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Abstract  The multiobjective optimization of an eight-coil actively-shielded
solenoid is performed, suggesting the problem as a benchmark and focusing the
attention on the optimization strategy. A goal-attainment multicriteria optimization
based on a first-order evolution strategy algorithm has been carried out; a set of
Pareto-optimal solutions has been calculated, showing that the final solutions are
spread in a region both in the design and in the variable space.

1. Introduction

In previous works [1-4], the optimization problem of Loney's solenoid has been widely
studied [7], suggesting it as an inverse magnetostatic benchmark problem and focusing on dif-
ferent possible multicriteria optimization methodologies. Many other multiple-coil configura-
tions [6] are possible and are widely used in designing highly homogeneous NMR solenoids.
Moreover, when it is important to have a very low stray field outside the magnet, the most effi-
cient solution is to use actively-shielded magnets in which the external coils carry opposite cur-
rents.

2. Geometry of the Device and Optimization Strategy

The device we deal with is inspired by some NMR solenoids and consists of eight cylin-
drical coils, four of which are bigger and carry a positive current, while the other four carry an
opposite current and are smaller. In Fig. 1, the design variables are shown.
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Fig.1 - Geometry of the eight-coil device.

For the analysis, a discretization of the coils in terms of current sheets has been performed, in
order to compute magnetic field via Biot-Savart's law and elliptic integrals. On the other hand,
the following two objective functions have been considered for the synthesis:
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where Bmax and Bmin are the maximum and the minimum values of the magnetic induction in the
interval ( -z0 , z0 ) on the axis and B0 =1 [T] is the prescribed value at the center of the solenoid.
The value of current density is modified at each iteration to ensure the prescribed value of B0.
Bstray is the maximum value of the field evaluated in two different sampling points, located at
( r , z ) = ( 24 , 0 ) and ( r , z ) = ( 0 , 10.8 )  respectively (values in cm).

A goal-attainment multicriteria strategy [5], [8] has been implemented: at each iteration,
the normalized discrepancy between the objective function value and the associated goal stated
by the designer is evaluated for each objective function; then, the bigger of the two discrepancies
is minimized. In an equivalent way the goal-attainment multicriteria strategy can be stated as
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where X is the vector of design variables, shown in in Fig. 1, G1=0.1 ppm is the desired goal for
relative field inhomogeneity and G2=1.E-3 [T] is the desired goal for absolute stray field. A
minimizer based on an evolution strategy of lowest order has been used as optimization engine
[3]. After performing several optimization runs with different starting points randomly gener-
ated, in order to select the best optimal solutions, a sorting algorithm based on the definition of
Pareto-optimality has been implemented.

3. Study of 2D Objective Functions for Simplified Configurations

In order to study 2D objective functions, simplified configurations have been considered,
for which 6 of 8 variables are fixed to a prescribed value. The first case we deal with is defined
as: case a)  X1= 0 X2= 0 X4= 0 X5=6  X7=0 X8=0 (values in cm).
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Fig.2 - Case a): log of F1 Fig.3 - Case a): log of F2

In this first case the inhomogeneity objective function F1 has a non-analytic and ill-conditioned
behaviour shown in Fig.2. A deep “valley” can be noted along which several much deeper



minima are disseminated. On the other hand, the stray-field objective function has a quite regu-
lar  behaviour and exhibits a deep unique minimum, as can be seen in Fig.3.

As shown in Fig.4, a similar behaviour of the inhomogeneity can be obtained considering
the following case b)  X2= 0 X4= 0 X7=0 X8=0 X5= 6 cm  X6=3 cm.
The behaviour of the two functions shown below is typical of the family of problems we are
dealing with and characterizes even the full eight-variable problem.

Before tackling the final and most complex eight-variable problem, a more simple four-
variable optimization has been performed on a device defined by the following
case c)  X2= 0, X4= 0, X7=0, X8=0.
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Fig. 4 - Case b) log of F1. Fig. 5 - Case c): Pareto optimal sets.

The study of the four-coil four-variable configuration is interesting in order to see how the Pa-
reto-optimal set changes when the number of optimization runs is increased. From Fig.5 it can
be seen that the Pareto set moves towards the goal point when the total number of solutions in-
creases.

4. Final Global Optimization

In order to tackle the problem of the sensitivity between initial configuration and final re-
sults we have repeated the optimization runs, generating a grid of starting points in a random
way. After 10 hours of cpu-time on a 32 bit Digital Workstation, 40 optimizations have been
performed. Applying the selection criterion mentioned in section 2 we obtain the Pareto set
plotted in Fig. 6, where the corresponding initial values are also shown. Remarkable improve-
ments in both the objective functions are evident.

In Fig.7 all the 7 final Pareto optimal configurations can be seen; it is evident that a big
shape variability is possible. As a consequence, the uniqueness of the solution cannot be
claimed.
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Fig. 6 - Pareto optimal set in the objective function space. Fig. 7 – Pareto-optimal shapes.

5. Conclusion

1) The optimization of multiple-coil shielded solenoids seems to be a very suitable problem for
testing the multicriteria non-deterministic optimization strategies, since it is necessary to cope
with objectives in conflict, ill conditioning of the objective functions, and a high number of de-
sign variables and constraints.
2) Optimization has been performed for various configurations up to a eight-coil eight-variable
solenoid geometry which presents a quite high complexity; several solutions have been obtained,
characterized by 1-10 ppm of field inhomogeneity and 1.E-2 [T] of stray field.
3) Numerical experiments show that, though using a non-deterministic minimizer, a high sensi-
tivity exists between a starting and a final point of an optimization trajectory. Consequently, it is
of fundamental importance to perform many optimization runs with different starting points and
to extract a Pareto optimal set in order to have few, yet not unique, final optima.
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