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regularly consider multiple objectives and often have little a priori preference infor-


mation available to them. Given these contraints, they can improve their chances
of achieving success by following a two-phase procedure that �rst determines the


solution space of all eÆcient (i. e., Pareto-optimal) portfolios and then allows them to


interactively explore that space. However, the task of determining the solution space


is not trivial: brute-force complete enumeration only works for small instances and


the underlying NP-hard problem becomes increasingly demanding as the number of


projects grows. Meta-heuristics provide a useful compromise between the amount


of computation time necessary and the quality of the approximated solution space.


This paper introduces Pareto Ant Colony Optimization as an especially e�ective


meta-heuristic for solving the portfolio selection problem and compares its per-


formance to other heuristic approaches (i. e., Pareto Simulated Annealing and the


Non-Dominated Sorting Genetic Algorithm) by means of computational experiments


with random instances. Furthermore, we provide a numerical example based on real


world data.
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Portfolio Selection, Multiobjective Combinatorial Optimization


1. Introduction


In most real-life situations, decisions are made in the presence of multi-


ple objectives that are often conicting. In addition, many of the prob-


lems are combinatorial (Nemhauser and Wolsey, 1988). Consequently,


researchers from operational research and management science have


constituted scienti�c communities dedicated to multiobjective decision-


making and combinatorial optimization, respectively; these �elds have


attracted a tremendous amount of activity during the past few decades


(cf. Steuer et al., 1996, and Dell'Amico et al., 1997, for bibliographies).


Together, they play a decisive role in multiobjective combinatorial op-


timization (MOCO; cf. Ehrgott and Gandibleux, 2000, for a survey and


White, 1990, and Ulungu and Teghem, 1994, for references to applica-


tions), for which the branch of portfolio selection is of particularly high


practical relevance. Research and development (R&D) management
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provides an especially illustrative example for corresponding implica-


tions: in the increasingly competitive, global marketplace, innovation


is often cited as an important strategy for survival and R&D therefore


has a key role to play in a �rm's future success. As a consequence, it


is imperative for enterprises to determine the \best" subset of R&D


projects out of dozens of competing proposals (i. e., to identify that


project portfolio which provides the most attractive mix of bene�ts


with respect to given management objectives).


In a multiobjective portfolio selection model, diÆculties naturally


arise in formulating an appropriate objective function. Basically, two


ways of proceeding exist. The �rst approach involves building a function


that aggregates the di�erent attributes (e. g., cash ow, sales or even


such intangibles as image) that characterize the attractiveness of any


given portfolio and thus, as far as possible, reects its overall bene�t.


A major drawback to this approach lies in the fact that it requires


extensive a priori preference information (e. g., weights, thresholds,


marginal bene�ts, or guidelines for bene�t or resource substitution


between di�erent categories). In addition empirical evidence suggests


that such an approach actually performs relatively poorly in the case of


multiple objective mathematical programming (Corner and Buchanan,


1995). A di�erent approach lies in accepting several criteria within the


model and (partially) determining the eÆcient (i. e., non-dominated


or Pareto-optimal) portfolio candidates. After this initial phase, the


decision-maker is given an opportunity to explore the solution space


on the basis of guidance provided by an interactive procedure involving


sets of alternatives that are explicitly given. This exploration continues


until a satisfactory portfolio is found. Regularly, this approach can be


undertaken without the above mentioned preference data. However, the


process involved in identifying the set of eÆcient portfolios is not trivial.


While a brute-force complete enumeration procedure can determine


them within acceptable time for comparatively small problems, that


task becomes increasingly demanding as the number of projects grows.


When decision-makers are confronted with a large number of com-


peting projects, heuristic approaches provide a tradeo� between the


quality of the solution space and the computational e�ort required to


achieve this approximation. Several adaptions of metaheuristic proce-


dures have already been proposed: the most common one being the ge-


netic algorithm (GA). Since the pioneering method by Scha�er (1985),


numerous related approaches have been published (see Fonseca and


Fleming, 1993; Horn et al., 1994; Srinivas and Deb, 1994; Murata and


Ishibuchi, 1995; Coello and Christiansen, 1998; Zitzler and Thiele, 1999;


Hanne, 2000, for examples and Coello, 2000; Deb, 2001, for surveys). A


promising alternative known as simulated annealing (SA) was discussed
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in Sera�ni (1994) and subsequently re�ned by Czyzak and Jaszkiewicz


(1998), Ulungu et al. (1998), and Hapke et al. (2000). Tabu search (TS)


approaches (e. g., Gandibleux et al., 1997; Ben Abdelaziz et al., 1999;


Hansen, 2000; Alves and Climaco, 2000) form the third major class


of heuristic procedures for multiobjective combinatorial optimization


(MOCO) problems.


We aim at providing a heuristic approach in the �eld of multiobjec-


tive portfolio selection by introducing Pareto Ant Colony Optimization


(P-ACO; cf. Doerner et al., 2001a, 2002b), an extension of the tra-


ditional Ant System (AS; cf. Dorigo, 1992, 1996) and Ant Colony


Optimization (ACO; cf. Dorigo and Di Caro, 1999), respectively. So far,


Gambardella et al. (1999) developed an ant algorithm for a bi-criterion


vehicle routing problem, basing their approach on the assumption that


the two criteria can be ordered lexicographically. This multi-colony ap-


proach uses one ant colony for each objective; its applicability is limited


to those problems for which priorities can be de�ned for the objectives.


