
EVOLUTIONARY COMPUTATION
APPROACHES TO CELL OPTIMISATION

C Dimopoulos  and  AMS Zalzala
Department of Automatic Control and Systems Engineering,

University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
(Email:rrg@sheffield.ac.uk)

Abstract.  This paper examines a cellular manufacturing optimisation problem in
a new facility of a pharmaceutical company. The new facility, together with the old
one, should be adequate to handle current and future production requirements.  The
aim of this paper is to investigate the potential use of evolutionary computation in
order to find the optimum configuration of the cells in the facility. The objective is
to maximise the total number of batches processed per year in the facility. In
addition, a two-objective optimisation search was implemented, using several
evolutionary computation methods. One additional objective is to minimise the
overall cost, which is proportional to the number of cells in the facility. The multi-
objective optimisation programs were based on three approaches: The weighted-sum
approach, the Pareto-optimality approach, and the Multiobjective Genetic Algorithm
(MOGA) approach.
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1. Introduction

Cellular manufacturing is an application of group technology to manufacturing
optimisation problems (Wemmerlov and Hyer, 1989), aiming to divide the plant in a
certain number of cells. Each cell contains machines that process similar type of
products. The application of cellular manufacturing in a plant minimises makespan,
reduces the set-up time of the machines, and improves the quality of the products
(Singh, 1989). There are two major optimisation problems associated with cellular
manufacturing, namely the cell-formation problem and the cell-layout problem
 In the case study of this paper, the aim is to find the best configuration of cells in
order to maximise the total number of batches processed in the plant per year. One
distinct characteristic of this case is that there is only one type of machinery in the
plant, the reactor. However, reactors are grouped in cells due to the cross-
contamination of products. Only one batch can be processed at a time in a group of
reactors that stand close together. We define this optimisation problem as a
‘numerical’ cell-formation problem, due to its distinctive nature.



 Evolutionary programming was used as a guide in our search for the optimum
solution. The algorithm tests a population of potential solutions in parallel, in order
to find the best configuration of cells. Domain knowledge was incorporated both to
the genetic representation of the solutions and the design of the genetic operators.

 The trend in manufacturing optimisation is to consider the reduction of cost as one
of the most significant objectives. Using the traditional optimisation methods, it is
very difficult to incorporate more than one objective in the optimisation process.
Therefore, cost is either considered separately, or not considered at all.
Evolutionary computation provides the means of implementing multi-objective
optimisation in an easy and efficient way. We have performed multi-objective
optimisation for this case study, using three different approaches: The weighted-sum
approach, the Pareto-optimality approach, and the Multiobjective Genetic Algorithm
(MOGA) approach. The minimisation of cost was used as a second objective in the
multi-objective optimisation search. By combining partial preference information in
the form of a goal vector, with the Pareto-optimality approach, a local search was
performed in certain areas of the solution space.

 

2. Cell-Formation Problem

 The objective in this problem is to identify machine families that process similar
parts and to group these families into cells. The traditional approach to this problem
is the selection of cells by direct observation, which is generally possible for the
simplest cases. Although this is a very old method and has obvious limitations, it is
still used by companies throughout the world.  Another way to determine the
configuration of cells, is to code components according to their features. Families of
components are then formed, according to the similarity of their code. Each family
determines a group of machines that will form a cell. There are various coding and
classification methods that have been proposed (Bennett, 1986). Each of them uses
different features or combination of these features. The main drawback of these
methods is that they do not divide the plant directly into cells. The components are
grouped in easily identified families, and this data is used as a guide for the cell-
formation. However, the actual machines that will form each cell are derived
directly from the data.
 The most popular method for solving the cell-formation problem is the
Production Flow Analysis (PFA) method (Burbidge,1975). PFA is a technique that
assumes the physical shape of the components is less important than the route that
they have to follow in order to be manufactured. PFA is mainly concerned with
manufacturing methods, and the aim is to identify family parts that follow similar
routes during their processing. Any group of machines that process a part-family
will form an independent cell. The data required for PFA is contained in the process
route cards and in the list of machines.
 The classic PFA method is inefficient for large problems, due to the fact that the
grouping of parts into families is implemented manually. A number of alternative
methods based on PFA have been proposed. Array Based Clustering uses the part-
incidence matrix to identify the potential cells of the plant. This matrix contains all



