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Abstract.  When tackling the multicriteria optimization of a device in electrical engineering,
the exhaustive sampling of Pareto optimal front implies the use of complex and time-
consuming algorithms that are unpractical from the industrial viewpoint. In several cases,
however, the accurate identification of a few non-dominated solutions is often sufficient for the
design purposes. An evolutionary methodology of lowest order, dealing with a small number of
individuals, is proposed to obtain a cost-effective approximation of non-dominated solutions. In
particular, the algorithm assigning the fitness enables the designer to pursue either shape or
performance diversity of the device. The optimal shape design of a shielded reactor, based on
the optimization of both cost and performance of the device, is presented as a real-life case
study.

1 Introduction

Optimal design in electromagnetism has a long history, from Maxwell (1869) on. In
other fields of engineering like structural mechanics the history of optimal design is
even longer, dating back to Lagrange (1770). In the latter area the modern
development has taken place over the past  three decades, anticipating the analogue
development in electromagnetism and, to some extent, fostering it. In more recent
years it has been possible to integrate the analysis of electromagnetic field with
optimization techniques, so moving from computer-aided design (CAD) to automated
optimal design (AOD).

The essential goal of AOD in electromagnetics is that of identifying, in a
completely automatic way, the system or the device that is able to provide some
prescribed performance, e.g. to minimize weight and materials cost or to maximize
some output, taking into account physical constraints and geometrical bounds. This is
actually an inverse problem and implies the simultaneous minimization of conflictual
objectives.

In real-life engineering the presence of a single criterion or objective is somewhat
an exception or a simplification. Therefore, the future of computational
electromagnetics seems to be oriented towards, and conditioned by, the development
of efficient methodologies and robust algorithms for solving multicriteria design
problems.



From a formal viewpoint, a multicriteria problem is cast as follows:

)(min xF
x

subject to g(x)<0
h(x)=0

(1)

where F(x)=(f1(x),...,fm(x)) is a vector of m criteria or objectives, x=(x1,...,xn) is the
vector of n design variables defining the device or the system, g(x) and h(x) are
inequality and equality constraints, respectively. In general, the utopia solution x*, i.e.
that minimizing all Fi simultaneously, does not exist and the so-called Pareto
solutions are accepted, i.e. those for which no decrease in any of the criteria is
obtained without a simultaneous increase in at least one of the other criteria.

Traditionally, multicriteria problems are reduced to singlecriterion problems, for
instance by means of one of the following procedures:

i) the use of a penalty function composed of the various criteria;
ii) the separate solutions of singlecriterion problems and their trade-off;
iii) the solution of a singlecriterion problem, taking the other criteria as constraints.

This approach leads to classical methods of multiobjective optimization and gives a
solution which is supposed to be the optimum.

Often in the design of electromagnetic devices a satisfactory way to tackle the
problem of multicriteria optimisation consists of applying the Pareto optima theory in
connection with a suitable minimization algorithm. The result is a set of non-
dominated solutions: in principle, all of them are optimal; in practice, each of them
corresponds to a different degree of minimization of the single objectives.

Moreover, though looking attractive, the non-dominated approach often results to
be unaffordable from the computational viewpoint; in fact, the evaluation of each
objective may imply heavy non-linear field analyses in three-dimensional geometries.
Consequently, the aim of a reliable method of multicriteria optimization should be to
approximate the Pareto optimal front by fulfilling three requirements:

- convergence to the front independent on the number, even very low, of non-
dominated solutions;

- remarkable  diversity among non-dominated solutions;
- moderate computational cost.

An attempt towards this goal is here presented.

2 EMO strategy: methodological aspects

The aim of a stochastic multiobjective optimiser based on non-dominated sorting is
to obtain as many solutions as possible lying on the Pareto optimal set while
preserving diversity among them.

GA-based strategies [1],[2],[6] typically require some hundreds individuals for
ensuring convergence. Moreover, when dealing with real-life optimization problems
in electrical engineering, the evaluation of each objective often requires a FEM
solution lasting several minutes [7],[10]. This difficulty often makes the use of GA-
based strategies computationally unaffordable or highly unpractical from an
industrial point of view.



Therefore we have decided to adopt a (1+1) ES algorithm as the optimization
engine of the multiobjective strategy shown in Fig. 1 and Fig. 2 because, in our
experience, it is robust and gives good convergence even when few individuals are
considered. It should be noted that generation, mutation and annealing steps are
implemented in parallel; this is possible because in our implementation individuals
do not interact each other during the whole process, apart from the steps of Pareto
ranking and fitness evaluation. In practice, the general structure of the algorithm is
the same as NSGA whereas genetic operators have been replaced with the evolution
strategy ones.

Two criteria must be pursued when assigning the fitness value to each individual:
1)  forcing global convergence to the Pareto optimal set;
2) forcing diversity among solutions belonging to the same set.

Fig. 1. Non-dominated Sorting Evolution Strategy Algorithm (NSESA): flowchart

To the first purpose, the fitness of each individual is evaluated according to the
Pareto set, which it belongs to. To the second purpose, a sharing procedure is
implemented within the current set in order to favour isolated solutions and prevent
clustering. This step is particularly delicate when using a small number of individuals
(say 5 to 10) and some changes with respect to classical sharing procedures [5],[8]
are here proposed.