Further, Iredi et al. (2001) and McMullen (2001) developed an Ant


Colony system for optimization problems that consist of two objectives


only and applied it to sequencing problems. Our approach di�ers not


only in the problem class but also in the number of optimization crite-


ria, e. g., �ve to ten objectives in the numerical examples. Iredi et al.


(2001) try to cover the whole set of possible weights by using 100 ants,


each of which has a di�erent deterministic weight vector. Those ants


are grouped in 10 heterogeneous populations. While this is reasonable


for problems with two objectives, this does not necessarily hold in the


case of proper multiobjective problems because of the many weighting


vectors necessary. Therefore, we use a single population with each ant


having di�erent, randomly generated weights (cf. Doerner et al., 2001a).


The increased complexity in the problem structure further requires a


tool to administrate the numerous (up to several thousands) potentially


eÆcient portfolios in reasonable computation time; for that purpose we


designed a generalized quad tree for our ACO implementation. More-


over, we used a di�erent pheromone strategy which conforms better


to the signi�cantly higher complexity. It should be noticed that the


administration of non-dominated solutions is computationally trivial


in the bi-criterion case, whereas it is not in the proper multicriteria


case. The reason lies in the number of eÆcient solutions that usually is


signi�cantly higher in the latter case. Moreover, from a computational


e�ort point of view the determination whether a given solution actually


is eÆcient and whether it dominates some other proposed eÆcient so-


lutions is expensive while it is simple in the bi-criterion case, where the


already identi�ed eÆcient solutions easily can be sorted by one criterion


and automatically are sorted (in reversed order) by the other as well.
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Then one simply has to �nd the right position for the current solution


for one criterion and immediately gets access to all relevant (potentially


dominated) solutions because they will be direct neighbours.


In contrast to the adaptive GA, SA, and TS heuristics, P-ACO


constructs its portfolios. Thus, it largely avoids infeasible portfolio


candidates by explicitly taking into consideration even complex project


interactions. The Ant Colony approach imitates the behavior shown


by real ants when searching for food. Ants communicate information


about food sources via the quantity of an aromatic essence called


pheromone, which the ants secrete as they move along. Over time,


the short direct paths leading from the nest to a food source are more


frequented than longer paths. As a result, the direct paths are marked


with more pheromone, which in turn attracts an ever increasing num-


ber of ants to follow these shorter routes and make the corresponding


pheromone trails grow faster. Arti�cial ants not only imitate the be-


havior described, but also apply additional, problem-speci�c heuristic


information. The Ant System has been applied to and provided solu-


tions for various hard combinatorial optimization problems (cf. Dorigo


and Gambardella, 1997; Bullnheimer et al., 1999b; Gambardella et al.,


1999; Stuetzle and Dorigo, 1999; Bauer et al., 2000; Doerner et al.,


2001b; Doerner et al., 2002a) and a convergence proof for a generalized


Ant System algorithm has been established (Gutjahr, 2002). In or-


der to meet multiobjective problem speci�c requirements, our P-ACO


approach implements several pheromone vectors and applies random


weights for their use. The lifespan concept and the pheromone decoding


scheme are two additional salient features that play an essential role in


modelling the portfolio selection process.


2. Problem Description


Portfolios may be described as subsets of the set of all N project


proposals; they are modeled as vectors x = (x1; : : : ; xN ), where the


binary variables xi indicate whether project i is included in the portfolio


(xi = 1) or not (xi = 0). Our approach aims at determining the eÆcient


project portfolios (i. e., for them no other feasible alternative exists that


promises higher values in at least one of the objectives and o�ers at


least the same in all the others). Following the model introduced by


Stummer (1998) and Stummer and Heidenberger (2001), respectively,


a project i is characterized both by the bene�ts bi;l;t it provides in


the B bene�t categories l (e. g., cash ow, sales, and patents) and the


T planning periods t (e. g., �nancial years), as well as by its resource


consumption ri;q;t in the R resource categories q (e. g., funds, manpower,
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and production capacity). The bene�t value for a portfolio x is given


by


bl;t(x) =
NX
i=1


bi;l;t � xi +
VX
j=1


vj(x) � vj;l;t +
WX
j=1


wj(x) � wj;l;t (1)


for l = 1; : : : ; B and t = 1; : : : ; T;


where the sum of the individual project bene�ts must be adjusted by


the e�ects of V +W project interactions. The V interactions of the �rst


type refer to subsets Vj = fi 2 N : vi;j = 1g (with vi;j = 1 if project


i is e�ected by an interaction j and vi;j = 0 otherwise) and generate


bene�ts vj;l;t only if at least mj of these projects are included in the


portfolio:


vj(x) =


8<
:
1 if


PN
i=1 xi � vi;j � mj


0 otherwise


(2)


The W additional interactions provide bene�ts of wj;l;t for portfolios


containing no more than a given maximum number of projects out of


subsets Wj .


The model similarly determines necessary resources rq;t(x) for re-


source category q (with q = 1; : : : ; R) and planning periods t. Further-


more, it traces both bene�t and resource values separately for each


period instead of aggregating them to a (discounted) overall value


and, thus, provides additional information for the decision maker (see


Ringuest and Graves, 1990, for a discussion). As a consequence, a


comparatively high number of K = B � T objectives


uk(x) = bl;t(x) for k = l + (t� 1) �B (3)


have to be handled just for the bene�t categories. Moreover, remaining


resources also may be considered as additional R � T objectives


uk(x) = Rq;t � rq;t(x) for k = B � T + q + (t� 1) �R (4)


where Rq;t stands for the corresponding resource limitations.