the information about the route that each part has to follow in order to be processed.
The machines and the parts are grouped into families, by performing a series of row
and column manipulations. Rank-Order Clustering (King, 1980) uses a slightly
different way for the implementation of array clustering, by assigning binary
weights in each row and column. Single Linkage Cluster Analysis (Mcauley,1972)
is a method which seeks to find a measure of similarity between machines, tools,
and every other feature of production. The part-families are then formed, based on
this similarity. Mathematical programming methods, like the one proposed by
Boctor (1991), address the formation of cells as an optimisation problem, where the
objective is to maximise the total sum of similarities between each pair of
components.
 Due to the nature of the cell-formation problem, many artificial intelligence
methods have been proposed for the search of the optimum configuration. Kao and
Moon (1991) used the Artificial Neural Network (ANN) to form part families based
on design features. Fuzzy logic has also been applied by Xu and Wang (1989).
 In recent years there is a growing interest in the use of Genetic Algorithms for this
optimisation problem. Modified Genetic Algorithms, like the one proposed by
Falkenauer (1993), use problem-specific chromosome representation and purpose-
based genetic operators to determine the formation of cells. Unlike classic GAs,
these algorithms proved to be very effective in finding the best configuration of
cells, because they incorporate domain knowledge in their search for the optimal
solution.
 

3. EC Approach to Manufacturing Optimisation
 
 The proposed algorithm searches for the best configuration of cells in the plant, so
that the total number of batches produced per year will be maximised. Cost is also
introduced in the problem as a second objective. The algorithm is modified
according to different multi-objective optimisation methods, and several alternative
solutions are reported.
 
3.1 Problem Description
 
 Work load projections on the utilisation of an existing pilot plant facility, at the
factory of a pharmaceutical company, indicate that it will not be adequate to handle
current and future production requirements. Therefore, the company decided to build
a new facility, in order to accommodate their future needs. The company produces a
number of different products. The products are classified as in the following
example;  PROD 5-4 : product batch that requires 5 days of processing, and
occupies 4 reactors while being processed.
 Based on prior and projected work knowledge, and statistical data generated in-
house by the company, a basis for modelling including 15 products was developed.
This basis is presented in a relevant table in the Appendix (Table 1). The constraints
of the problem are the following:
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 where an  : integer number representing the total number of reactors in the nth cell,

and n : integer number representing the total number of cells.  The company
proposes the following scheduling cases:
 
CASE1.   A list of products is to be produced over a period of a year. Batches are
processed in strict sequence, but there’s no restriction in the type of batch that a cell
can process. Only one batch can be processed at a time in a cell, due to cross-
contamination of the products.

CASE2.   The same list of products is to be produced in a year’s time. Batches are
again processed in strict sequence, but in this case, each cell processes a certain type
of  batch. There are small, medium and large-sized batches. A cell can process either
small and medium-sized batches or large and medium-sized batches. Only one batch
can be processed at a time in a cell, due to cross-contamination of the products.

3.2 Chromosome Representation

Many researchers have argued that the binary representation of the solutions is
inefficient for a series of optimisation problems (Davis,1987). De Jong (1985)
believes that when a search space is best represented by complex structures like
arrays, trees, integers, etc., the programmer should not try and linearise them in
binary strings. Instead, it would be better to work directly on them.

The modified GA described here was designed to fit the case study problem. It
incorporates domain knowledge not only to the representation of the solutions, but
to the design of the genetic operators as well. A potential solution of the problem has
the following representation:

{ }a a a a
n1 2 3

, , ,....

This representation has no fixed length, a fact that makes the design and the function
of the genetic operators a difficult task. On the other hand, this representation has
the advantage of carrying both the variables of the problem in one chromosome, one
variable being explicit and the other implicit.

3.3 Genetic operators 

The regular crossover and mutation operators, produce most of the times illegal
offspring when applied to the previous type of chromosomes. Instead of using
penalty functions, which is time consuming and inefficient, two purpose-based
operators were produced to fit this particular problem.



