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Abstract- Evolutionary computation methods have been 

used extensively in the past for the solution of manufacturing 
optimization problems. This paper examines the impact of the 
fast-growing evolutionary multiobjective optimization field in 
this area of research. A considerable number of significant 
applications are reported for a wide range of relevant 
optimization problems. The review of these applications leads 
to a number of conclusions and establishes directions for 
future research.     

I. INTRODUCTION 

The effectiveness of evolutionary computation 
methodologies in the solution of multi-objective 
optimization problems has generated significant research 
interest in recent years. A number of evolutionary 
multiobjective optimization (EMO) methodologies have 
been developed and are being continuously improved in 
order to achieve better performance. These techniques 
have illustrated their competency against traditional 
multiobjective optimization techniques in the solution of 
this type of problems and are now considered to be a 
robust optimization tool in the hands of researchers and 
practitioners. An excellent introduction to the concepts of 
multiobjective optimization as well as a review of EMO 
techniques can be found in [1]. 

While initial applications of EMO techniques focused 
on typical benchmark optimization problems, an increasing 
number of researchers are now addressing problems 
related to real-life optimization. One optimization area of 
particular business interest is the area of production 
research. Evolutionary computation methods have 
illustrated their efficiency in handling a wide range of 
difficult NP-hard optimization problems associated with 
this area of research. A comprehensive review of relevant 
applications can be found in [2].  

The aim of this paper is to review the state of the art in 
EMO applications for the solution of multiobjective 
manufacturing optimization problems. A summary of the 
most significant approaches is provided for major areas of 
production research such as scheduling (section 2), 
production planning and control (section 3), cellular 
manufacturing (section 4), flexible manufacturing systems 
(section 5) and assembly-line optimization (section 6). 

Section 7 analyses the findings of this review and proposes 
direction for future research.     

II. SCHEDULING 
Single-objective scheduling optimization problems have 

traditionally attracted considerable research interest from 
evolutionary computation researchers, since the encoding 
of solutions is straightforward and a number of well-tested 
recombination operators enhance the robustness of the 
optimization process [2]. While EMO research in the same 
area has not been as fruitful, a number of efficient 
optimization methodologies have been proposed during the 
last decade. These approaches are discussed in the 
following paragraphs: 

A. Flowshop Scheduling 
 
Murata & Ischibuchi [3] were among the first 

researchers to propose an EMO algorithm for the solution 
of flowshop scheduling problems. Their algorithm adopted 
an aggregating weighted-sum approach for the concurrent 
optimization of objectives. The value of the objective 
weights did not remain constant throughout the process but 
was instead selected randomly each time a crossover step 
needed to be executed during the evolutionary process. In 
that way the optimization search followed various 
directions within the same optimization run. The algorithm 
kept track of the non-dominated solutions discovered 
during the optimization process. A number of these 
solutions were fed back to the process thus incorporating 
the concept of elitism into the algorithm. The proposed 
approach performed favorably to Schaffer’s VEGA [4] 
algorithm and to a fixed-weight evolutionary algorithm 
when applied to a flowshop scheduling problem with the 
aim of simultaneously minimizing the makespan and the 
tardiness of jobs. The same authors also suggested an 
extension to the algorithm by incorporating a local search 
process to all individual solutions produced during each 
generation [5]. This search process was later refined and 
optimized by Ischibuchi and Yoshida [6]. Ischibuchi and 
Yoshida also proposed the integration of the suggested 
local search technique with alternative evolutionary 



multiobjective algorithms such as NSGA-II [7] and SPEA 
[8]. Their experimentation showed that the hybridized 
version of the multiobjective optimization algorithms 
produced favorable results in comparison to the stand-
alone version. 

Shridar and Rajendran [9] considered a similar 
scheduling problem in a flowline-based cellular 
manufacturing system. They proposed an algorithm that 
maintained two subpopulations of solutions initialized with 
the help of heuristic procedures. Each subpopulation 
focused on the minimization of makespan and total flow 
time of jobs respectively. Multiobjective optimization was 
achieved through a specially designed operator (DELTA) 
that compared chromosomes in terms of all objectives 
considered. Weights were assigned to individual objectives 
for preference purposes. The algorithm produced a single 
job sequence that was further optimized through adjusted 
pairwise interchanges to produce a single optimal 
schedule. The effectiveness of the proposed algorithm was 
tested against a number of heuristic processes on various 
benchmark problems.  