The above objectives are subject to two groups of constraints. The


�rst group ensures that no more than a given maximum (not less than


a given minimum) number of projects may appear in a portfolio in


relation to a given subset of projects. This set of constraints guarantees


the selection of a minimum number of projects that, for example, deal


with emerging technologies, restrict the number of projects based on


conventional concepts (even if they seem attractive in a short-time


perspective) or deal with balancing aspects (e. g., with respect to new
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and current projects). These constraints may be expressed as


NX
i=1


~vi;j � xi � ~mj (5)


where ~mj represents a minimum number of certain projects that must


be included in a portfolio and ~vi;j indicates whether project i is in the


corresponding subset j of e�ected projects. Inequalities for a constraint


variation demanding a maximum number of projects take a similar


form.


The second set of constraints concerns resource limitations Rq;t and


minimum bene�t requirements Bl;t. They can be written as


rq;t(x) � Rq;t for q = 1; : : : ; R and t = 1; : : : ; T; and (6)


bl;t(x) � Bl;t for l = 1; : : : ; B and t = 1; : : : ; T: (7)


3. Solution Procedures


The above problem is characterized by numerous constraints as well as


a large number of objectives. The �rst-mentioned entail a considerable


high percentage of infeasible portfolio candidates. Due to the latter


substantial computational e�ort has to be expended in order to take


into account the various project interactions and to accordingly deter-


mine all the objective values (i. e., the evaluation of a portfolio is quite


\expensive"). Moreover, the investigation whether a current portfolio


may be considered as eÆcient or not becomes time-consuming, too.


We therefore use a quad tree data structure for identifying, storing and


retrieving non-dominated portfolios.


Such quad trees generalize classic binary trees to K-dimensional


space. First introduced by Finkel and Bentley (1974) for data storage


and retrieval, they have been applied to discrete vector optimization


problems by Habenicht (1983). The project portfolios are stored in the


nodes of the tree. Given K objectives, a node is followed by up to


2K � 2 subtrees, where all portfolios in such a subtree have the same


dominance relation (i. e., for each objective they are all better or all


worse, respectively, than the root). With this hierarchical structure,


only a small percentage of all possible pairwise comparisons is required


for eÆciency veri�cation (for a recent discussion cf. Sun and Steuer,


2000).
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The remainder of this section decribes in detail the Pareto Ant


Colony Optimization (P-ACO) and two solution procedures for bench-


marking: Pareto Simulated Annealing (PSA) and the Non-Dominated


Sorting Genetic Algorithm (NSGA).


3.1. Pareto Ant Colony Optimization


In the initialization phase, � ants are generated, each ant starting with


an empty portfolio x = (0; : : : ; 0). The lifespan � and the objective


weights (i. e., the ant's individual preferences) p = (p1; : : : ; pK) are


determined randomly for each ant. Note, that whenever we do not


explicitly mention the domain random numbers are chosen equally


distributed from the domain [0; 1).


In the construction phase of the algorithm, each ant tries to con-


struct a feasible portfolio x by applying a pseudo-random-proportional


rule using heuristic information �i and pheromone information �i. After


a portfolio has been constructed, its feasibility and eÆciency is deter-


mined. If the portfolio under consideration is feasible and eÆcient it is


stored. Global pheromone update is performed by using the best and


the second-best portfolio x of the current iteration for each objective


k.


The proposed P-ACO algorithm for the problem at hand is the


following:


procedure P-ACO () f


Initialization of P-ACO; /* create � ants,


initialize pheromone vectors with �0 */


repeat until termination criterion is truef


for Ant = 1 to � f


determine the lifespan � of the ant randomly on


the interval [1..N];


set x = (0; :::; 0); /* create empty portfolio */


determine the objective weight pk for each objective k


randomly;


� = �; /* indicates the number of projects to be selected */


while � > 0 and 9 i with �i(x) > 0 f


select a project i using formula (8) below and add it to x;


update local pheromone information;


decrement �;


g


check feasibility of portfolio x;


if portfolio x is feasible f


check eÆciency of portfolio x;
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if portfolio x is eÆcient f


store portfolio x and remove dominated ones;


g g g


for each objective k f


determine best and second-best


solution uk for each objective k;


update global pheromone information using best and


second-best solution using formula (11)


g g g


In this pseudo code and in what follows the term \randomly gener-


ated" means generated according to a uniform distribution.


3.1.1. Heuristic Information


The heuristic information is based on a quantitative value that mea-


sures how well some project candidate �ts into a partially constructed


portfolio. For each project candidate i an aggregated value of attrac-


tiveness �i(x) is computed. This value depends on the (partial) portfolio


x. Furthermore, it is based on constraints and targets that can be


categorized into four categories: maximum or minimum restrictions


(e. g., upper/lower limit for the number of projects of a certain project


type in the portfolio), resource restrictions (e. g., maximum available


workforce) and bene�t restrictions (e. g., minimum pro�t expectations).


If a maximum restriction or a resource restriction is violated, then


the attractiveness value is set to zero. If the maximum restriction


and the resource restriction is ful�lled, then the attractiveness value


corresponds to the degree of ful�llment in the two remaining categories


(i. e., minimum restrictions and/or bene�t restrictions). A special case


occurs when all restrictions are satis�ed by including the considered


project in the portfolio; in this case, the attractiveness value is set to


one.