3.3.1 Same-Total Operator

This is a crossover-type operator. Suppose that the two following chromosomes
have been selected for genetic alteration:  {  4    6    2  }   and   {  2    2    4    4  }.
The algorithm performs a serial search in the first chromosome and finds a number
or a sum that belongs to the space [4,9].  The algorithm then searches in the second
chromosome to find a number or a sum of adjacent genes which is equal to the
previous number. The genes that represent the same total in the two chromosomes
exchange positions. For our example, the operator will function as follows:

Search ⇒  {  4    6    2  }        GENE: 1;  TOTAL: 4,
Search ⇒  {  2    2    4    4  }  GENES: 1,2;  TOTAL: 4,
Yielding:  {  2    2    6    2  }   and   {  4    4    4  }.

None of the chromosomes violates the constraints, while the offspring are totally
different from the parents. In some special cases the application of this operator does
not alter the shape of the parent chromosomes. The algorithm compensates for these
cases by having an increased probability for this particular operator.

3.3.2 Decomposition Operator

This is a mutation-type operator. Preliminary research showed that small-sized cells
perform better than the large-sized ones because they are less affected by the cross-
contamination factor. Large-sized cells suffer from low utilisation of their reactors,
because they cannot process more than one batch at a time.  The idea of the
decomposition operator is to guide the search for the optimal solution towards a
small-sized cell area. Therefore, when a large-sized cell is selected for genetic
alteration, the following offspring is produced:

Selected Gene Offspring after Decomposition

4 2    2

5 3    2

6 2    2    2

3.4 Fitness Evaluation

The measure of fitness for the solutions of the algorithm, is the total number of
batches processed per year in the plant. In order to find this number, we simulate the
annual manufacturing production for each of these solutions.  For the case of multi-
objective optimisation, a cost model was constructed, related to the total number of
cells in the plant. The cost increases linearly with the number of cells.



3.5 Multiobjective Optimisation methods

3.5.1 Weighted-Sum Approach

In this approach a weight is given for every objective to be optimised, which
determines the importance of the objective. If the objective function for the objective
i is f xi ( ) , then the overall objective function will be:
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vectors for the objectives, the algorithm will converge to different solutions.

3.5.2 Pareto-Optimality Approach

The concept of Pareto-Optimality is defined as follows (Morad,1997):
Consider the vector optimisation problem:

{ }min ( ) min ( ), ( ),..., ( )
x X x X

mf x f x f x f x
∈ ∈

= 1 2

where: x n=  dimensional vector of decision variables and X = the set of all
feasible solutions subject to constraints.  A decision vector x Xµ ∈ is said to be

Pareto-optimal, if and only if there is no other x Xν ∈  such that

( )mxf νννν ...,,)( ,21=  dominates ( )muuuxf ...,,)( ,21=µ .  In other words,

there is no xν such that:  { }∀ ∈ ≤i m ui i1,..., ,ν .  This solution is called a non-

inferior or non-dominated solution. If we use a simple GA for a multi-objective
optimisation problem, the first generation will normally evolve a population of
solutions. Some of them will be non-dominated, and they will form the  so-called
dominant front of the solutions. All these solutions are considered as rank ‘1’
individuals, and they will be assigned with the same fitness value for the next
generation. We then remove from the population the dominant front, and the new
dominant front will be the solutions of rank ‘2’. They will all be assigned with the
same fitness value, but of course lower than the rank ‘1’ solutions. This procedure
will go on until all the solutions are assigned  a fitness value, and then the evaluation
of the new population will start.

3.4.3 Multi-Objective Genetic Algorithm (MOGA) Approach

In this scheme the ranking of each individual corresponds to the number of
individuals in the current population by which is dominated (Fonseca and Fleming,
1993). In that way, the dominant front of the solutions is assigned the same rank,
while the rest of the solutions are assigned a lower ranking according to the



population density of the region of solutions that dominate them. The basic
advantage of this method is that it can perform local search, by combining Pareto
dominance with partial preference information in the form of a goal vector. In this
way, the ranking mechanism can exclude objectives that already satisfy their goals.
If fully unattainable goals are specified, then we have the basic Pareto ranking,
because no objective will ever be excluded from comparison.