Sikora [10] addressed the problem of simultaneous lot 
sizing and sequencing within the context of a capacitated 
flow line. He presented an evolutionary algorithm that 
facilitated the concurrent solution of both problems using a 
linear combination (without weights) of three objectives as 
the driving force of the optimization process: minimization 
of makespan, overtime and holding costs. While the article 
discussed in detail the conflicting nature of the objectives 
considered, neither a weighted-aggregating, nor a Pareto-
based ranking evolutionary approach was proposed as an 
optimization methodology. 

Onwubolu and Mutingi [11] approached the flowshop 
scheduling problem considering the minimization of total 
tardiness and the minimization of the total number of tardy 
jobs as the optimization objectives. Each objective was 
initially considered independently and individual near-
optimal values were found. The simultaneous optimization 
of both objectives was accommodated through a simple 
technique that identified strings with the same genotype 
evolved by both populations. These strings were regarded 
by the authors as good compromise solutions for the 
optimization problem considered.  

Recently, Bagchi [12] has illustrated the use of an 
enhanced NSGA algorithm [13] for the solution of 
flowshop, job-shop and open-shop scheduling problems. 
He proposed the use of the ‘Design of Experiments’ 
methodology for the optimal parameterization of the 
proposed algorithm and he incorporated the concept of 
elitism within the structure of the original NSGA 
algorithm. The objectives considered where the 
minimization of makespan, total flow time, and tardiness 
of all jobs in the system. The usefulness of the proposed 
methodology was illustrated on a number of test problems 
taken from the literature. 

 

B. Job-Shop Scheduling 
 
Mesghouni et al. [14] considered the typical job-shop 

scheduling problem with the primary objective of 
minimizing the makespan of all jobs to be processed. The 
solution methodology consisted of a Constrained Logic 
Programming algorithm that provided initial solutions for 
the evolutionary optimization process. Multicriteria 
analysis followed the identification of a set of solutions 
that satisfied the objective of minimum makespan. The 
PROMETHEE multicriteria analysis technique was 
employed for the identification of non-dominated solutions 
based on the minimization of makespan, minimization of 
the standard deviation of the workload of the resource, 
minimization of the mean completion time and the 
minimization of the standard deviation of completion time. 
The end-user was responsible for choosing among the 
alternative solutions generated and changing the objective 
weights according to his/her preferences. 

An interesting study on the solution of the job-shop 
scheduling problem using evolutionary computation 
algorithms was presented by Esquivel et al. [15]. They 
showed that using the concepts of multi-recombination 
(production of multiple offspring by the same pair of 
parents during crossover and choice of the best one) and 
incest prevention (recombination restricted only to 
individuals without common ancestors) evolutionary 
computation algorithms produce better results both in the 
single and multiobjective instances of the problem. For the 
multiobjective case they proposed both a subpopulation-
based approach, where each subpopulation optimized a 
separate objective and the combined population optimized 
an aggregated combination of the objectives considered, 
and a Pareto-ranking based approach utilizing the concept 
of elitism. Encouraging results were reported for both 
approaches; however, no comparison with alternative 
multiobjective optimization techniques was attempted. 

C. Case Studies 
 
A number of researchers have illustrated how the 

principles of EMO can be used for the solution of practical 
multiobjective optimization problems in the area of 
scheduling. Shaw & Fleming [16] considered a practical 
scheduling problem for a company that produces chilled 
ready mills. The MOGA evolutionary multiobjective 
optimization technique [17] was proposed for the 
simultaneous minimization of omissions, lateness and shift 
ends. A comparison of the proposed algorithm with a 
typical weighted sum approach illustrated its ability to 
provide a wealth of potential solutions while maintaining 
its optimization ability. 

Tamaki et al. [18] presented a case study on the 
application of a multiobjective evolutionary computation 
methodology for the solution of a scheduling problem in a 
plastics forming plant. The problem was modeled as an 
unrelated parallel machines scheduling problem. A typical 
Pareto-based ranking technique with elitism was used 



during the evolutionary process with the objective of 
simultaneously minimizing the sum of idle time of every 
machine, the maximum tardiness of jobs and the makespan 
of jobs. A typical example of the algorithm’s application 
was provided. 

