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Abstract  
This article introduces a genetic programming 
algorithm for the solution of the multiobjective cell-
formation problem. This problem is related to the 
design of a cellular manufacturing production system. 
A well-known evolutionary multiobjective technique 
guides the algorithm in its search for the Pareto set of 
solutions. The framework is tested on an industrial 
case study taken from the literature. Results illustrate 
that, unlike traditional techniques, the proposed 
framework has the ability to provide the designer of 
the system with a wealth of potential solutions. 

Keywords: Genetic Programming, multiobjective 
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1. Introduction 
The cell-formation problem is a typical example of a 
difficult grouping problem encountered in production 
research. While numerous heuristic solution 
methodologies have been proposed for the single 
objective version of this problem, there has been 
relatively little research on the multiobjective version 
of the problem, despite the fact that practical 
considerations during the design of a manufacturing 
system are most likely to consider multiple 
conflicting objectives [1].   

Multiobjective Evolutionary Algorithms, 
(MOEAs) have been reported to provide efficient 
solutions to non-trivial multiobjective optimization 
problems (see [2] for an excellent review of MOEA 
research). The methodology presented in this article 
introduces a Genetic Programming-based MOEA that 
evolves a set of solutions for multiobjective cell-
formation problems. It combines the powerful 
evolutionary heuristic GP-SLCA [3] with NSGA-II 
[4], a state-of-the-art evolutionary technique for 
multiobjective optimization. A typical example taken 
from the literature is used to illustrate the benefits 
gained from the proposed methodology. 

2. The Multiobjective Cell-
Formation Problem 

Cellular Manufacturing (CM) is the application of the 
organizational approach called Group Technology 
(GT) [5] at the shop floor production level. It states 
that there are considerable benefits to be gained by 
grouping machines into cells that process similar 
parts.  

The general multiobjective cell-formation 
problem can be defined as follows: A grouping of 
machines into cells and parts into associated families 
needs to be identified that will simultaneously 
optimize a number of objectives. A single solution 
that simultaneously optimizes all objectives 
considered does not generally exist for this problem. 
Instead, there exists a set of solutions, in which no 
solution is better than the other (non-dominated) with 
respect to all objectives considered. This set is known 
as the Pareto set of solutions.  

The cell-formation problem is a difficult NP-
hard grouping problem that has attracted considerable 
research attention, at least for the single objective 
case. By comparison, there has been little research on 
the solution of the multiobjective version of this 
problem. Recent reviews by Mansouri [1] and 
Dimopoulos [6] illustrate the inefficiency of existing 
solution methodologies. The computational 
intractability of the problem leads the majority of 
researchers to utilize heuristic aggregating techniques 
that result in a single compromise solution for the 
problem considered. For this reason both reviewers 
propose the use of non-aggregating techniques that 
will help on the simultaneous identification of 
multiple non-dominated solutions. The methodology 
proposed in this paper follows on these guidelines 
and introduces a robust multiobjective optimization 
methodology for the cell-formation problem that 
attempts to provide the decision maker with a good 
approximation of the Pareto set of solutions. This 
methodology is described in the following section.  
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3. The Multiobjective GP-SLCA 
Methodology 

GP-SLCA was originally designed as a methodology 
for solving single-objective cell-formation problems 
[3]. Its efficiency has been illustrated on a wide range 
of simple cell-formation problems that have been 
published in the literature [3]. The main idea of the 
algorithm is the incorporation of the Single Linkage 
Cluster Analysis (SLCA) technique, a traditional 
hierarchical clustering algorithm introduced by 
McAuley [7], within an evolutionary framework 
accommodated by a Genetic Programming machine.  

SLCA employs Jaccard’s similarity coefficient 
in order to calculate a similarity value between all 
pairs of machines in the plant. A set of machine 
groupings are subsequently generated based on these 
values. GP-SLCA replaces Jaccard’s coefficient with 
similarity coefficients evolved through a genetic 
programming machine. Similarity inputs similar to 
the ones used by traditional man-made similarity 
coefficients are employed by genetic programming 
for the evolution of coefficients.  

The SCLA process is applied to each evolved 
coefficient and a corresponding set of machine 
groupings is generated. The best solution found in 
each set with respect to the optimization objective 
considered is assigned as the fitness of the 
corresponding genetically evolved coefficient. The 
evolutionary process continues in the same manner 
for the specified number of generations. Interested 
readers can find a detailed description of the GP-
SLCA algorithm, examples of evolved coefficients, 
and a comprehensive experimental analysis of GP-
SLCA performance in [3]. 

