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Abstract. The paper describes the application of multiobjective evolutionary 
algorithms in multicriteria optimization of operational production plans in a 
foundry, which produces iron castings and uses hand molding machines. A 
mathematical model that maximizes utilization of the bottleneck machines and 
minimizes backlogged production is presented. The model includes all the con-
straints resulting from the limited capacities of furnaces and machine lines, lim-
ited resources, customers requirements and the requirements of the manufactur-
ing process itself. Test problems based on real production data were used for 
evaluation of the different evolutionary algorithm variants. Finally, the plans 
were calculated for a nine week rolling planning horizon and compared to real 
historical data. 

1   Introduction 

One of the authors has been working for a Polish foundry to develop the software 
which would help to improve shop production planning process. A weekly task for 
the planners at the operational level is to say how many castings for which orders will 
be produced on molding machines during all working shifts. The planning process is 
done manually with a little support of spreadsheets and basic MRPII/ERP (Mate-
rial/Enterprise Resource Planning) related tools. It is a common practice not only in 
this particular foundry. The survey conducted by Van Voorhis and Peters [10] has 
shown that also in the USA only a few foundries used specialized software to assist 
the planning and scheduling process while the majority of them did it manually. 

The production in small and medium iron foundries is often done in short series so 
the planners must take into consideration many orders, each for a different product. In 
the considered foundry there were about 100–200 active orders a week for 10 to 500 
castings of various weight and iron grade. 

The castings manufacturing process itself can be divided into following steps: de-
signing a pattern, preparing molding sand and cores, making molds, melting and 
pouring hot iron and finally finishing operations. The patterns are prepared in a sepa-
rated pattern shop and once they are made they can be used many times. If a casting 
requires cores, they are made in a core shop. Cores usually can be prepared earlier, 
even a few days before they are put in a mold. Next molding sand is compacted 



around a pattern in a flask thus creating a mold. Then hot iron, melted in electric 
furnaces is poured into the flasks, which are left to solidify. After several hours the 
castings are taken from the molds and they undergo cleaning and finishing operations 
in a dressing shop. 

Operations for the pattern shop are planned independently of the main production 
process. Operations for the core shop and the dressing shop can be planned easily on 
the basis of a molding plan unless the plan includes an enormous number of castings 
which require many cores or a lot of time to be finished. This situation is very rare in 
the foundry so it will not be considered in the optimization model.  

Thus a priority for the planners is to prepare an appropriate molding plan con-
nected with a pouring schedule for the furnaces. These plans must be coordinated as 
melted iron cannot wait too long to be poured, and also the room for the molds wait-
ing for pouring is limited. While building the plan many technological and organiza-
tional constraints have to be taken into consideration. The most significant are: 
− capacities of furnaces and molding machines, 
− the number, desired delivery date and cast iron grade of ordered castings, 
− the number of different castings which can be produced during one shift (setup 

times are included in forming times), 
− the number of flasks of various size available during a working shift, 
− the minimum batch size a customer can accept. 
The data for the optimization model can be collected nearly automatically from the 
existing production control system. 

2   Mathematical model 

A mathematical model was formulated on the basis of the classical discrete capaci-
tated lot-sizing problem with single level and multi item production on parallel ma-
chines. A similar approach can be found in Santos-Mezo et al. paper [8], which dis-
cusses a lot-sizing problem in an automated foundry. The model proposed in this 
paper, however differs in two main points. A commonly used minimization of an 
artificially built sum cost function has been replaced by two objective functions indi-
cated directly by the planners. Another modification is that the equality constraint 
balancing inventory and demand has been changed into an inequality constraint.  

The following symbols are used: 
Decision variables: 

xijtz – number of castings planned for order i to be manufactured on machine j dur-
ing day t and shift z, 

vhtz – number of heats of grade h during day t and shift z. 
Data: 

τ – week for which the plan is created, 
k – number of working days in a week, 
mj – number of working shifts for machines type j, 
nj – number of active orders for machines type j, 
CP – daily melting capacity of the furnaces [kg], 



W – weight of single heat [kg], 
CFj – capacity of molding machines type j during a working shift [minutes], 
wij – total iron weight needed to produce single i casting [kg], 
aij – time of making a mold for casting i on machine j [minutes], 
dij – ordered number of castings of type i to be produced on machine j, 
γ – number of iron grades, 
gij – iron grade for casting i, gij∈{1,...,γ}, 
ω – number of flask types, 
So – flask number of type o available during a working shift, 
qij – flask type in which a mold for casting i is prepared, qij∈{1,...,ω}, 
κj – number of different castings which can be produced on machine type j during 

one working shift, 
δij – due week for castings of type i to be produced on machine j, 
π

t
i j – penalty value for tardiness, 
π

e
i j – penalty value for earliness. 