4. Results

In the weighted-sum approach, several different weights were given to the objectives
of the optimisation for both scheduling methods. Some examples of the results are
given in Figures 1-4.
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Figure 1 : Weighted-sum approach - Results 1
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Figure 2 : Weighted-sum approach - Results 2
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Figure 3 : Weighted-sum approach - Results 3

The technique of fitness sharing was used in the Pareto-Optimality approach, to
prevent the premature convergence of the algorithm to a single solution
(Goldberg,1987). This technique leads to the formation of stable sub-populations
(species) of solutions. The results are presented in Figures 5 and 6.
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Figure 4 : Weighted-sum approach - Results 4



CASE 1: MULTIOBJECTIVE OPTIMISATION USING PARETO RANKING
(NAMED VALUES ARE NON-DOMINATED SOLUTIONS)
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Figure 5 : Pareto -Optimality approach - Results 1

CASE 2: MULTIOBJECTIVE OPTIMISATION USING PARETO RANKING AND 
SHARING

( NAMED VALUES ARE NON-DOMINATED SOLUTIONS)
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Figure 6 : Pareto -Optimality approach - Results 2

The same technique was used in the case of  the MOGA approach. The algorithm
converged to a number of alternative solutions that are presented in Figures 7 and 8.
The same algorithm was modified in order to be able to perform local search in the
solutions’ search space. Results were obtained using different goal vectors. A
graphical presentation of results is given in Figures 9 and 10, while the values for
various parameters of the program can be found in Table 2.



CASE 1: MULTIOBJECTIVE OPTIMISATION USING THE MOGA APPROACH
(NAMED VALUES ARE NON-DOMINATED SOLUTIONS)
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Figure 7 : MOGA approach - Results 1

CASE 2: MULTIOBJECTIVE OPTIMISATION USING THE MOGA APPROACH
(NAMED VALUES ARE NON-DOMINATED SOLUTIONS)
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Figure 8 : MOGA approach - Results 2

CASE 1: LOCAL SEARCH USING THE MOGA APPROACH
GOAL VECTOR: (NUMBER OF BATCHES =<320,COST: ANY VALUE)
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Figure 9 : Local Search using the MOGA approach



LOCAL SEARCH USING THE MOGA APPROACH
GOAL VECTOR: (NUMBER OF BATCHES >=350,COST: ANY VALUE)
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Figure 10 : Local Search using the MOGA approach

4.3 Comparisons

Considering the previous results, CASE2 scheduling method outperform CASE1,
because of the grouping of products and cells in certain families.  A comparison of
the two scheduling methods in terms of their fitness is given in Figure 11. There are
no significant differences in the results of the three multi-objective optimisation
approaches.
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Figure 11 : Comparison of scheduling methods

5. Discussions

Results showed that the evolutionary approach to this numerical cell formation
problem outperformed the traditional approach in terms of efficiency and number of
alternative solutions produced, especially if purpose-based operators and



chromosome representation is used. In addition, the evolutionary approach to multi-
objective optimisation provides the means of incorporating more than one objective
to the optimisation process. Different multi-objective optimisation methods were
used, and all performed equally well.

6. Conclusions

Most of the manufacturing optimisation problems cannot be solved easily and
efficiently using traditional optimisation methods. This paper describes an
evolutionary algorithm designed to solve a numerical cell formation problem.
Results showed that when the plant is divided to a large number of small-sized cells,
the total number of batches processed in the plant per year is increased. In addition,
if these cells are grouped according to the type of the products that they process, the
performance of the plant is improved furthermore. Multiobjective optimisation is a
major consideration in a manufacturing plant, since the cost factor is a critical issue
in every aspect of the production. Evolutionary algorithms provide the means of
implementing multi-objective optimisation, using a number of different approaches.
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Appendix

Product Batch Time
(Days)

No. of
Reactors

% Product Preparatio
n Time

PROD 5-4 5 4 4% 0.33 Days

PROD 4-4 4 4 4% »

PROD 3-4 3 4 4% »

PROD 2-4 2 4 4% »

PROD 5-3 5 3 11% »

PROD 4-3 4 3 4% »

PROD 3-3 3 3 4% »

PROD 2-3 2 3 21% »

PROD 5-2 5 2 11% »

PROD 4-2 4 2 6% »

PROD 3-2 3 2 11% »

PROD 2-2 2 2 6% »



PROD 3-1 3 1 6% »

PROD 2-1 2 1 2% »

PROD 1-1 1 1 2% »

Table 1 : Modelling data

Variable Value

Number of generations 50

Maximum number of cells in the plant 6

Prob. of a chromosome to be selected for 0.4

Prob. of a gene to be selected for 0.05

Number of chromosomes in each 100

Maximum number of reactors in a cell 6

Minimum number of reactors in a cell 2

Table 2 : Values for various parameters