Multiobjective GP-SLCA uses the same 
mechanism for the generation of machine groupings. 
However, both the evolutionary mechanism of the 
algorithm and its fitness assignment process have 
been suitably modified in order to accommodate the 
need for the multiobjective search: 

Multiobjective GP-SLCA employs the NSGA-II 
evolutionary multiobjective technique as the driving 
force of the evolutionary algorithm [4]. NSGA-II 
promotes the evolution of a set of solutions that is 
ideally a close approximation of the Pareto-set of 
solutions for the problem considered. 

In addition, in the case of multiple conflicting 
objectives, the set of SLCA-generated solutions for a 
particular coefficient may contain multiple equally 
‘good’ non-dominated solutions. Since only a single 
set of objective values can be associated with each 
coefficient, there is a need to relate only one of these 
solutions with the evolved coefficient. For this reason 
GP-SLCA associates a random similarity threshold 

value with each coefficient evolved. This threshold 
value is used by the SLCA algorithm for the 
generation of a single corresponding machine-cell 
grouping. McAuley [7] provides an in-depth 
discussion of the similarity threshold concept. The 
objective values that correspond to this configuration 
constitute the objective values of the coefficient and 
are subsequently used by the NSGA-II evolutionary 
technique in order to rank solutions according to their 
Pareto efficiency.  The operation of GP-SLCA in 
pseudo code form is as follows: 

 
Procedure Main  
initialize population of randomly created similarity 

coefficients  
run procedure SLCA for each coefficient 
rank solutions using the NSGA-II process based on the 

objective values 
loop 
 loop 
  select individuals for crossover or  
    mutation 
  apply genetic operators and form  
    new coefficients 
 until a new generation has been formed 
 run procedure SLCA for each coefficient 

rank solutions using the NSGA-II process based 
on the objective values 

until termination criterion is true 
 
Procedure SLCA 
compute similarity matrix 
create machine cells for the associated random similarity 

threshold value   
assign parts to machine cells 
calculate the objective values for the cell configuration 

 
Note that since NSGA-II is an elitist 

multiobjective strategy, the final generation of 
solutions contains all non-dominated solutions that 
have been found during the evolutionary process. 

4. Experimental Analysis 
In this article we present the application of 
multiobjective GP-SLCA on an industrial test case 
described in the article of Lin et al. [8]. The size of 
the problem (22 machines and 62 parts) is much 
larger than the average size of the cell-formation 
problems employed in the literature [1].  

The aim of the problem is to simultaneously 
optimize the following objectives:  

• Minimization of total intercell moves of 
parts. These moves are present when the 
production of a part requires an operation in a 
cell of machines other than its associated cell.    

• Minimization of total intracell moves of 
parts. These are the moves required for the 
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processing of parts within their associated 
cells. 

• Minimization of within-cell load variation. 
The processing load induced by parts in their 
associated machine cells should be as 
balanced as possible in order to achieve a 
steadier operating pace.  

The optimization of these objectives has been 
reported to provide significant reductions in 
transportation costs, setup costs, rework, and Work-
In-Progress inventory. However, a single solution 
that simultaneously optimizes all three objectives 
does not exist.  
Lin et al. used a minimum spanning tree algorithm to 
generate a solution for this problem. Their 
mathematical model provides a weighting mechanism 
for aggregating the objectives considered into a 
single objective. The algorithm of Lin et al. 
generated the solution depicted in Table 1, based on a 
particular set of weighting assignments: 
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198.2 31 425 617.1 

 
Tab. 1: Solution generated by the minimum spanning 
tree algorithm of Lin et al. (1996) 

 
Twenty runs of the multiobjective GP-SLCA 

algorithm were conducted on the same problem. A 
population size of 500 coefficients was used in all 
experimental runs. Table 2 illustrates the objective 
values of the non-dominated solutions that were 
evolved, together with the associated total cost 
generated based on the cost model and weighting 
weight assignments of Lin et al.. The total number of 
non-dominated solutions evolved during all 
experimental runs was 200. However, due to space 
limitations only the solutions that were found in more 
than 50% of the experimental runs are illustrated in 
the table. Due to space constraints it is also not 
possible to present in this article the machine-cell and 
part-family assignments that result in these objective 
values, except for the solution illustrated in the 
Appendix. However, all evolved configurations and 
their corresponding values can be made available by 
the author to any interested reader 

As expected, multiobjective GP-SLCA provided a 
wealth of potential solutions to the decision maker. 
By contrast, the typical minimum spanning tree 
algorithm generates a single compromise solution. 