In general, when implementing a fitness sharing procedure, diversity of individuals
in either the design space or the objective space can be considered. Moreover
solutions with strong diversity in shape can be characterised by weak diversity in
objective value (the opposite as well). Both procedures can lead to results useful for
the device designer, who is interested in both shape and performance diversity of
optimal solutions. This is why a sharing procedure in only one of the two spaces



cannot guarantee a satisfactory approximation of the Pareto optimal front in the other
space.

Fig. 2. Fitness assignment algorithm: flowchart

More into details, given a population sorted into Pareto sets, we at first consider the
first set and assign a dummy fitness dfit to each individual as shown in Fig. 2, where
cw1 is the center of weight of the first front and upoint the utopia-point.

In order to set up the sharing procedure we then evaluate the normalized average
distances di,j among elements, in both design and objectives domain. Afterwards we
implement the standard sharing formulas [3],[4] for the calculation of the sharing
parameter shi,j and the penalty coefficient mi,; we evaluate the niche radius σ   in the
following way:
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considering σx or σf when shape or performances diversity has to be enhanced,
respectively; ndof and nobjf are number of design variables and number of objectives,
respectively.

Finally, the fitness value of the i-th individual is evaluated and assigned. Before
moving to the k+1-th front a new dummy fitness dfitk+1 has to be evaluated, as shown
in Fig. 2. In order to increase the convergence rate the new value of dummy fitness
depends on the center of weights cwk, cwk+1 of current and next set, respectively. The
procedure is repeated for all successive sets.

We point out that convergence towards the optimal front is always controlled in the
objective space, while sharing procedures can be performed in either design space or
objective space.

The following convergence indexes have been defined:
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Finally, three stopping criteria have been implemented:
a) maximum number of iterations;
b) minimum value of convergence index in the objective space;
c) maximum number of iterations with no improvement found.

Results of previous investigations [9], [11] on simplified test problems have validated
the effectiveness of the strategy proposed.

3 EMO strategy: numerical aspects

Several test cases on real-valued analytical functions have been carried out for
validating the code implemented. Here we show results for one of them, namely the
Deb’s t3 problem. It is characterized by two variables and two objectives, giving rise
to a non-connected Pareto front; the problem can be defined as follows:
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Fig. 3. NSESA: 20 individuals solution for validation test

As can be seen from Fig. 3, a solution composed of twenty individuals has been
found; individuals are distributed along three of the five branches the POF is
composed of. The starting population was chosen in a random way in the design
space. Given the ik-th individual at niter-th iteration, the following two expressions
have been used in design space and in objective space, respectively, in order to
quantify the POF approximation error all along the evolution:
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The log value of both errors is plotted in Fig. 4 with reference to a single individual.



Fig. 4. History of approximation errors for the solution shown in Fig. 3

The log value of both convergence indexes is plotted in Fig. 5.

        
Fig. 5. History of convergence indexes for the solution shown in Fig. 3



4 An industrial case study

4.1 The device
The shape optimization of a single-phase series reactor for power applications is
considered [12]; the reactor is employed to reduce the peak value of short-circuit
current and so to mitigate its electrodynamical effects.

Fig. 6. Cross-section of the reactor (one quarter) and design variables

The reactor, the cross-section of which is shown in Fig. 6, is characterised by a
coreless winding with cylindrical shape (foil winding); it is boxed in a laminated
magnetic shield with rectangular shape in order to protect the surrounding
environment from the strong stray field. The latter, in turn, gives rise to power losses
in the winding that limit the operation of the device. The higher the winding, the
lesser the stray field; on the other hand, the realization of a higher winding and shield,
though reducing the effect of leakage, causes an increase of volume and cost of the
reactor so that a conflict of design criteria is originated. For a prototype reactor rating
5.9 MVA at a nominal current of 893 A the following values hold: h= 500 mm,
dm=590 mm, a=210 mm, d=80 mm, t=40 mm, N=212, filling factor of the winding
ks= 0.504.



4.2 Analysis
The distribution of magnetostatic field in the reactor, for which the rectangular
symmetry is assumed, is governed by the Poisson’s equation in terms of vector
potential A=(0,0,A)

JgradAdiv =





−

µ
1 (6)

subject to boundary conditions A=0 along x=0 and  elsewhere; J=3.57 Amm-2 is the
current density in the winding while µr=1 and µr=104 are the values assumed for
relative permeability of non-magnetic materials and iron, respectively. To solve (6)
numerically, the two-dimensional field region shown in Fig.6 has been discretized by
means of a regular grid of finite elements, namely triangles with quadratic variation of
potentials; the total number of elements is ne=950 approximately. The evolutionary
optimizer calls the MagNet code [13] for performing the field analysis and then
updates the finite element grid at each iteration.

4.3 Design
In general, up to seven design variables defining the shape of the device can be
considered: geometric height h, mean diameter dm, radial thickness of the winding a,
number of turns N, axial distance d between winding and magnetic shield, thickness s
of the shield, radial distance t between winding and shield.