First objective function: 
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Second objective function: 
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The first objective function (1) maximizes the utilization of both furnaces and 
molding machines as these are bottlenecks in the production system. Although the 
function (1) is to be maximized, for the sake of convenience it is transformed to mini-
mization by multiplying it by –1. The second objective function (2) minimizes the 
penalty for not making as many castings as ordered by the customer on time or for 
making them earlier than in the week agreed with the customer. Constraints (3) and 
(4) are the capacity constraints for the furnaces and the molding machines, respec-
tively. Constraint (5) ensures that no more production can be planned than ordered by 
the customer. In the classic lot-sizing model constraint (5) is an equality. However, in 
the considered foundry the sum of items ordered usually exceeds production capabil-
ity so backlogging is a common practice and customers receive their castings in sev-
eral batches. The penalty function (2) ensures that backlogging would is kept at a 
possibly low level. Inequality constraint (6) limits the weight of the planned castings 
of a particular cast iron grade to the weight of the metal which has to be melted. Ac-
cording to constraint (7) no more than κj different castings may be produced during 
one working shift. The last constraint (8) limits the flask availability. 

The model is formulated as a nonlinear problem, however it is possible to change it 
into an integer programming formulation by entering additional binary variables. 

3   Evolutionary algorithm 

A weekly plan for molding machines is coded in a single chromosome using integer 
gene values. A single gene represents quantity of castings planned for production or 
equals zero if the production for particular order during a given shift is not planned. 
This can be presented as the matrix shown in figure 1. 

Fig. 1. Molding plan coded in a chromosome 

 

x1111, x2111,..., xn1111, x1112, x2112,..., xn1112, ..., x111m1, x211m1,..., xn111m1, 

x1121, x2121,..., xn1121, x1122, x2122,..., xn1122, ..., x112m1, x212m1,..., xn112m1, 
... 
x11k1, x21k1,..., xn11k1, x11k2, x21k2,..., xn11k2,  ..., x11km1, x21km1,..., xn11km1, 

 

machine 
1st type 

1st working shift  

x1211, x2211,..., xn1211, x1212, x2212,..., xn1212, ..., x121m1, x221m1,..., xn121m1, 

x1221, x2221,..., xn1221, x1222, x2222,..., xn1222, ..., x122m1, x222m1,..., xn122m1, 
... 
x12k1, x22k1,..., xn12k1, x12k2, x22k2,..., xn12k2,  ..., x12km1, x22km1,..., xn12km1, 

 ... 

x1l11, x2l11,..., xn1l11,   x1l12, x2l12,..., xn1l12, ...,   x1l1m1, x2l1m1,..., xn1l1m1, 

x1l21, x2l21,..., xn1l21,   x1l22, x2l22,..., xn1l22, ...,   x1l2m1, x2l2m1,..., xn1l2m1, 
... 
x1lk1, x2lk1,..., xn1lk1,   x1lk2, x2lk2,..., xn1lk2,  ...,   x1lkm1, x2lkm1,..., xn1l km1, 
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This chromosome structure leads to a situation where a correct plan should have a 
lot of zeroes, regarding constraint (7). To avoid keeping incorrect individuals in a 
population a simple repair algorithm is introduced. Whenever constraint (7) is vio-
lated for one of the machines and working shifts, the smallest lots planned so far are 
eliminated successively from the plan until the number of different lots which are 
allowed for production during one working shift is reached. 

Note that there are no vhtz variables related to the pouring schedule in a chromo-
some. Instead of this a second repair algorithm is used. Its role is to keep molding 
plans always acceptable from a pouring schedule point of view. This means that there 
is enough hot iron for filling all the molds prepared. The idea of the algorithm is 
similar to the first repairing algorithm. If the maximum number of heats of a particu-
lar iron grade is exceeded than the lot with the minimum weight of castings is re-
moved from the plan. 

