)

x dominatesy ⇔ φi (x) < φi

(
y
) ∀i ∈ {1, . . . , k} (4)

x is Pareto–optimal w.r.t.A ⇔ @ a ∈ A : φ (a) < φ (x)
(5)
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Figure 4. Pareto–optimal front
The setΣ of Pareto–optimal decision vectors for the

given setA is called thePareto–optimal front. An example
is depicted in Fig.4 for a two–dimensional objective space.
PointsA andB are elements of the Pareto–front. Their de-
cision vectors are not dominated by any of the points in the
design space. On the other hand,C is dominated byA,
andD is dominated byB. Hence, neitherC nor D belong
to the Pareto–optimal front.

3.3 Algorithmic details

The theory of evolutionary algorithms is well established
for quite some time now (e.g. [8,12]). In each iteration (gen-
eration), a set (population) of data structures (individuals)
is created, each of which is a candidate solution to the op-
timization problem. The quality (fitness) of each individ-
ual with respect to the optimization targets is assessed first.
Based on their fitness value, the individuals go through a



process ofselection, recombinationand finallymutationto
constitute a new population. The overall optimization al-
gorithm tries to tailor this population to the optimization
targets. The quality of results is mostly determined by
the fitness–assignment algorithm. For multi–objective op-
timization, the requirements on the fitness assignment are
twofold. First of all, Pareto–dominant individuals should be
promoted with respect to non–dominant individuals. Sec-
ondly, individuals located in a densely populated area of
the design space should be demoted with respect to indi-
viduals located in sparsely populated areas in order to get
uniformly distributed samples. Additionally, several flavors
of stochastic operators exist which influence the conver-
gence speed of the optimization algorithm. Both a qualita-
tive and a quantitative comparison of these methods can be
found in [4,1,14]. An illustration of the capabilities of this
technique is shown in Fig.5. The functional performance
space (unity–gain frequency, slew rate and input–referred
noise density) of two operational transconductance ampli-
fiers (OTA), the Miller–compensated OTA and the high-
speed OTA, are compared. For a certain set of specifica-
tions on the functional performances, one topology clearly
is preferable over the other.
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Figure 5. Topology selection

4 Multivariate regression

To capture the relationships between the design variables
and the evaluated performances, a multi–variate regression
technique is applied, using polynomials as basis functions:

φ̃r (x) =
j=K∑
j=1

αrj

i=n∏
i=1

x
βrij

i ∀r ∈ {1, . . . , k} (6)

where αrj ∈ R , βrij ∈ {−2,−1, 0, 1, 2} (7)

From the preceding optimization session, a Pareto–front
set Σ containingN samples is available. In the multi–
variate regression techniqueK degrees of freedom are in-
troduced, whereK < N . Substitution of the Pareto–front
samples

{
(x, φ(x))

}
in (6) allows for solving the unknown

coefficients. The complexity of this polynomial regression
model is further reduced by pruning only the dominant con-
tributions.

5 Yield–aware exploration

The final step in the proposed design flow is the trade–
off analysis between unspecified performances and yield.
To this end, a yield estimation method is required.

5.1 Yield calculation

Process fluctuations typically exhibit small perturbations
from their nominal value. This behavior is characterized
using normally–distributed probability density functions.
Fig. 6 depicts the probability density functionf (a) of a
normally distributed variablea, disturbed by process fluctu-
ations. The combination of the mean valueā and the stan-
dard distributionσa of the variablea fully characterize its
stochastic nature.

α
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a
a

pdf(a)

Figure 6. Normally distributed random vari-
able with specified upper and lower bounds

After introducing specifications (upper and lower bounds),
yield is calculated as the integral of the probability density
function over the acceptability region (8). From a compu-
tational point of view, this definition requires a lot of com-
puter resources to obtain accurate results in a higher dimen-
sional design space. To overcome this problem, a set of
capability indices is introduced in [3]: (9) and (10).

yield =
∫ a=αU

a=αL

f (a) da (8)

Cp =
αU − αL

6 σa
(9)

Cpk =
min

(
(αU − ā) , (ā − αL)

)
3 σa

(10)

The Cp index is related to performance variability,
whereas theCpk index deals with both performance center-
ing and performance variability. Table1 shows the number
of failures for different values ofCpk. When considering
multiple performances simultaneously, global capability in-
dices are defined by (11) and (12).

Cp global = min
r

(Cpr ) ∀r ∈ {1, . . . , k} (11)

Cpk global = min
r

(Cpkr ) ∀r ∈ {1, . . . , k} (12)



Table 1. number of failures (on a total of 1) for
different Cpk values

Cpk failures Cpk failures
0.00 0.50e0 1.00 1.35e-3
0.25 2.27e-1 1.25 8.84e-5
0.50 6.68e-2 1.50 3.40e-6
0.75 1.22e-2 1.75 7.61e-8

It is important to notice that the dimension of the design
variable spaceχ fundamentally differs from the dimension
of the disturbance spaceξ.6 Both spaces are transformed
into the circuit parameter space. From that moment on, the
different components of a vectorx in the circuit parameter
space are no longer statistically independent. Hence, the
standard deviation calculation of the performances is a two–
step process:

dφr =
i=M∑
i=1

∂φr

∂xi
.dxi

=
i=M∑
i=1

j=m∑
j=1

∂φr

∂xi
.
∂xi

∂ξj
.dξj (13)

As the different components of theξ–vector are selected
to be statistically uncorrelated, the standard deviation on the
performances is calculated as:

σφr =
[i=M∑

i=1

j=m∑
j=1

(∂φr

∂xi
.
∂xi

∂ξj

)2
.σ2

ξj

] 1
2

(14)

5.2 Yield–aware design space boundary exploration

To explore the trade–off between yield and the unspeci-
fied performances, a new multi–objective optimization ses-
sion is started with the following properties.