Finally, Khoo et al. [19] illustrated how a generic 
practical scheduler for a manufacturing production system 
can be built. Their proposed scheduler consisted of a 
database that provided scheduling data, an evolutionary 
optimizer that generated near-optimal schedules, and a 
schedule-builder that was responsible for the 
transformation of any evolved sequence into a legal 
schedule. The scheduler was capable of handling various 
types of scheduling problems (job-shop, flow-shop, 
cellular manufacturing) with various types of objectives 
and constraints. The scheduler also provided a user 
interface with front-end analysis capabilities. One of the 
features of the proposed scheduler was its ability to handle 
multiple objectives. However, optimization was not 
achieved in the typical Pareto-ranking fashion. A schedule 
was initially generated that was optimal with regards to the 
makespan objective. The schedule builder was responsible 
for transforming this schedule in order to simultaneously 
minimize the tardiness objective. 

III. PRODUCTION PLANNING AND CONTROL 

Production planning and control lies at the heart of the 
manufacturing process. Irrespective of the production 
planning and control system used (push, pull, agile 
manufacturing), a number of difficult optimization 
problems arise that cannot be efficiently solved through 
traditional optimization techniques. Evolutionary 
computation methodologies as well as alternative 
metaheuristic algorithms have been employed for this 
purpose [2]. Recently, a number of researchers have 
applied the evolutionary computation principles in an 
attempt to approach multiobjective optimization problems 
in the area of production planning and control. Significant 
applications are discussed in the following paragraphs:  

Li and Man [20] discussed the multiobjective 
earliness/tardiness scheduling and planning problem in the 
context of a manufacturing system. An elaborate 
mathematical model of the problem was presented with the 
aim of simultaneously minimizing the number of 
unbalancing processes, the cost of early production 
penalties and the cost of tardy production penalties. A 
Pareto ranking based evolutionary multiobjective 
optimization technique was employed for the solution of 
the problem, however, no implementation information was 
provided in detail. An illustrated example depicted the 
validity of the proposed approach. 

The optimal process plan selection problem was 
addressed by Awadh et al. [21] and Zhou and Gen [22]. In 
both cases evolutionary computation algorithms were 
proposed for the solution of the single objective version of 
the problem. However, since this problem can be 
formulated as a shortest path network problem, a number 

of well-known analytic algorithms exist for its solution. 
The authors proposed extended versions of their 
algorithms that explicitly considered the multiobjective 
version of the problem, based on the minimization of cost 
and maximization of quality of the production plans.  
Awadh et al. employed an aggregating weighted sum 
optimization approach, while Zhou and Gen preferred the 
adaptive objective evaluation hyperplane technique. A 
limited number of comparative results were presented in 
both cases.   

Chen & Ho [23] considered the multiobjective 
production planning problem within the context of a 
flexible manufacturing system. They provided a 
mathematical formulation of the problem that aimed to 
simultaneously minimize the total flow time, balance 
machine workload, minimize machine workload and 
minimize total equipment cost. A suitably encoded EMO 
algorithm was proposed for the solution of the problem. 
The algorithm was based on the GMOEA algorithm 
introduced by Ho and Chang [24]. The algorithm was 
tested on a number of benchmark problems taken from the 
literature and performed favorably in comparison with the 
SPEA multiobjective optimization algorithm [8]. 

Finally Cochran and Chen [25] addressed the 
multiobjective version of the daily production planning 
problem. Three objectives were considered: Effective 
Work-In Progress (WIP), on-time delivery and bottleneck 
loading. Typical heuristic procedures were initially 
employed for the generation of daily production plans 
according to individual criteria. A binary encoded 
evolutionary computation algorithm was then used to 
generate a combination of weights that simultaneously 
optimized all criteria considered. 

IV. CELLULAR MANUFACTURING 

The configuration and operation of cellular 
manufacturing systems constitutes a major area of 
production research for a time period spanning almost four 
decades. The optimization of manufacturing cells involves 
the solution of difficult grouping and facility layout 
problems that provide a challenging environment for any 
optimization algorithm. From its early days of existence, 
evolutionary computation research has provided a wealth 
of solution methodologies for cellular manufacturing 
problems [2]. In a number of these optimization techniques 
the case of multiple optimization criteria is explicitly 
considered. These approaches are discussed in more detail 
in the following paragraphs.  

