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ABSTRACT 
 
This paper presents a study of the ability of the Stochastic Hill Climbing algorithm to solve multi-objective problems. In 
these problems exist two or more functions to be optimized and there is not a criterion to select between two solutions unless 
one of them dominates the other according to the Pareto’s concept. In these problems it is desired to obtain the highest 
quantity of non-dominated solutions. This work shows that Stochastic Hill Climbing is able to have a good performance in 
this kind of problems, and the advantages of restarting the search when it is stagnated. Successful results are shown in 
comparison with others obtained via Genetic Algorithms. 
 
 
 

1.INTRODUCTION 
 
In many real-world problems, the users desire to obtain 
solutions that satisfy more than one objective. In some 
cases, exists a clear relationship between the objectives to 
be optimized, and that permits their conversion into a 
single-objective function, which is the combination of all 
the others by a weighted sum. In other situations this 
relationships can’t be established. That’s the case of the 
multi-objective problems. 

 
In the field of the Evolutionary Algorithms exists a big 

interest for this kind of problems. Coello [1] has made a 
recent revision of the state-of-the-art in that field. Although 
the use of the weighted sums to face this kind of problems is 
very common, the convenience of other alternatives that 
permits the user to choose between two possible solutions is 
undeniable. 

 
In that way, the objective of the multi-objective problems 

is to find the highest possible quantity of non dominated 
solutions. One solution dominates another when it is better 
in at least one criterion to be optimized and it is not worst in 
any of the others criteria. For example, if solution A is better 
than solution B by the criteria C1 and is worst in criteria C2 
neither of the solutions dominates the other. The set of all 
non-dominated solutions is named Pareto Set. Summarizing, 
the objective of a multi-objective optimization is to find the 

highest quantity of the Pareto Set solutions, giving them to 
the user or decision-maker to make the final decision. 

 
It is very common to believe that the Evolutionary 

Algorithms [7] have a special advantage to this kind of 
problems due to the existence of population of solutions. In 
this work we show that a simple method (Stochastic Hill 
Climbing) can be successfully used for this kind of 
problems. This research, continues other works that have 
tried to establish the conditions in which an optimization 
method surpasses another [8][11][4], and led to Wolpert & 
MacReady’s NFL Theorem [12]. This theorem states that is 
not possible to establish the superiority of a method over 
any other when they are averaged over all the possible 
functions. In [6][5][10] can be found many real-world 
problems in which a simple Stochastic Hill Climbing 
surpasses other methods as the Genetic Algorithms [2], 
Taboo Search or Simulated Annealing. 

 
This work follows that research line in the multi-

objective optimization field. 
 

2. ADAPTATION OF THE METHODS TO 
SOLVE MULTI-OBJECTIVE PROBLEMS 
 
In order to solve multi-objective problems, the traditional 
meta-heuristic methods (e.g. Genetic Algorithm) need to be 



modified. This section presents some of these modifications 
that are relevant to this paper.  
 
2.1 Genetic Algorithms 
 
Genetic Algorithms are the most popular Evolutionary 
Algorithms. They mainly consist of three main processes: 
Selection, Crossover and Mutation. The work of Coello [1] 
provides a good source of information about the solution of 
multi-objective problems via Evolutionary Algorithms. To 
the objectives of our work, only three modifications of the 
traditional methods will be explained: 

 
Vector Evaluated Genetic Algorithm (VEGA) [2][3]: 
The change consists of the split of the population to 
create fractions or groups which will be evaluated and 
submitted to selection considering only one objective. 
Thus, if there are two objectives, one half of the 
population will be evaluated and selected according one 
objective function, and the other half according the 
second function. VEGA’s weakness is its tendency to 
return only the extreme solutions of the Pareto Set, in 
other words: those, which optimize only one of the 
many objectives [3][9]. 

 
Niched Pareto Genetic Algorithm (NPGA) [3]: 
NPGA presents a modification of the tournament 
selection [2]: to choose between two individuals, the 
dominance between them is considered and compared 
with a random selected group of other individuals. If 
the dominance relationship can’t be established it is 
chosen the less common individual in regard of its 
phenotypic characteristics (its evaluation values). That 
technique is known as “sharing” in the GAs and its 
main purpose is to guarantee the individuals diversity. 

 
Multi-Objective Genetic Algorithm (MOGA) [9]: 
Here all the objectives are integrated in a single-
objective function via a weighted sum. The weights are 
chosen in a random way in each generation. In that 
manner the direction of the search will vary during the 
evolution, leading to a greater distribution of the 
obtained Pareto Set. 