• The optimizer takes the designable variables as deci-
sion vector (similar to the first optimization process
where the design space boundaries were explored).

• The models described in section4 are used to eval-
uate the performances of each individual in the pop-
ulation. Yield is estimated using the techniques de-
scribed in the previous subsection.

• The original constraints (from the first design explo-
ration session) are preserved as constraints.7 Extra

6The first space includes all designable variables (e.g. nominal tran-
sistor dimensions, biasing currents and voltages,. . . ), whereas thelatter
space contains stochastically independent disturbances (e.g. geometrical
mismatch, threshold voltage mismatch,. . . ) [7].

7The intention is twofold. First of all, these constraints are limiting the
acceptability region and are therefore necessary to calculate yield. Sec-
ondly, including these constraints keeps the optimizer from screening in-
feasible design space areas. During the model extraction, these areas were
not considered. Therefore one might expect the model accuracy to be de-
graded in those infeasible areas. However, by taking into account these
original constraints, the optimizer is kept out of that area.

constraints are introduced in terms of the specified
performances.

• The objectives to be optimized are the open perfor-
mances as well as the capability indicesCp andCpk.
Note that alsoCp is optimized to ensure that perfor-
mance variability is reduced.

The Pareto–optimal samples, resulting from this opti-
mization session, then represent the trade–off between the
open specifications and yield.

6 Illustration: the Miller OTA

The method is now illustrated for a Miller CMOS oper-
ational transconductance amplifier (OTA) in a0.7 µm tech-
nology. Its topology is shown in Fig.7. In three successive

M3

M6

Cload

Cc

Ibias

M4M5

M1a M1b

M2a M2b

Figure 7. Miller operational transconductance
amplifier

steps, the trade–off between yield and open performances is
investigated.

Design space boundary exploration First the perfor-
mance space boundaries are explored. The 6 perfor-
mances to be explored are: power consumption [W], sili-
con area [m2], gain [dB], unity–gain frequency (UGF) [Hz],
slew rate [Vµs ] and input–referred noise density [nV√

Hz
]

(evaluated at 1 kHz). The phase margin [◦] is taken as
constraint, together with 16 constraints on the gate–source
overdrive voltage (Vgs − VT ) and drain–source voltage of
all MOS transistors (to ensure proper biasing). The 14des-
ignable nominal variables for this topology are: all transis-
tor widths and lengths, the biasing current and the Miller
capacitance. Both the supply voltage and the load capac-
itance are considered to be fixed parameters (Vdd = 5.0 V
andCload = 10.0 pF. Furthermore, extra disturbances (mis-
match on the threshold voltages, and mismatch on the cur-
rent factorβ, both for PMOS and NMOS devices) are taken
into account at this stage, to ensure accurate model extrac-
tion in the circuit parameter space. Fig.5 depicts the bound-
aries in the (UGF, SR, noise) space.

Performance model extraction The obtained Pareto
front contains 828 samples. The characteristic behavior of
the front is captured in a multi–variate regression model.
A test population containing 200 individuals, located close
to the Pareto front, is then generated to verify the model’s
accuracy. After model reduction, the global error measure,



which is the overall relative standard deviation between the
model evaluation and the simulated values, equals 0.021.

Yield–aware design space boundary tracking At this
stage, specifications on the functional performances are in-
troduced. In this example, the following set of specifica-
tions is introduced:

UGF > 75MHz, SR> 25V/µs, gain> 60dB

input–referred noise density< 5.0nV/
√

Hz

power, area to be minimized

A new multi–objective optimization session is started.
As initial individuals in the evolutionary population, those
Pareto–front samples are selected from the WATSON ses-
sion, which satisfy the introduced set of specifications. Ob-
jectives in this optimization session are the open perfor-
mances power and area as well as the capability indicesCp

andCpk.

Table 2. Illustration summary
performance yield
exploration exploration

generations 90 75
evaluations 9071 7525
Pareto samples 828 419
CPU time 4h 02min 3h 11min

A projection of these samples is shown in Fig.8. The
design space boundary is depicted with the straight line.
As expected, by minimizing the power consumption for the
given set of specifications, the design variables move closer
to the design space boundaries (limited by constraints and
functional specifications). Hence the yield degrades for a
lower power consumption.
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Figure 8. trade–off between yield and power
consumption
As a final verification, a transistor–level simulation is

carried out for some of the HOLMES Pareto–front samples.
The relative difference between transistor–level simulations

and model evaluations is limited within two percent. This
shows that yield–aware optimization based on model eval-
uation has become a successful methodology.

7 Conclusions

In this paper a new approach was presented to integrate
yield estimation into the nominal design flow. Using multi–
objective simulation–based optimization techniques, accu-
rate performance models are generated. In a next optimiza-
tion session, the trade–off between sensitivity–based yield
calculation and unspecified performances is explored within
transistor–level accuracy. The Miller OTA illustrates this
novel methodology.
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