Venugopal and Narendran [26] presented the first 
attempt to solve a cell-formation problem with the help of 
an evolutionary computation algorithm. They also 
proposed the first evolutionary optimization algorithm that 
explicitly considered the multiobjective version of the 
problem. The real-valued solution representation that they 
employed became the standard representation for the 
majority of subsequent approaches. Multiobjective 
optimization was handled through the evolution of two 



different subsets of populations, one for each objective 
considered (minimization of total intercell moves and 
minimization of within-cell load variation). 

Gupta et al. [27] employed the same genetic 
representation of solutions as Venugopal and Narendran 
but followed a different multiobjective optimization 
approach for the simultaneous minimization of the total 
number of intercell - intracell moves and within-cell load 
variation. Strings with the same genetic material, evolved 
through the evolutionary computation machines for the 
solution of the independent single-objective problems, 
were proposed as potential solutions for the multiobjective 
case. The same approach was proposed by Onwubolu and 
Matingi [11] in their scheduling optimization algorithm 
that was reported earlier. 

Morad and Zalzala [28] approached the multiobjective 
version of the cell-formation problem using a typical 
weighted-sum combination of the optimization criteria. In 
addition to the minimization of total moves and cell-load 
variation, the maximization of machine similarity was also 
considered as an optimization objective. 

Gravel et al. [29] discussed in detail the nature of the 
multiobjective cell-formation problem and presented an 
EMO algorithm for its solution. The objectives used were 
the minimization of intercell moves and the minimization 
of total within-cell load variation. The proposed 
methodology accommodated the existence of multiple 
routes for parts to be processed using a double-loop 
solution encoding scheme. The epsilon constraint approach 
and the weighted-sum approach were employed for the 
simultaneous optimization of objectives. 

Hsu and Su [30] developed a comprehensive 
mathematical model of the multiobjective cell-formation 
problem that explicitly considered the total production cost 
(intercell - intracell transportation, machine investment 
cost, intercell machine loading unbalance, and intracell 
machine loading unbalance). A weighted-sum evolutionary 
multiobjective optimization approach that utilized the 
typical real-valued representation was proposed for the 
solution of the problem.  

Dimopoulos and Zalzala [31] presented an EMO that 
was custom-designed for the solution of a cell 
configuration problem in a manufacturing facility of a 
pharmaceutical company. The variable-length solution 
encoding accommodated machine-cell assignments and 
custom genetic operators ensured the validity of solutions. 
Multiobjective optimization was achieved through the 
Pareto-ranking based approach originally introduced 
theoretically by Goldberg [32]. 

Zhao and Wu [33] discussed a version of the cell-
formation problem that explicitly considered sequencing of 
operations and machine workloads. The proposed model 
attempted the simultaneous optimization of three 
objectives: minimization of total moves (intercell and 
intracell), minimization of cell load variation and 
minimization of exceptional elements (operations that take 
place outside the designed cells). An EMO algorithm with 
typical real-valued representation attempted the 

simultaneous optimization of objectives through the use of 
a weighted-sum approach. One of the main features of the 
proposed methodology was the explicit consideration of 
multiple routes for parts to be processed. The validity of 
the proposed approach was illustrated on a number of test 
problems taken from the literature. Asokan et al. [34] 
approached a similar version of the multiobjective cell-
formation problem using a weighted-sum evolutionary 
multiobjective optimization algorithm. 

Finally, Mansouri et al. [35] developed a comprehensive 
mathematical model for the multiobjective cell-formation 
problem that explicitly considered the simultaneous 
minimization of intercellular part movements, total cost of 
machine duplication and subcontracting, overall machine 
under-utilization and deviation among cell-utilization. 
Solutions were generated with the help of a Pareto-ranking 
EMO technique called XGA. The solution representation 
encoded the binary variables of the proposed mathematical 
model. The algorithm combined sharing elements of the 
NSGA approach with elitism principles for the set of non-
dominated solutions. The proposed algorithm performed 
favorably in comparison with the VEGA, NSGA and 
NPGA [36] techniques on a number of test problems taken 
from the literature. The number and diversity of evolved 
non-dominated solutions as well as CPU time were used as 
quality measures for comparison purposes.  