A new crossover operator which operates on working shifts is introduced. Two 
shifts in a plan are chosen randomly. Then the lot sizes in these shifts are swapped. 
The crossover operator is used with the probability of 80%. A mutation pool is being 
created using tournament selection together with an elitist mechanism. The simple 
uniform mutation is chosen experimentally as a mutation operator and is used for 
altering genes with the probability of 0.1%. 

Many multicriteria evolutionary algorithms have been proposed in literature. The 
survey of them can be found in Coello Coello [1] or in Osyczka [7]. Among the algo-
rithms proposed later, two are regarded as the most effective: NSGAII created by Deb 
et al. [2] and SPEA2 proposed by Zitzller et al. [11]. Both algorithms were used for 
generating the final approximation of Pareto front. Additionally, a slightly modified 
SPEA2 algorithm version has been tested. In the environmental selection process the 
best individuals regarding all the objective functions are copied into a mutation pool 
obligatorily. This modification will be denoted as SPEA2e (SPEA2 with extended 
elitism) in this paper. 

The statistics proposed by Fonseca and Fleming [3] in the version implemented by 
Knowles and Corne [5] is used to test which multicriteria evolutionary algorithm 
performs better in terms of the presented model and test problems. Although the sta-
tistics fails in some cases  [12], it enables us to compare two Pareto front approxima-
tion sets when a reference set is not known. 

4  Test problems 

Test sets have been chosen from the production control computer system used in the 
foundry described in this study. The first test problem (fixed1) consists of 84 orders 
while the second  (fixed2) has exactly 100 orders.  

There are four molding lines in the considered factory, each consisting of two 
molding machines, one for making a cope and one for making a drag (top and bottom 
parts of a flask). However, there are only three types of molding machines. The type 
of machine which is used for making a mold for a particular casting is stated in its 
operation sheet. Tables 1, 2 and 3 shows detailed specification of the orders which are 
to be produced on machine types A, B, and C, respectively. 



Table 1. Detailed specification of fixed1 problem orders for machines type A (big flasks) 
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1 282 61.2 30.5 4 -3 0.460 9 16 37.3 25.4 4 3 1.203 
2 37 82.0 32.1 4 0 2.707 10 22 34.7 30.2 5 3 1.045 
3 26 61.6 29.0 4 0 2.289 11 14 51.0 27.3 4 3 1.085 
4 3 54.0 31.8 4 0 0.511 12 249 62.8 29.3 4 3 0.485 
5 125 43.0 27.3 4 0 0.847 13 30 43.0 26.1 4 4 0.538 
6 226 65.0 32.6 4 1 1.482 14 6 54.6 31.8 4 5 0.518 
7 102 48.0 25.6 4 2 0.583 15 44 80.0 35.0 4 5 1.135 
8 16 30.4 25.4 4 3 0.870 16 548 79.0 37.4 4 5 0.989 

Table 2. Detailed specification of fixed1 problem orders for machines type B (small flasks) 
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1 32 24.0 14.2 5 -3 0.159 23 16 12.9 13.2 5 1 0.096 
2 35 24.0 14.2 5 -3 0.159 24 37 12.8 13.2 5 1 0.126 
3 231 18.0 11.8 2 -3 0.069 25 26 15.9 13.2 5 1 0.117 
4 424 9.3 11.6 4 -3 0.183 26 24 21.4 15.1 5 1 0.207 
5 8 3.4 5.5 4 -2 0.125 27 229 13.5 11.5 4 2 0.423 
6 31 15.6 13.9 2 -2 0.128 28 8 6.8 14.3 5 3 0.083 
7 404 15.1 14.2 4 -2 0.321 29 16 6.0 14.3 5 3 0.078 
8 538 15.1 14.2 4 -1 0.321 30 31 1.8 3.6 5 3 0.093 
9 432 16.2 15.3 5 0 0.458 31 6 10.4 13.9 5 3 0.161 
10 44 14.3 12.7 4 0 0.108 32 11 9.1 13.9 5 3 0.133 
11 28 18.1 14.3 4 0 0.153 33 16 10.8 13.9 5 3 0.158 
12 83 25.0 13.9 4 0 0.831 34 5 10.9 14.0 5 3 0.030 
13 91 25.0 13.9 4 0 0.831 35 5 13.1 14.0 5 3 0.049 
14 212 10.4 12.1 2 0 0.217 36 19 15.2 13.1 2 3 0.183 
15 159 12.2 12.1 2 0 0.238 37 10 13.9 12.3 2 3 0.055 
16 4 9.0 12.6 5 0 0.209 38 112 9.6 13.3 5 3 0.072 
17 47 13.8 12.0 5 0 0.310 39 458 12.2 12.7 5 3 0.212 
18 16 12.4 13.9 5 0 0.169 40 32 12.6 13.0 5 3 0.209 
19 16 11.6 13.9 5 0 0.147 41 184 23.8 12.1 4 5 0.348 
20 16 11.0 13.9 5 0 0.161 42 52 8.3 13.0 5 5 0.370 
21 16 12.0 13.9 5 0 0.175 43 59 4.2 11.5 5 5 0.138 
22 133 12.0 12.3 5 1 0.094 44 545 28.9 13.2 4 5 0.431 