 
2.2 Stochastic Hill Climbing 
 
The Stochastic (SHC) is a very simple method [5][6][10]. It 
starts from an initial random solution. Later a set of 
iterations is made, in each one of them an unary mutation 
operator is applied over the current solution. If the new 
solution is better than the previous one, then the new 
solution will be taken as the current solution for the next 
iteration. Many works have shown the convenience of also 
accepting a new solution if their evaluation is equal to the 
one of the current solution [5][6][10].  

 

A simple manner to make the SHC useful in multi-
objective problems is the modification of the comparison to 
set it in function of the dominance. In that way, the modified 
SHC, accepts a new solution if this one is not dominated by 
the current solution. As a complement, a list of non-
dominated solution is maintained. Thus, each time a new 
solution that is not dominated by the current solution is 
found, it is compared with the whole list to delete the new 
dominated solutions. When the iterations finish, the list will 
contain all the solutions of the Pareto group that were 
obtained with no duplicates. We named this method Multi-
Objective Stochastic Hill Climbing (MOSHC).  

 
It is also very accepted that SHC improved its 

performance if the search is restarted whenever the search is 
stagnated. .We also made an adaptation of the MOSHC 
algorithm with the inclusion of this “restart” technique, 
which consists in checking if all the possible mutations to 
the current solution were made, and if so, it is erased and a 
new individual is randomly generated to be the new current 
solution. This modification leads to a method named Multi-
Objective Stochastic Hill Climbing with Restart (MOSHC-
R). 

 
In the future, another SHC alternatives to face multi-

objective problems could be studied. For example, it is 
possible to randomize the weighted vector as in MOGA [9] 
or to stimulate diversity with the “sharing” mechanism as in 
the NPGA [3].  

 
 

3. EXPERIMENTAL RESULTS 
 
To study the performance of MOSHC and MOSHC-R, three 
problems where tested: 

 
Units & Pairs in a 12-bits-length string (UP12). Here, 
the functions to optimize are the quantity of bits with 
value one (1), and the quantity of pairs of consecutive 
different bits (01 or 10) in binary strings. For example, 
in the string 111101111111 the quantity of  ‘1’s is 11 
and has only 2 pairs. This function was used in [3][9]. 
The optimal Pareto set is formed by the solutions with 
the following values (Units, Pairs): (12,0), (11,2), 
(10,4), (9,6), (8,8), (7,10) y (6,11). In [3] it is said that 
although this problem seems very artificial, it has a big 
relationship with structural design problems. 

 
Units & Pairs in a 28-bits-length string (UP28). It is 
similar to the previous one, but for a bigger string. It 
was used in [3]. The optimal Pareto group is formed by 
the solutions with the following values (Units, Pairs): 
(28,0), (27,2), (26,4), (25,6), (24,8), (23,10), (22,12), 
(21,14), (20,16), (19,18), (18,20), (17,22), (16,24), 
(15,26) y (14,27). 

 



Schaffer’s F2. The objective functions are X2 and     
(X-2)2 where [-6,6]. The X variable is codified in a 14-
bits-length string. The optimal Pareto set contains the 
2730 solutions in the interval [0,2]. 

 
In all cases the mutation used in MOSHC consisted in 

the random mutation of a single bit. 
 
In [3][9] the frequency of obtaining their results is not 

shown, but they said that the showed results are typical. For 
the MOSHC, 20 independent executions were made.  

 
In [3][9], the duplicated solutions are not eliminated. For 

example, for UP12 only one solution exists where Units=12, 
that is (12,0). However, it is reported that NPGA obtains 26 
solutions of this kind, VEGA obtains 38 and MOGA 3, in 
the final population of 100 individuals. This is a difficulty to 
make a most fair comparison with MOSHC which 
eliminates this duplication. The experimental results 
obtained by MOSHC and its comparison with MOGA, 
VEGA and NPGA in each problem are shown below. 

 
UP12: The three studied genetic algorithms had a 

population of 100 individuals and were executed during 100 
generations [3][9]. For MOSHC, were established 10000 
iterations as an equivalent. MOGA, regularly found 
solutions of the seven kinds. NPGA didn’t find solutions of 
(6,11). VEGA didn’t encounter solutions with values (10,4) 
nor (9,6). The results obtained for MOSHC are shown in 
Table 1. 

 
According the obtained Pareto group size and 

eliminating the evident duplicates of the (12,0) solution, 
NPGA obtains 75  “different” solutions, VEGA obtains 40, 
and MOGA 64. The word different is quoted, because there 
is no warranty that they are really different, because other 
type of solutions (different to (12,0)) are possibly presented 
in the final set. This value is only the maximum of the really 
different solutions found by each method. MOSHC obtained 
an average of 58.55 really different Pareto solutions. 