V. FLEXIBLE MANUFACTURING SYSTEMS 

Flexible Manufacturing Systems (FMS) constitute an 
efficient production system for job-shop manufacturing 
environments. A group of Computer Numerically 
Controlled (CNCs) machines and robots interconnected via 
a number of Automated Guided Vehicles (AGVs) provide 
flexibility in handling a variety of processing tasks. The 
installation and productive operation of an FMS requires 
the solution of difficult process planning, scheduling, and 
tool allocation problems. Some of these problems have 
been tackled successfully with the help of evolutionary 
computation methods [2]. The most significant EMO 
methodologies that have been proposed in this area are 
described in the following paragraphs:  

Rai et al. [37] considered a complex problem in the area 
of FMS that addresses the selection of machine tools and 
the allocation of operations to individual machines. A 
fuzzy goal programming formulation of the problem was 
proposed in order to deal with the intrinsic uncertainty 
about the parameters of the problems. The aim was the 
simultaneous minimization of the total machining cost, the 
total setup cost and the total material handling cost. A 
typical EMO that encoded both the operational and tool 
allocation variables was employed for the solution of the 
problem. The objective function utilized a weighted-sum 
aggregating combination of all three objective functions of 
the fuzzy goal-programming model. A numerical example 
was provided to illustrate the efficiency of the proposed 
methodology. 



Tiwari and Vidyarthi [38] discussed the machine 
loading problem in the context of FMS, i.e. the problem of 
allocating operations to individual machines. They 
considered both single and multiobjective cases of the 
problem. In the latter case the objectives were the 
minimization of system unbalance and the maximization of 
throughput, a pair of objectives that are conflicting in 
nature. A sequence-encoded evolutionary algorithm was 
employed for the solution of the problem. The algorithm 
was tested against existing solution methodologies on a 
number of problems taken from the literature and 
performed favorably.    

VI. ASSEMBLY LINE OPTIMIZATION 

Assembly lines are widespread in modern 
manufacturing environments. The manufacturing of a large 
number of products requires some kind of assembly 
operation at some stage of the production process. 
Assembly line optimization requires the solution of 
difficult sequencing and line balancing problems. 
Evolutionary computation methods have provided useful 
contributions to the solution of these problems [2]. A 
number of researchers have recently developed EMO 
techniques for the solution of problems in the area of 
assembly line optimization. These techniques are described 
in the following paragraphs:  

Lit et al. [39] addressed the problem of finding an 
optimal sequence for assembling a product. A sequence-
based evolutionary algorithm was employed for the 
solution of the multiobjective version of the problem 
which explicitly considered five objectives: number of 
reorientations, stability of subsets, parallelism between 
operations, latest and earliest components to be put in the 
assembly plan. A purpose-based mapping algorithm 
ensured that any chromosome produced through the 
evolutionary process resulted in a valid assembly 
sequence. The simultaneous optimization of objectives was 
achieved by incorporating the PROMETHEE-II 
multicriteria decision making technique [40] within the 
evolutionary process. The proposed approach resulted in 
the aggregation of objective values for all objectives 
considered. The efficiency of the algorithm was illustrated 
with the help of an industrial assembly sequence planning 
problem. 

Ponnambalam et al. [41] considered the multiobjective 
assembly line balancing problem. They employed the 
EMO process originally introduced by Murata and 
Ischibuchi [3] that assigns randomly generated weights to 
individual objectives during the optimization run. The 
objectives considered were the number of stations 
generated, the smoothness index and line efficiency. Their 
representation scheme encoded heuristic rules in 
chromosome positions that were responsible for the 
assignment of tasks to individual workstations. The 
algorithm performed favorably in comparison with 
existing heuristic rules on the solution of the problem 
considered. 