Two conflictual criteria can be defined:
- the material cost f1 of the reactor, namely the weighted sum of copper and iron

weights, to be minimized:
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with ki=1, kc=3 while wi=7860 kgm-3 and wc=8930 kgm-3 are mass densities of iron
and copper, respectively;

- the fringing field f2 inside the winding, i.e. the mean  radial component of magnetic
induction in the cross-section of the winding, to be minimized as well:
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where NW=64 is the number of points of a grid sampling the radial induction in the
winding.

The minimisation of the fringing field has two important benefits: from a global
point of view it leads to a strong reduction of additional losses in the winding and thus
increases the efficiency of the reactor; on the other hand, the probability of local
overheating inside the coil and its consequent failure is reduced.

The following constraints have been prescribed:



- the rated value of inductance L=23.57 mH;
- the induction in the core, not exceeding 0.8 T, when the current is equal to

nomI2 with Inom=893 A;

- the current density in the winding;
- the insulation gaps d and t between winding and core.

Consequently, three independent design variables have been selected, i.e. height h,
mean diameter dm and number of turns N of the winding, respectively. Finally, a set of
bounds preserves the geometrical congruency of the model, namely:

  

mh 5.15.0 ≤≤
        

mda m 8.121.0 ≤≤+
      

262162 ≤≤ N (9)
The sensitivity surfaces of both f1 and f2 against (h,dm) for given number of turns

N=200 are reported in Fig. 7 and Fig. 8, respectively.

Fig. 7. Average Bx field in the winding as a function of mean diameter dm and height h of the
winding itself

Fig. 8. Normalized cost of the reactor as a function of mean diameter dm and height h of the winding



The conflict between the two objectives is evident from the comparison of both
surfaces.
5 Results and discussion

Aiming at  a preliminary investigation, the search space has been randomly sampled
by means of 4000 points uniformly distributed; the approximation of the objective
space shown in Fig. 9 has then been obtained (in the figure only 1000 samples are
represented).

Fig. 9 Objective space: random samples and Pareto solutions (*)

From a practical point of view the optimal front appears to be globally convex,
connected and composed of two parts, the one being deceptive and strongly Pareto,
the other being non deceptive and weakly Pareto [14]. Moreover, a sub-region
concentrating the majority of samples is evident; it corresponds to the weakly Pareto
front. As a consequence, individuals during evolution are strongly attracted towards
this sub-region.

The EMO strategy has been run in two cases, each of which considering 10
individuals whose initial values have been randomly selected; diversity of individuals
in the objective space has been pursued in both cases. After overlapping the two sets
of solutions, the approximation of the Pareto optimal front pointed out in Fig. 9 has
been obtained.



Fig. 10. Shape of extreme solutions: minimum cost (left) and minimum stray configurations
(dimensions in m)

Fig. 11. Fringing field in the winding for the minimum cost configuration

In Fig. 10 the device geometries corresponding to the Pareto-optimal extreme
solutions are shown; the corresponding distributions of stray field in the winding are
reported in Fig. 11 and Fig. 12 respectively. The variability of both shape and
performance is evident.



In order to estimate the maximum cost totcost of the EMO strategy implemented,
the following formula holds

femtimenobjnpopniterttot ×××=cos (10)

where: number of objective functions nobj=2 to 3, maximum number of iterations
niter=300. In our experience of real-life problems, typical number of individuals is
npop=5 to 20, while the cost of a single FEM analysis is femtime=1 to 5 min.
As for the case study developed, due to the linear magnetostatic analysis and the
inexpensive evaluation of f2 , we had  femtime×nobj=0.8 min thus requiring some 48
hours for the stopping criterion to be satisfied.

Fig. 12. Fringing field in the winding for the maximum cost configuration

6 Conclusion

In real-life engineering, when adopting an algorithm of multiobjective optimisation
based on Pareto optimality, it is of primary importance to reduce the number of calls
to the objective function, often requiring a FEM analysis. In the paper, a cost-
effective EMO strategy has been developed and applied to the shape design of a
realistic electromagnetic device.

From the methodological viewpoint, the results show that a lowest-order evolution
strategy algorithm with a small number of individuals (5 to 10) can be conveniently
used as the engine of the multiobjective optimization. Nevertheless, the procedure of
fitness assignment should be modified with respect to classical formulas. In fact, the
latter refer to large number of individuals (50 to 100) and depend on some tuning
parameters, usually defined by means of empirical formulas. In the paper a fitness



assignment procedure is proposed, making the formulas forcing diversity of
individuals univocal and easy-to-implement.

Turning to the case study, the cost and performance optimisation of a shielded
reactor has been achieved. A wide number of configurations belonging to the Pareto
optimal front have been identified, so offering the designer an effective choice among
devices that rank from the best performing one to the less expensive one. From an
industrial point of view, having a set of Pareto-optimal solutions makes it easy to
fulfil a posteriori technology-related constraints that are typical of real-life
engineering, whereas in scalar optimization they have to be carefully prescribed a
priori in order the only solution be feasible.

Finally, the proposed strategy allows the designer to pursue either shape or
performance diversity of Pareto-optimal devices.
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