 
The number of flasks to make is calculated as the number of castings ordered by 

the customers divided by the number of castings which fit in a single flask. Thus the 
weight and forming time refer to the whole flask, not to a single casting. 



Table 3. Detailed specification of fixed1 problem orders for machines type C (medium flasks) 
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1 3 15.6 17.2 4 -3 0.209 13 36 6.9 2.9 5 2 0.203 

2 257 18.2 15.1 4 -3 0.501 14 36 3.4 1.4 5 2 0.099 

3 26 10.7 16.4 4 -2 0.239 15 83 5.8 2.4 5 2 0.171 

4 25 10.8 18.1 4 -2 0.299 16 122 9.0 6.8 5 3 0.122 

5 58 52.2 19.0 4 -2 0.652 17 96 23.6 16.7 5 3 0.148 

6 196 29.6 17.7 4 -1 0.454 18 249 13.6 10.2 5 3 0.181 

7 4 70.0 19.2 5 0 1.291 19 22 21.7 18.6 5 3 0.279 

8 26 18.6 17.3 4 0 0.322 20 62 26.8 18.4 4 5 0.186 

9 37 62.0 16.5 5 0 1.389 21 108 30.2 14.1 4 5 0.499 

10 43 29.5 19.0 5 0 0.758 22 27 36.6 14.7 4 5 0.248 

11 265 23.0 18.0 4 0 0.684 23 401 30.4 17.4 4 5 0.489 

12 67 18.3 15.9 4 1 0.535 24 53 39.2 18.6 4 5 0.391 

 
Due week is a week which has been agreed with the customer as a term of deliv-

ery. A negative number indicates that the remaining castings are overdue. A penalty 
coefficient for not making castings on time is calculated on the basis of the castings 
price and the customer’s importance rating. A penalty value for earliness is set arbi-
trarily to 60% of the penalty coefficient value for tardiness, although this ratio can be 
set differently by the decision maker. 

There are 3 working shifts for the lines of machine type A and C while there are 
only 2 working shifts for the lines of machine type B. A common practice in the con-
sidered foundry is that only two different castings can be produced during one work-
ing shift, so κ1 and κ3 are set to 2 and κ2=4. The total daily capacity of the furnaces is 
21 000 kg while a single pouring weighs 1400 kg, i.e. there are 15 heats a day. The 
number of flasks available for all molding machines during one working shift is lim-
ited to 50 big flasks, 100 medium and 120 small ones. 

The goal for the two fixed planning horizon problems is to create a set of plans for 
a week which consists of 5 working days. The task for rolling horizon problem, pre-
sented  later in this paper, is to build a series of weekly molding plans for 9 weeks, 
taking into account production quantities planned for previous weeks and the new 
orders appearing every week. 

The second test set for fixed planning horizon (fixed2) and the set for the 9 week 
rolling horizon (rolling1) can be found at http://www.zarz.agh.edu.pl/jduda/foundry. 

4  Results for a single week 

Evolutionary algorithms for both test problems fixed1 and fixed2 were run for 30 000 
generations. The size of the population and the size of the external sets were set to 50 
individuals. The number of evaluated generations and the size of the population were 



chosen experimentally, as the best compromise between the solution quality and the 
computational time. It took about 10–15 minutes to generate a single set of plans, 
which is reasonable from a practical point of view. Calculations were repeated 20 
times for every combination of the problem and algorithm type. 