3.1.2. Pheromone Information


For each objective k the pheromone information is stored in a vec-


tor � , with the number of elements corresponding to the number of


projects. The value �ki represents the current pheromone information,


i. e., the pheromone information with respect to objective k of including


project i in a \good" portfolio. Roli et al. (2001) proposed three di�er-


ent pheromone decoding schemes for maximal constraint satisfaction


problems; two decoding schemes were based on matrices and one was


vector-based. Based on previous work by Doerner et al. (2001a, 2002b)


further extensive testing on our multiobjective portfolio selection prob-


lem showed that the vector-based ACS-comp outperformed the two
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other variants with regard to solution quality for given computation


times. In light of this �nding, we will refer solely to the ACS-comp


implementation in the remainder of this paper.


3.1.3. Decision Rule


Given the attractiveness, the pheromone information, and the set of


all feasible projects 
(x) = fi 2 N : �i(x) > 0 , xi = 0g, a feasible


project i is selected to be added to the current portfolio x according to


a pseudo-random-proportional rule that can be stated as follows:


i =


8><
>:


argmaxi2
(x)


nhPK
k=1


�
pk � �


k
i


�i�
� [�i(x)]


�
o


if q � q0


î otherwise;


(8)


where q is a random number uniformly distributed in [0::1), q0 is a


parameter (0 � q0 < 1) to be set by the user representing the probabil-


ity that the portfolio is chosen which gives the highest aggregate value


of pheromone and attractiveness. The random variable î is selected


according to the probability distribution given:


Pi(x) =


8>>><
>>>:


�PK


k=1
(pk��ki )


��
�[�i(x)]


�


P
h2
(x)


��PK


k=1
(pk��kh)


��
�[�h(x)]


�


� if i 2 



0 otherwise;


(9)


This probability distribution is biased by the parameters � and �,


which determine the relative inuence of the trails and the visibility,


respectively.


3.1.4. Pheromone Update


A local pheromone update is performed once an arti�cial ant has added


a project to a portfolio. When an ant selects a project i, the amount of


pheromone on the elements �ki of the pheromone vector is decreased for


each objective k. The local pheromone update rule for these elements


can be stated as follows:


�ki = (1� �) � �ki + � � �0 ; (10)


where �0 is the initial value of trails and � is the evaporation rate.


On account of local updating, ants prefer those combinations of orders


that have not yet been chosen. As a result, the diversity of the solutions


provided is enhanced.


Global pheromone information is updated once each ant of the pop-


ulation has constructed a solution, and the feasibility and eÆciency
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have been determined. Preliminary tests have shown that a pheromone


update procedure suÆces in which only the best and the second-best


solution provided by an iteration is used for global updating (cf. Dorigo


and Gambardella, 1997; Bullnheimer et al., 1999a). The update rule for


each objective k is as follows:


�ki = (1� �) � �ki + � ���ki ; (11)


where � is the evaporation rate (with 0 � � � 1). Pheromone informa-


tion is increased by a quantity ��ki if a project i is in a portfolio of a


population's best (second-best, respectively) ant according to objective


k. This update quantity for the best ant can be represented as


��ki =


8><
>:


10 if xkbest;i = 1


0 otherwise.


(12)


After the update with respect to the best ant is performed according to


(11) and (12) a similar update (11) is made with respect to the second


best ant where the update quantity can be written as


��ki =


8><
>:


5 if xksecond�best;i = 1


0 otherwise.


(13)


Tests with various pheromone update strategies have shown that using


the two best ants with pheromone quantity 10 for the best ant and 5


for the second-best ant leads to good results.


3.2. Pareto Simulated Annealing


For our simulated annealing implementation, we use a technique by


Czyzak and Jaszkiewicz (1998) called \Pareto Simulated Annealing"


(PSA). This is an extension of the multiobjective simulated annealing


algorithms proposed by Sera�ni (1994) and by Ulungu et al. (1995). The


latter approaches already use a population M of potentially eÆcient


solutions rather than a single current solution, as is the case in classical,


single-objective simulated annealing. The new features of Czyzak and


Jaszkiewicz's extension are to allow a kind of interaction among the


current solutions in the population M (i. e., they are updated in such


a way that they evolve as distant from each other as possible), and to


iteratively modify weights assigned to the objective criteria.


Our basic implementation of the PSA algorithm for the problem


under consideration in this paper is described below in pseudo code.
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Let us use the following notation (K and N are the number of criteria


and the number of projects, respectively, as before):


S sample set of current (feasible) solutions,


s number of elements in S (�xed positive integer parameter),


p probability of choosing a 1-bit when generating an initial


solution x in S (�xed parameter between 0 and 1),


M solution set (i.e., set of all proposed eÆcient solutions


in current iteration),


wik weight of criterion k for the i-th element of sample set S,


uk(x) objective value (to be maximized) of criterion k for


solution x,


a weight modi�cation factor (�xed parameter greater than 1),


T temperature parameter for simulated annealing,


L number of iterations on each temperature level of the


simulated annealing algorithm (�xed positive integer parameter),


b temperature reduction (annealing) factor (�xed parameter


smaller than 1, near 1).