This solution is dominated by 3 solutions (solutions 
38-40) of multiobjective GP-SLCA with respect to all 
objectives considered. In addition, multiobjective 
GP-SLCA generated 6 solutions with a lower 
aggregate cost value based on the cost model and 
weighting assignments of Lin et al.. The 
multiobjective GP-SLCA solution that generated the 
best aggregate cost value (solution 37) is illustrated 
in Figure 1 of the Appendix. It should be noted that 
this result is not the significant outcome of this 
approach. The main benefit is that any cost model 
can be recursively applied to all evolved solutions. 
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1 39.3333 165 289 803.66665 
2 39.3333 167 287 807.66665 
3 39.3333 168 286 809.66665 
4 39.3333 169 285 811.66665 
5 39.3333 170 284 813.66665 
6 39.3333 171 283 815.66665 
7 39.3333 173 281 819.66665 
8 39.3333 177 277 827.66665 
9 39.3333 178 276 829.66665 
10 117.533 99 355 710.7665 
11 117.533 100 354 712.7665 
12 117.533 102 352 716.7665 
13 117.533 103 351 718.7665 
14 124 82 372 680 
15 124 83 371 682 
16 124 84 370 684 
17 124 85 369 686 
18 124 86 368 688 
19 124 87 367 690 
20 132.533 96 358 712.2665 
21 132.533 97 357 714.2665 
22 150.2 47 407 623.1 
23 150.2 48 406 625.1 
24 150.2 49 405 627.1 
25 150.2 50 404 629.1 
26 150.2 51 403 631.1 
27 150.2 52 402 633.1 
28 150.2 53 401 635.1 
29 150.2 54 400 637.1 
30 153 61 393 652.5 
31 178.2 34 420 611.1 
32 178.2 35 419 613.1 
33 178.2 36 418 615.1 
34 178.2 37 417 617.1 
35 178.2 38 416 619.1 
36 178.2 39 415 621.1 
37 193.2 28 426 606.6 
38 193.2 29 425 608.6 
39 193.2 30 424 610.6 
40 193.2 31 423 612.6 
41 193.2 32 422 614.6 
42 193.2 33 421 616.6 
43 323.295 17 437 649.6475 
44 323.295 18 436 651.6475 
45 323.295 19 435 653.6475 
46 323.295 20 434 655.6475 
47 377.755 14 440 670.8775 
48 551.533 0 454 729.7665 

 
Tab. 2: A subset of non-dominated solutions 
generated by the multiobjective GP-SLCA algorithm 
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5. Conclusions 
This article presented the application of the GP-

SLCA evolutionary multiobjective optimization 
algorithm for the solution of the multiobjective cell-
formation problem. To the best of the author’s 
knowledge, this is the first time that an 
approximation of the Pareto set of solutions is 
attempted for the multiobjective cell-formation 
problem. A large-sized industrial case study was 
employed to illustrate the efficiency of the proposed 
methodology.  

Multobjective GP-SLCA not only provided the 
decision maker with a considerable number of 
alternative non-dominated solutions, but it was able 
to evolve solutions that dominated the single 
aggregate solution generated by a minimum spanning 
tree algorithm. However, further experimentation 
needs to be conducted on mathematical models that 
consider alternative optimization objectives and input 
data in order to further evaluate its performance.  
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7. Appendix  
The illustrated matrix in Figure 1 constitutes a typical 
way of describing cell-formation problems. The rows 
of the matrix correspond to machines and the 
columns to parts that need to be produced. The value 
of a non-zero entry indicates the workload (demand 
rate × processing time) induced by a part on a 
corresponding machine. The borders that have been 
drawn illustrate the machine and part groupings that 
were identified by the multiobjective GP-SLCA in 
this particular solution.  
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 59 60 61 62 33 34 35 45 46 47 48 49 50 51 24 25 26 27 28 29 30 31 32 36 37 38 39 40 41 42 43 44 52 53 54 55 56 57 58 14 15 16 17 18 19 20 21 22 23

1 3 3 3 2 2                                                          
2 3 3 3 2 2                                                          
4 4 4 4 2 2                                                          
16 3 3 3 2 2                                                          
18 2 2 2 1 1                                                          
21 2 2 2 1 1                                                          

3      4 4                                                        
5      4 4   4 4 2 2                                                  
9      3 3 3 3                                                      
10        5 5                                                      
11      3 3 3 3 3 3 2 2                                                  

6              4 4                            3 2 2                  
20              3 3 3 3                                              

7                  6 5 5 9 9 6 5 5 9 9                                    
8                     9 9 6 5 5 9 9                                    
15                     3 3 2 2 2 3 3                                    
13   5 3 3             4 3 3        4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3                  

14                                              3 3 2 2 2             
17                                              2 2 1 1 1 2 2           

12                                                     3 3 3 3 3 3 3 3 3 3
19                                                     1 1 1 1       
22                                                     2 2 2 2       

 
 
 
 
 
 
 
 
Fig.1: Solution no.37 found by the multiobjective GP-SLCA algorithm (total cost=606.6 units) 
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