Figure 2 shows nondominated sets generated using NSGAII, SPEA2 and SPEA2e 
algorithms for the first test problem (fixed1). A nondominated set for a given MOEA 
was obtained by putting all the solutions from 20 runs together and choosing only 
nondominated ones. The solutions in a single set, however, did not differ from the 
solutions in the remaining 19 sets for more than 3% regarding each objective func-
tion. 

Fig. 2. Pareto sets achieved for problem fixed1 

It is worth noticing that the solutions generated by the NSGAII algorithm preferred 
the first objective function to the second one unlike SPEA2 algorithms. In 20 runs the 
algorithm achieved the highest overall machine and furnace utilization, however 
accompanied by the biggest penalty value. 

Table 4 shows the area percentage of the solution space for which the tested algo-
rithms are unbeaten by the others and the area percentage for which the tested algo-
rithms beat all the others.  

Table 4. Knowles Corne statistic for fixed1 problem. 
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The calculations were done using Knowles and Corne algorithm at 0.95 confidence 
level with 500 lines generated. The area for which the tested algorithms remain un-
beaten is the biggest for both versions of  SPEA2 algorithms with a little superiority 
of the latter. However, SPEA2e algorithm beats all its rivals only in 0.5% of the solu-
tion space. 

Figure 3 illustrates the Pareto sets generated for fixed2 problem. The NSGAII al-
gorithm again gave the highest utilization level, thus confirmed its tendency to prefer 
the first objective function. This time the SPEA2 algorithm seems to prefer the sec-
ond objective function to the first one. Only the SPEA2e treats both optimization 
criteria equally in this case. Nevertheless, these observations cannot be generalized to 
other problems without making additional tests and the use of additional metrics like 
for example generalization distance and error ratio proposed by Van Veldhuizen and 
Lamont [9]. 

Fig. 3. Pareto sets achieved for problem fixed2 

Fonseca and Fleming statistics, presented in Table 5, indicates that SPEA2e algo-
rithm in the case of fixed2 problem is unbeaten by the other algorithms, but there is 
no solution space where any of the algorithms beats the others. 

Table 5. Knowles Corne statistic for fixed1 problem.  

 NSGAII SPEA2 SPEA2e 

unbeaten 54.7   81.2   100 
beats all 0 0 0 

The general conclusion is that all the tested multicriteria evolutionary algorithms 
perform well enough to be applicable in real-world production optimization. The 

0

200

400

600

800

1000

1200

1400

1600

1.8 1.825 1.85 1.875 1.9 1.925 1.95 1.975 2

capacity utilization

pe
na

lty
 v

al
ue

NSGAII SPEA2 SPEA2e



choice of the algorithm will be easier if the planner regards one objective function a 
little more important that the other.  

To build the series of weekly plans for the rolling horizon problem (rolling1) the 
proposed modification of SPEA2 algorithm was chosen as it performed slightly better 
than the other algorithms. 

6  Results for a rolling planning horizon 

In order to verify the effects resulting from the application of the proposed method 
the historical production data were compared against the plans created by the multic-
riteria evolutionary algorithm. The plans were build week after week within 9 weeks. 
Starting from 53 orders for machine type A, 129 orders for machine type B and 73 
orders for machine types C (total 255 orders, at least 30% of them were overdue) in 
each following week new orders appeared (in the number of 3 to 21). 

Each time the multicriteria evolutionary algorithm delivered weekly plans, only 
one was automatically chosen as the accepted production plan. After choosing a sin-
gle plan the remaining orders were consequently altered by the planned production 
quantities.  

Two variants of such automatic choice were considered. In the first variant a com-
promise solution in a min-max sense as defined by Osyczka [6] was taken. Instead of 
using a relative increment of objective functions, scalarized increment (9) was used, 
as the objective functions have very different value ranges. 

minmax
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fxf
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In the second variant of the simulation the solution with the first objective function 
equaled at least 1.95 with the smallest possible value of the second objective function 
was taken as the plan accepted for the next week. If such solution did not exist in the 
obtained Pareto set, the solution with the highest utilization value was taken.  

Table 6 shows the utilization level of the furnaces and molding machines calcu-
lated on the basis of the historical data and compared to the utilization attained in the 
simulation variants.  