Now, the algorithm is the following:


procedure PSA () f


S = ;;


repeat until S contains s solutions f


generate a random binary vector of length N by setting a


bit to 1 with probability p and to 0 otherwise;


if (x is a feasible solution) add x to sample set S;


g


M = ;;


for i = 1 to s


if (i-th solution x in S is eÆcient w.r.t. M)


add x to solution set M and remove dominated ones;


initialize temperature parameter T ;


repeat until termination criterion is truef


for l = 1 to L


for i = 1 to s f


x = i-th solution in S;


construct a random feasible neighbor solution y to x by


(repeated) ipping of one or more bits in x and checking


feasibility;
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if (y is eÆcient w.r.t. M) add y to solution set M


and remove dominated ones;


x0 = element in S non-dominated by x that has minimum


Hamming distance to x;


if (�rst run or no x0 found) f


for k = 1 to K


draw random weight wik;


normalize weights wik to
P


k wik = 1;


g


else f


for k = 1 to K f


if (x better than x0 according to criterion k)


wik = awik;


else


wik = wik=a;


g


normalize weights wik to
P


k wik = 1;


g


accept y (i. e., replace x as the i-th solution in S by y) with


probability min (1; exp (
P


k wik (uk(x)� uk(y)) =T )) ;


g T = bT ; gg


In order to decrease the run time, we modify this basic algorithm as


follows: Instead of computing the non-dominated element x0 with min-


imum Hamming distance to the current x (which takes much computa-


tion time in the innermost loop of the algorithm), at each step we select


a small random subset J of bit positions and minimize the Hamming


distance only on those binary substrings de�ned by J . This modi�cation


results in a considerable improvement of the solution quality obtained


after a pre-speci�ed computation time.


3.3. Non-Dominated Sorting Genetic Algorithm


For our genetic algorithm implementation, we have chosen to use a


technique by Deb (2001) called \Fast Elitist Non Dominated Sorting


Genetic Algorithm" (NSGA). At each generation, a combined popula-


tion consisting of the parent and the children population is constructed


�rst. All non-dominated solutions in the combined population are as-


signed a �tness based on the number of solutions they dominate, while


dominated solutions are assigned a �tness worse than the worst �tness


of any non-dominated solution. The assignment of �tness ensures that


the search is directed towards the non-dominated front.


Our basic implementation of the NSGA for the problem under con-


sideration in this paper is described below in pseudo code. Let us use
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the following notation (K and N are the number of criteria and the


number of projects, respectively, as before):


E sample set of solutions - parent population,


Q sample set of solutions - children population,


e number of elements in E (�xed positive integer


parameter),


q number of elements in Q (�xed positive integer


parameter),


p probability of choosing a 1-bit when generating


an initial solution x in E (�xed parameter


between 0 and 1),


M solution set,


F = (F1; F2; :::) set of all non-dominated fronts,


uk(x) objective value (to be maximized) of criterion k


for solution x,


t iteration counter.


The algorithm is now as follows:


procedure NSGA () f


E = ;; Q = ;;


repeat until E contains e solutions f


generate a random binary vector of length N by setting a bit


to 1 with probability p and to 0 otherwise;


if (x is a feasible solution) add x to sample set E;


g


M = ;; t = 0;


for i = 1 to e


if (i-th solution x in E is eÆcient w.r.t. M)


add x to solution set M and remove all dominated ones;


repeat until termination criterion is truef


Rt = Et [Qt;


F = fast-nondominated-sort (Rt);


/* compute all non-dominated fronts F = (F1; F2; :::) of Rt


using objective values uk(x) for each objective k*/


Et+1 = ;;


include the non-dominated fronts in the parent


population Et+1 until the parent population


contains e portfolios;


paco_020927.tex; 27/09/2002; 12:44; p.14







Pareto Ant Colony Optimization 14


Qt+1 = make-new-population (Et+1);


/* apply one-point crossover and mutation to create


a new population Qt+1 using �tness values according to F*/


for i = 1 to q


if (i-th solution x in Q is eÆcient w.r.t. M)


add x to solution set M and remove all dominated ones;


t = t+ 1;


gg


The �rst front F1 consists of all non-dominated portfolios that are


not yet dominated by any other portfolios; the second front F2 consists


of portfolios that are only dominated by those of the �rst front, and


so on. After preliminary test and in order to decrease the run time, we


modify this basic algorithm as follows: Instead of computing all non-


dominated fronts of Rt, we compute only the �rst �ve fronts. It is not


necessary to sort more than �ve fronts because due to the number of


(non-linear) constraints a portfolio is either included in "upper" fronts


or it is infeasible.


4. Numerical Analysis


In the following section we describe computational tests which we per-


formed in order to compare the solution quality and performance of the


three approaches described in this paper. We tested the approaches


on random problem instances that we generated systematically us-


ing a problem instance generator. In addition, we also compared the


approaches by applying them to real-world data.


4.1. Random Problems


In order to provide a fair comparison of the solution quality and perfor-


mance of the described approaches we generated heterogeneous random


problem instances. The determining factors for portfolio selection prob-


lems are the numbers of objectives, the numbers of constraints and the


numbers of projects.


4.1.1. Problem Instance Generator


We generated 18 random problem instances on basis of the following


procedure:


A. Determine the number of projects which are the basis for possible


portfolios. We generate problem instances of two di�ering sizes:


twelve instances consisting of portfolios based on twenty projects


and six instances containing portfolios based on thirty projects.
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B. Determine the number of objectives. We generate instances of two


objective types: for each of the two sizes, we generate instances


with �ve objectives and instances with ten objectives.