Finally, McMullen et al. [42] discussed the 
multiobjective case of the mixed-model assembly line 
sequencing problem within the context of a Just-In-Time 
production system. The objectives to be simultaneously 
minimized were the total number of set-ups and the usage 
rate. These objectives were conflicting in nature and a 
weighted-sum evolutionary technique was employed for 
their simultaneous optimization. The proposed 
methodology was tested on a number of benchmark 
problems against a Tabu search and a Simulated Annealing 
algorithm. The evolutionary algorithm clearly 
outperformed Tabu Search; however, its performance 
difference with Simulated Annealing could not be 
distinguished statistically. The mixed-model assembly line 
sequencing problem was also addressed by Hyun et al. 
[43]. They introduced a novel EMO technique for the 
solution of the problem, based on the principles introduced 
by Goldberg and the niching technique of Horn and 
Nafpliotis [36]. The objectives considered were the 
minimization of total utility work, the leveling of part 
usage and the minimization of total setup cost. The 
proposed algorithm performed favorably in comparison 
with Shaffer’ VEGA and Horn’s NPGA on a number of 
test problems taken from the literature. A simple 
aggregating weighted-sum evolutionary computation 
technique was also proposed by Celano et al. [44] for the 
solution of a similar problem that simultaneously 
considered the minimization of the flow line fluctuation 
and the total line stop time.      

VII.  CONCLUSIONS 

Recent research findings suggest that evolutionary 
computation methods constitute a valuable tool for the 
solution of multiobjective optimization problems. Their 
inherent ability of searching the solutions’ space from a 
population of points in parallel provides an excellent basis 
for the quick exploration of the Pareto front. At the same 
time, significant research efforts have led to the 
development of efficient EMO algorithms that overcome 
problems of genetic diversity and premature convergence. 

This paper examined the impact of EMO methodologies 
in the area of manufacturing optimization. The EMO 
research field has been growing rapidly over the last few 
years and a considerable number of associated applications 
have been reported in various production research areas. 
The review of these approaches has yielded a number of 
interesting findings: 

In the majority of applications considered, 
multiobjective optimization was achieved either through 
aggregation of the optimization objectives [3], [21], [30], 
[37], [41], evolution of objective-targeted subpopulations 
[9], [15], [26], or case-based algorithms that utilized the 
principle of Pareto ranking and the concepts of niching and 
elitism [18], [23], [31], [35], [43]. Only a limited number 
of researchers utilized the benefits of typical well-tested 
EMO methodologies such as NSGA or MOGA [12], [16]. 
Furthermore, research in this area has yet to catch up with 



the latest EMO developments that had led to the 
development of techniques such as NSGA-II and SPEA-II 
[45]. 

The application of evolutionary computation methods in 
realistic production environments has never matched the 
corresponding research efforts. In the case of EMO, a 
limited number of case-study applications have been 
reported, mainly in the area of scheduling [16], [18], [19]. 
One of the reasons that possibly restrain the use of EMO 
methodologies in production environments might be the 
lack of a standard off-the-shelf EMO commercial package 
that can be used by technicians with limited knowledge of 
evolutionary computation principles. The lack of a major 
commercial application that will popularize the use of 
evolutionary computation methods should also be noted.  
Application frameworks like the generic scheduler 
introduced by Khoo et al. [19] constitute a promising step 
towards the commercial exploitation of research findings 
in the area of evolutionary computation. 

Based on the findings of this review, there are a number 
of areas that provide grounds for future research activities: 

While existing EMO applications cover a variety of 
production research areas, a considerable number of 
multiobjective manufacturing optimization problems are 
currently handled inefficiently through traditional 
optimization methods. The task of implementing and 
testing   novel or existing EMO methodologies on these 
manufacturing optimization problems constitutes a 
significant research direction. 

State-of-the-art EMO methodologies such as NSGA-II 
and SPEA-II have been reported to provide excellent 
performance in comparison with earlier EMO 
methodologies. There are grounds to believe that their 
application to manufacturing optimization problems will 
strengthen the impact of EMO techniques in this area of 
research. 

It has been reported that the hybridization of 
evolutionary computation methodologies with alternative 
optimization techniques and the incorporation of problem-
specific information on the design of the algorithms 
enhance their performance on the problem considered [2]. 
These findings have been confirmed by a number of 
applications reported in this review [5], [6], [9], [13], [14], 
[37]. The design of novel EMO methodologies that are 
complemented by alternative optimization techniques and 
incorporate knowledge of the problem considered can 
provide useful contributions in the area of multiobjective 
production research. 

It is the author’s aim to contact research based on the 
findings of this review and publish relevant results in the 
future.      
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