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Abstract. The automated shape optimization of an electrostatic micromotor with
radial field is tackled. Two objectives in mutual contrast i.e. static torque and torque
ripple, depending on two design variables, are considered. An  innovative procedure
for vector optimization which aims at obtaining as many optimal solutions as
possible, is presented. To this end, a non-dominated sorting genetic algorithm
(NSGA) is set up, linking Pareto Optima Theory and Genetic Algorithms. This way,
fifty different optimal solutions lying on the Pareto optimal front are obtained. This
procedure gives the designer a wide set of optimal solution, each of which
corresponds to a different degree of preference with respect to the single objectives.  
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Introduction 
The optimal design of electromagnetic devices and, in particular, of electrostatic 
micromotors usually is characterized by objectives in mutual contrast, giving rise to a 
multicriteria optimization problem (Di Barba, 1999). There are two different ways to tackle 
such a problem. The first one consists of building a single scalar objective function by 
combining the single objectives in a suitable way. This approach leads to classical 
multiobjective optimization methods and gives a solution which is supposed to be the 
optimum. This procedure seems to be highly arbitrary in the choice of both the scalarization 
criterion and the weighting coefficients implied. The second way to tackle the problem 
consists of applying the Pareto optima theory (Deb, 1999) linking it to an optimization 
genetic algorithm (Goldberg, 1989). The result is a family of non-dominated solutions and 
the procedure does not imply any arbitrary choice. 
 

Design problem 
We dealt with a variable-capacitance rotating microactuator with radial field (Serrault, 
1993). A simplified scheme of the geometry of the device is shown in Fig. 1. The device, 
etched on a polySilicon structure, is characterized by 24 or 30 stator electrodes and 16 or 10 
rotor teeth, respectively (3/2 geometry or 3/1 geometry). The radial dimensions [µm] of the 
device are: R2=22, R3=40, R4=60, R5=63. 
Referring to Fig. 1, denoting x1=α and x2=β, we switch on one phase of the 3-phase system 
of square voltages of amplitude equal to  V = 100 V  and consider the equivalent 
capacitance Ceq(ϕ,x1,x2) where ϕ is the rotor angle. 
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Fig 1 - Cross section of the device. 
 
 

The basic formula for computing both no-load commutation torque Γ0 and static torque ΓS is 
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When Γ0 has to be computed, eq. (1) becomes 
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where CeqA(x1,x2) is the capacitance of the maximum coenergy configuration in which the 
axis of the supplied electrode is coincident with the axis of the rotor tooth; CeqB(x1,x2) is the 
equivalent capacitance when the rotor position is the same, but the supply has been switched 
to the next phase and NS is the number of stator electrodes. When ΓS has to be computed, 
eq. (1) becomes: 
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where Cmax(x1,x2) and Cmin(x1,x2) are the maximum and minimum capacity with respect to 
the rotor angle ϕ while NR is the number of rotor teeth. We are now able to set up two 
objective functions we will deal with, plotted in Fig. 2 and Fig. 3, i.e. 
maximum static torque 
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torque ripple 

( ) ( )

( ) ( )bNaN

xx
asin

asinxxF
xxF

RR coscos

,
)2(

)(,
),(

210211

212 −

Γ−
=  to be minimized (5) 

where 



 

 









−=

SR NN
a 1

2
1π    

SN
ab π+=  

 
 

0
0.1

0.2
0.3

0.4

0

0.1

0.2

0.3
0

0.5

1

1.5

2

x 10-12

Rotor teeth  size [rad]Stator teeth  size [rad]

M
ax

im
um

 T
or

qu
e 

[N
m

]

0
0.1

0.2
0.3

0.4

0

0.1

0.2

0.3
0.4

0.45

0.5

0.55

0.6

0.65

Rotor teeth  size [rad]Stator teeth  size [rad]
R

ip
pl

e 

 
Fig 2 - Maximum static torque objective function. Fig 3 - Torque ripple objective function. 

 
 
Both the objectives are non-analytical; the second one is potentially ill-conditioned due to a 
saddle point. Suitable constraints, assuring geometrical congruency and absence of 
electrostatic discharge, bound the search space. 
 

Optimization strategy 
When considering a multicriteria optimization problem, the Pareto optima theory states the 
existence of a set of non-dominated solutions called Pareto optimal front. The aim of the 
NSGA algorithm is to obtain as many solutions as possible on the Pareto optimal set 
preserving diversity among them, which means to obtain solutions equally distributed in the 
set; a schematic flow chart of the four-steps algorithm that we have implemented is shown 
in Fig 4. 
As can be seen from the flow-chart, in the first step of the algorithm we generate, in a 
random way, an initial population of 100-200 individuals in the search space. 
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Fig 4 - Flow chart of the NSGA. 



 

 

In the second step we classify individuals into Pareto sets using the following definition. A 
solution x1  is said to dominate the other solution x2 , if both the following conditions are 
true. 
1 The solution x1 is not worse than x2 in all objectives. 
2 The solution x1 is strictly better than x2 in at least one objective. 
The third step consists of the assignment of a fitness value to each individual; two criteria 
must be followed: 1) forcing convergence to the Pareto Optimal set, 2) forcing diversity 
among solutions. In order to do this, the fitness value for each individual depends on the 
Pareto set which it belongs to and a sharing procedure is implemented in order to favour 
isolated solution and to avoid clustering of solutions. As fourth step, if the stopping criterion 
is not satisfied, a genetic algorithm produces a new generation of individuals. We have 
implemented the three classical genetic operators (selection, crossover and mutation) and an 
elitism procedure that guarantees the survival of the best individual of the previous 
generation. The probability values for all the operators are listed in Fig 4. 
 

Results 
We report results of the optimization of the 3/2 geometry device. In Fig 5 and Fig. 6 the 
initial 200 individuals population is shown in the objective space and in the variable space, 
respectively. In Fig. 6 the Pareto front can also be seen. 
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Fig. 5 - Starting population: design space;   Fig. 6 - Starting population: objective space; 

200 individuals.      200 individuals. 
 
In Fig. 7 and Fig. 8 the results of the optimization are represented in the objective space and 
in the design space, respectively. 
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Fig 7 Final population: design space;  Fig 8 Final population: objective space; 

50 individuals.     50 individuals. 
 
 
It can be seen that 50 individuals converge to the Pareto front in a distributed way giving 
rise to a set of optimal solutions. The latter are distributed both in the objective space and in 
the variable space, giving rise to different possible geometries. As one can expect, it can be 
seen that solutions are characterized by almost equal values of x1 and x2 in order to 
maximize the torque and by small values of both x1 and x2 in order to minimize the ripple. 
 

Conclusion 
An innovative algorithm for the optimization of electromagnetic devices has been applied to 
the optimal design of an electrostatic micromotor. The maximum static torque and the ripple 
have been considered as objectives of optimization and a non-dominated sorting genetic 
algorithm has been set up to tackle the vector design problem. Several optimal solutions 
have been obtained, all of them distributed on the Pareto optimal front. 
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