C. Determine the number of constraints. For each size and each ob-


jective type, we generate two restriction types: problem instances


with few restrictions and problem instances with many restrictions.


Problem instances with few (many) restrictions contain three (nine)


to six (twelve) interactions to model minimum restrictions, and


another three (nine) to six (twelve) interactions to model maximum


restrictions. Furthermore, these problem instances have up to three


(three to �ve) interactions to model synergism e�ects.


D. Determine the resource consumption and the bene�ts for each ob-


jective associated with each project. The amount of resource con-


sumption and the increase in bene�t values for each of the objec-


tives are determined randomly. However, they correlate in a way


that projects with high resource consumption regularly provide a


high level of bene�ts and vice versa.


E. Determine the quantity of the overall resources available. The quan-


tity of the overall resources available is determined randomly and


correlates to the resource consumption of one-third of the projects


generated (the one-third used is chosen randomly). Furthermore,


that quantity is weighted by a random number between 0:8 and


1:2.


F. Determine the synergies. Pairs of project candidates for synergy


e�ects are selected randomly; the number of synergies depends on


the constraint type (cf. step C of this procedure). The additional


contribution to the objective values by combining the two selected


projects into the same portfolio equals 3% of the overall bene�ts of


all twenty (thirty, respectively) projects generated for the problem


instance.


4.1.2. Parameters for the Three Approaches


The following section provides results for the computational tests, which


were performed in order to provide an insight into how the solution


quality of Pareto Ant Colony Optimization, Pareto Simulated Anneal-


ing and the Non-Dominated Sorting Genetic Algorithm develops when


applying them to problem instances generated with the above proce-


dure. In preliminary tests a comparison with a Monte Carlo Simulation


and a randomized greedy approach by using the same heuristic infor-


mation which was integrated into ACO was performed (cf. Doerner
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et al., 2001a, 2002b). Tests showed a high superiority of ACO over


the random search and provide evidence that the learning feature of


ACO contributes essentially (up to 23%) to the solution quality. To


provide a yardstick for a comparison of various results, we have chosen


the total number PE of proposed eÆcient portfolios and the number


E of proposed portfolios appearing in the eÆcient set (proven actually


eÆcient through complete enumeration).


The parameter settings of P-ACO chosen for the computational


experiments (� = 1, � = 1, � = 0:1, � = 10) were taken from other


applications and were pre-tested for the problem under consideration.


As a result of these pre-tests the parameter q0 is reduced from q0 = 0:9


to q0 = 0:4 because a higher level of diversi�cation is desirable for our


application. For the same reason �0 = 1 appeared to be superior to the


much smaller values suggested by Dorigo and Gambardella for their


setting.


Some parameter settings of PSA were directly applied to our prob-


lem instances (e. g., weight modi�cation and annealing factor) whereas


others had to be adapted to the problem size (e. g., population size)


according to parameter setting rules outlined in Czyzak and Jaszkiewicz


(1998). For our problem instances with twenty projects we choose a


population size s of 350 feasible portfolios and a size of 2000 for the


problems with thirty projects. Further, the probability p of choosing a


1-bit when generating an initial solution x is set to 0.29 (because this


setting turned out to be better than the value 0.19 originally suggested


by Czyzak and Jaszkiewicz, 1998). The weight modi�cation factor a


is set to 1:01, and the initial temperature parameter is T = 1. The


number of iterations on one temperature level equals 2 for the problems


with twenty projects and equals 20 for the larger instances. Finally, the


temperature is reduced by a factor b = 0:9.


As the parameters of the NSGA must also be adjusted to the prob-


lem size, the parameter settings are based on the �ndings by Deb


(2001). A population size s of 200 feasible portfolios is used for the


\twenty-project-problems", whereas the population size is set to 400


for the larger instances with thirty project proposals. The probability


p of choosing a 1-bit when generating an initial solution x is set to


0:29, like in the PSA approach. The population is categorized into �ve


eÆcient frontiers by the non-dominated sorting procedure. There, the


�tness value of non-dominated solutions of the �rst front equals 1.0 and


is decreased by 0.2 for the following fronts (e. g., the �tness of a solution


of the second front is 0.8 while it is 0.2 for a solution of the �fth front


which contains all remaining portfolios). The �tness of an infeasible


solution generated by using the crossover or mutation operator is set


to 0.05.
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Figure 1. Numerical Results of Instances with 20 Projects


4.1.3. Numerical Results for Random Problems


We performed all runs on a personal computer with a Pentium III-933


microprocessor, 128 MB RAM, and the operating systemWindows ME;


all procedures were implemented in C++.


Figure 1 shows the results computed by each approach for the ran-


dom problem instances with twenty portfolios. To obtain heterogeneous


instances, we combine each objective type with each constraint type


and generate three problem instances with few restrictions and another


three with many restrictions for each objective type (i. e., �ve or ten


objectives). The instances with �ve objectives and few constraints have


92, 58, and 232 eÆcient portfolios, those with many constraints have


17, 14, and 77 eÆcient portfolios. The instances with ten objectives


and few constraints have 724, 575, and 898 eÆcient portfolios, while


those with many constraints have 73, 169, and 973 eÆcient portfolios.


We present values averaged over these twelve problem instances and


over three computational runs. The dashed line indicates the number


of proposed eÆcient portfolios whereas the bold line shows the actually


eÆcient ones found. Run times varied between 1:5; 2:0; 2:5, and 3:0 CPU


minutes.