 
 

Kinds of Solutions (Units, 
Pairs) 

Occurrence 
% 

(6,11) 45 
(7,10) 65 
(8,8) 100 
(9,6) 100 

(10,4) 100 
(11,2) 100 
(12,0) 55 

 
Table 1: Performance of the algorithms in problem UP12 
 
 
UP28: For this problem we have the results obtained by 

NPGA after 200 generations, with 400 individuals each [3]. 

As an equivalent, MOSHC was allowed to do 80000 
evaluations. NPGA got solutions of all the kinds but 
(14,27), and 376 “different” solutions after deleting the 
evident duplicates of (28,0). However, when the “sharing” 
mechanism is omitted in the NPGA, no solutions for (28,0), 
(27,2), (26,21), (25,6), (14,27) are obtained. MOSHC results 
are shown in Table 2.The average of the found Pareto 
solutions was of 22428.3, widely overcoming the NPGA 
results.  

 
 
 

Kinds of Solutions 
(Units,Pairs) 

Ocurrence 
% 

(14,27) 5 
(15,26) 45 
(16,24) 80 
(17,22) 95 
(18,20) 100 
(19,18) 100 
(20,16) 100 
(21,14) 100 
(22,12) 100 
(23,10) 95 
(24,8) 90 
(25,6) 90 
(26,4) 90 
(27,2) 70 
(28,0) 10 

 
Table 2: Performance of the algorithms in problem UP12 
 
 
 
Schaffer’s F2: Here, only were available the results for 

NPGA and VEGA [3], after 200 generations and a 
population of size 30. In correspondence, the MOSHC 
worked with 60000 evaluations of the objective functions. 
Both NPGA and VEGA obtained 2 non-optimal 
(dominated) solutions in the final population of 30 
individuals, and consequently, a 28-solutions Pareto optimal 
group. The difference between them, lays on the Pareto 
group distribution, NPGA obtains a Pareto group much 
better distributed in [0,2], while VEGA almost hasn’t 
solutions for the intervals [0,0.2], [0.5,1.2] and [1.5,1.8]. 
MOSHC found an average of 875.6 in the Pareto set. It also 
represents the 32.7% of all the possible Pareto solutions. 
This solutions are well distributed on the interval [0,2]. 

 
In summary, MOSHC is able to have a general 

performance very similar to the GA. In some cases it is 
much better, although in certain executions was observed a 
convergence to values that can not generate individuals 
better than themselves via mutation, and that, provokes a 
little quantity of solutions, which could even not belong to 
the Pareto group. 



To solve this situation, we modified MOSHC by using 
the “restart” technique producing the Multi-Objective 
Stochastic Hill Climbing with Restart (MOSHC-R). It was 
tested in the three previous problems with the same number 
of iterations and executions than the original MOSHC. The 
results for each case were the following. 

 
UP12: It was found an average of 100.25 Pareto 

solutions. Those of (6,11) kind appeared the 55% of the 
times, (7,10) the 95% and (12,0) the 90%. All the other 
valid types occurred always.  

 
UP28: The Pareto solutions average was of 33156.2, 

occurring all the other kinds the 100% of the times, but 
(14,27) and (28,0) that appeared the 15% and (15,26) the 
75%.  

 
Schaffer’s F2: An average of 1869.35 solutions of the 

Pareto group were found, representing the 68.47% of the 
possible valid solutions. 

 
According the results exposed above, MOSHC-R widely 

overcomes the original method and the other GA variants, in 
both quantity and quality of the final results due to its ability 
to escape from the influence of weak individuals which 
can’t generate further better solutions.  

 

4.CONCLUSIONS  
 
 In this work were proposed two modifications of Stochastic 
Hill Climbing (SHC) in order to solve multi-objective 
problems: Multi-Objective Stochastic Hill Climbing 
(MOSHC), and Multi-Objective Stochastic Hill Climbing 
with Restart (MOSHC-R) 

 
We have proved that the original MOSHC has a similar 

or better performance than the GA, even when in certain 
cases the MOSHC performance was affected due to a 
convergence to values that provoke the algorithm to get 
stucked. On the other hand, MOSHC-R has much better 
behavior than the Genetic Algorithm versions in these 
multi-objective problems. The adaptation made to MOSHC 
to enhance its performance, the MOSHC-R, demonstrated 
being very superior in all cases with respect to their ancestor 
and the GAs adaptations studied in [3][9] showing an 
increase in quantity and quality of the obtained results.  

 
Although the proposed algorithms are very simple, the 

results obtained were successful. 
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