Table 6. Comparison between the results obtained in the simulation and the historical data 

 historical MOEA variant 1 MOEA variant 2 

average furnaces utilization (weekly) 84% 90%   93% 
lowest furnaces utilization 77% 80% 82% 
average molding machines utilization 70% 84% 83% 
lowest molding machines utilization 64% 73% 78% 
average penalty value for tardiness 1880 1610 1790 
average penalty value for earliness 230 390 410 



In the first variant the average utilization level of the furnaces equaled 90%, com-
pared to 84%, which was observed in reality. In the second variant this utilization  
was even higher and equaled on average 93%, but the penalty value was bigger than  
the one calculated on the basis of historical data. Also the average utilization level of 
molding machines was 1% worse than in the first variant. In the plans obtained by 
evolutionary algorithm this utilization equaled 85% while in reality it was only 70%. 

It can be seen that in case of the simulation, the overdue production generally de-
creased. The biggest penalty value for the production which was made earlier than 
required by the customers as compared with the historical data might be seen as a 
disadvantage. However, this was not caused by increasing the penalty value for the 
overdue castings, which simply means that the time from order acceptance to its re-
alization can be shortened.  

In Table 7 the mini-max optimal solution obtained for the first week is shown. This 
solution may be viewed as the best compromise solution considering both criteria as 
equally important. The value of the first objective function (summarized utilization) is 
1.91 (0.96 for furnaces and 0.95 for molding shop) while the value of the second 
objective function (summarized penalty) is 440 (373 for tardiness and 67 for earli-
ness). 

Table 7. The exemplary solution obtained for the first week (order | quantity).  

day/shift machine type A machine type B machine type C 
1/1 3|19 36|20 17|98 52|134 13|82 63|10 
1/2 6|32 23|15 4|56 24|137 17|37 29|40 
1/3 4|20 12|29   3|36 20|42 
2/1 11|36 18|3 55|157 88|64 10|98 13|54 
2/2 3|14 22|25 15|118 69|104 13|52 38|25 
2/3 11|27 29|9   25|39 28|36 
3/1 7|15 8|27 17|133 45|96 7|101 9|101 
3/2 14|17 17|20 1|140 46|65 8|96 12|61 
3/3 3|18 36|20   31|68  
4/1 8|27 16|19 34|93 44|132 5|35 40|40 
4/2 2|16 21|14 1|94 16|106 16|31 35|41 
4/3 8|27 19|17   15|68 21|5 
5/1 5|13 18|24 4|98 53|144 17|78  
5/2 16|22 19|25 15|85 110|151 18|60 36|20 
5/3 13|22 16|28   13|72 43|18 

7.  Conclusions 

The results presented here look very promising for the future application not only in 
the foundry considered, but also in other similar manufactures. The model shown in 
this paper will be successively complemented with new technological and organiza-



tional constraints, especially resulting from the sequence of heats. Unfortunately, 
reliable data concerning the costs of iron grade changes were hard to collect because 
they were not present in the current computer system.  

The multicriteria evolutionary algorithms together with the proposed repair algo-
rithms prove to be a very effective optimization tool not only for standard test prob-
lems but also for real scale production optimization tasks. It is worth underlining that 
the simulation performed for a nine week rolling horizon can involve in a single run 
as many as 3125 variables and  345 constraints. 

The introduction of additional objective functions also seems to be a very interest-
ing alternative to the traditional approach with one objective function which opti-
mizes usually artificially constructed sum of the production and relevant costs. This 
paper covered only two important aspects of operational production planning: how to 
maintain high utilization level of bottleneck machines and how to keep backlogged 
production as low as possible. The two objectives analyzed in this paper are very 
similar to the first two criteria proposed by Gravel et al. [4] for scheduling continuous 
casting of aluminum. This similarity, however not intentional, confirms that the pro-
posed approach can be applied to a wider range of planning and scheduling problems 
in cast making companies of various kinds. 

The main aim of the presented approach was to give the decision maker not a sin-
gle plan which has to be implemented, but a set of plans from which she or he may 
choose the one which suits the best the current economical circumstances of the en-
terprise. The multicriteria evolutionary algorithms enable to obtain a wide spread of 
the solutions in a single run. This lets the decision maker to perform a quick what-if 
analysis before making the right planning decision. 
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