PSA performs better than the other two approaches when run times


are low: it suggests 12% more portfolios than P-ACO and 26% more


than NSGA. The reason for the good values of PSA after short run


times lies in the large initial population. In addition, the hit rate E/PE


(it can be interpreted as the probability that the approach proposes


a portfolio belonging to the eÆcient set and indicates the degree of


\dilution" of a solution) is better than the hit rate of the other two
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Figure 2. Numerical Results of Instances with 30 Projects


approaches: 9% better than P-ACO and 30% better than the NSGA.


Slightly increased run time makes P-ACO superior to PSA and NSGA.


The learning feature of the P-ACO approach quickly leads to roughly


10% better results than PSA and ca. 20% better results than NSGA.


Finally, the relatively small gap between the dashed and solid line refer-


ring to P-ACO shows an appealing hit rate (i. e., the ratio of potentially


eÆcient portfolios and actually eÆcient ones) and may be interpreted


as a low probability that P-ACO would suggest a dominated portfolio


as an eÆcient one.


Figure 2 shows the results computed by each approach for random


problem instances based on thirty portfolios. To obtain heterogeneous


instances, we combined each objective type with each constraint type,


and generated two instances with �ve objectives and few restrictions


(461 and 1061 eÆcient portfolios), two instances with �ve objectives


and many constraints (374 and 365 eÆcient portfolios), and another


two instances with ten objectives and few and many restrictions (621


and 2619 eÆcient portfolios). The run time alternatives were set to 10,


20, 30, 40, 50, and 60 minutes to give an insight into the development


of the solution quality of each approach.


P-ACO shows better results than the other approaches in terms


of number of proposed eÆcient portfolios and in terms of number of


eÆcient portfolios found. Compared to PSA, P-ACO identi�es both


more and \better" portfolios from the very beginning: after 10 minutes


of run time it proposes on average 81% (which are 4% more portfolios


than for PSA); the ratio of the actually eÆcient portfolios among the


proposed ones is 13% higher than the PSA's ratio after 10 minutes
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of run time. After 60 minutes of run time, P-ACO proposes 2% more


portfolios than PSA and the ratio of actually eÆcient ones is 3% higher


than for PSA. NSGA performs signi�cantly worse than the two other


appoaches. Again, P-ACO has the best hit rate.


4.2. Numerical Results using Real World Data


In the following section, we present a numerical study that applies the


three approaches described previously by using real world data from an


R&D environment. It outlines a rather complex decision-making situ-


ation that does not permit any \intuitive" favoring of certain project


combinations in advance. Our example considers thirty projects (N =


30), three planning periods, and two bene�t categories (i. e., K = 3�2 =


6). Thus, the alternative space includes 230 (i. e., more than 109) portfo-


lios. The projects vary substantially in both their potential bene�ts and


the resources they require. Moreover, some projects vary signi�cantly in


their bene�t values and/or resource consumption while other projects


provide average values. In addition to limited resources and minimum


bene�t requirements, ten supplementary constraints ensure that { to


provide examples for a maximum and a minimum restriction { any


feasible portfolio includes at most one out of three projects pursuing


the same goal, or at least two projects that help to diversify business.


Finally, four interactions are used to model synergism or cannibalism


between projects. After eight hours of run time complete enumeration


shows that this real world problem has 980 eÆcient portfolios.


Again, we measure the proposed eÆcient and the eÆcient portfolios


that each approach found after 10, 20, 30, 40, 50, and 60 minutes of run


time. Figure 3 gives an overview of several characteristics; the upper


left graph shows the absolute number of proposed eÆcient portfolios


generated by the three approaches under consideration. PSA proposes


slightly more portfolios after 40 minutes of run time than P-ACO;


NSGA proposes relatively few portfolios. The graph in the upper right


corner measures the results of the approaches on the relative number


of actually eÆcient portfolios. Although PSA has proposed more port-


folios than P-ACO, the hit rate of P-ACO is clearly superior to PSA


(see bottom graph). The reason why PSA proposes many erroneous


portfolios lies in the large initializing population, which generates many


random-driven, feasible solutions. The inferior results of the NSGA are


based on the fact that many generated solutions become infeasible due


to the large number of constraints.


As only less than 0:1% of the total search space had to be checked


(i. e., on average 0.85 million portfolios compared to 1.20 million for the


PSA and 0.96 million for the NSGA) to �nd already 92% of the eÆcient
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Figure 3. Numerical Results with Real World Data


portfolios (after 60 minutes) this can be interpreted as a promising


indicator that P-ACO will generate satisfying solutions in reasonable


computation time even for problems that are too large to be enumer-


ated completely. Apparently, SA can generate the largest number of


portfolios in the given time frame, while P-ACO has the largest over-


head and thus can only generate the smallest number. Nevertheless,


except for very short run times (where SA is best) P-ACO �nds most


PE solutions of all approaches.


5. Conclusions


Multiobjective combinatorial optimization plays a decisive role in the


decision-making process on the strategic management level. Recent


research activities focused on heuristic approaches for such NP-hard


problems. Our paper introduces Pareto Ant Colony Optimization as


a solid method to provide an eÆcient algorithm for this challenging


problem class. We extended and enriched Ant Colony Optimization


by de�ning multiple pheromone vectors (i. e., one pheromon vector for
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each objective), random objective weights for each objective, and the


lifespan concept in order to apply P-ACO to multiobjective problems.


The solution quality of P-ACO is shown by providing benchmarks


based on the Pareto Simulated Annealing and the Non-Dominated Sort-


ing Genetic Algorithm approaches. To compare the solution quality and


the performance, we applied the three approaches to 18 heterogeneous


random problem instances and one instance using real-world data. In


our experiments P-ACO turned out as the most eÆcient one.


Following our results, the application of P-ACO to the project port-


folio selection problem under consideration has three advantages: (1)


it can handle the (complex) project interactions and constraints better


than the other two meta-heuristics, (2) it is robust in that it shows


very good results on various problem characteristics (e. g., many or few


constraints and/or objectives), and (3) heuristic information can easily


be plugged into the algorithm.


Our current experience shows that for some problem instances cer-


tain eÆcient portfolios (found by complete enumeration) are sometimes


extremely diÆcult to �nd. It could be worthwhile to analyze these


\hard-to-�nd" portfolios in more detail to obtain ideas for further


enhancement of our P-ACO approach.


Future research will focus on an enhanced eÆciency of the algo-


rithm, e. g. with an analysis of the lifespan concept in order to estimate


promising lifespans for the ants. Furthermore, it will focus on real world


problems with more than hundred projects. In large problems it will be


important to guarantee solutions diversi�ed over the eÆcient frontier;


an initial attempt may consist of integrating the core idea of PSA into


P-ACO to keep solutions isolated from each other.
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run time (min.) 1.5 2.0 2.5 3.0 10 20 30 40 50 60
PE_P-ACO


few restrictions/ few objectives 0,49 0,97 0,99 1,00 0,77 0,87 0,91 0,93 0,95 0,97
many restrictions/ few objectives 0,76 1,00 1,00 1,00 0,89 0,97 0,98 0,99 0,99 1,00
few restrictions/ many objectives 0,77 0,95 0,99 1,00 0,85 0,97 0,99 0,99 0,99 0,99


many restrictions/ many objectives 0,76 0,89 0,92 0,95 0,73 0,89 0,96 0,98 0,99 0,99
0,69 0,95 0,97 0,99 0,81 0,93 0,96 0,97 0,98 0,99
E_P-ACO


few restrictions/ few objectives 0,33 0,97 0,99 1,00 0,63 0,79 0,87 0,91 0,94 0,95
many restrictions/ few objectives 0,73 1,00 1,00 1,00 0,87 0,96 0,98 0,99 0,99 1,00
few restrictions/ many objectives 0,75 0,95 0,99 1,00 0,85 0,97 0,98 0,99 0,99 0,99


many restrictions/ many objectives 0,75 0,88 0,91 0,95 0,70 0,89 0,95 0,98 0,99 0,99
0,64 0,95 0,97 0,98 0,76 0,90 0,95 0,97 0,98 0,98
PE_PSA


few restrictions/ few objectives 0,73 0,89 0,89 0,89 0,69 0,80 0,82 0,86 0,89 0,91
many restrictions/ few objectives 1,03 0,96 0,96 0,96 0,84 0,95 0,99 1,00 1,00 1,00
few restrictions/ many objectives 0,67 0,78 0,82 0,84 0,95 0,99 1,00 1,00 1,01 1,01


many restrictions/ many objectives 0,82 0,86 0,88 0,88 0,59 0,78 0,91 0,97 0,99 0,97
0,81 0,87 0,89 0,89 0,77 0,88 0,93 0,96 0,97 0,97
E_PSA


few restrictions/ few objectives 0,62 0,86 0,86 0,86 0,48 0,61 0,68 0,74 0,80 0,83
many restrictions/ few objectives 0,93 0,96 0,96 0,96 0,70 0,92 0,98 0,99 1,00 1,00
few restrictions/ many objectives 0,58 0,72 0,79 0,81 0,94 0,98 0,99 0,99 0,99 0,99


many restrictions/ many objectives 0,79 0,84 0,86 0,87 0,42 0,66 0,86 0,93 0,95 0,96
0,73 0,84 0,87 0,87 0,63 0,79 0,88 0,91 0,93 0,95
PE_NSGA


few restrictions/ few objectives 0,42 0,69 0,73 0,75 0,32 0,38 0,39 0,42 0,43 0,45
many restrictions/ few objectives 0,66 0,95 0,98 1,00 0,46 0,51 0,54 0,56 0,58 0,59
few restrictions/ many objectives 0,39 0,60 0,67 0,70 0,39 0,59 0,63 0,74 0,79 0,75


many restrictions/ many objectives 0,71 0,80 0,82 0,83 0,33 0,47 0,58 0,64 0,70 0,74
0,55 0,76 0,80 0,82 0,38 0,49 0,54 0,59 0,63 0,63
E_NSGA


few restrictions/ few objectives 0,18 0,60 0,65 0,68 0,14 0,18 0,20 0,21 0,22 0,24
many restrictions/ few objectives 0,54 0,86 0,89 0,90 0,32 0,38 0,40 0,42 0,43 0,45
few restrictions/ many objectives 0,32 0,51 0,60 0,64 0,16 0,32 0,44 0,56 0,63 0,69


many restrictions/ many objectives 0,67 0,76 0,78 0,79 0,16 0,30 0,42 0,51 0,58 0,64
0,43 0,68 0,73 0,75 0,19 0,29 0,37 0,43 0,47 0,50


Figure 4. Not-to-be-published Appendix: Detailed Numerical Results
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