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Abstract. The paper describes the application of multiobjecevolutionary
algorithms in multicriteria optimization of operaial production plans in a
foundry, which produces iron castings and uses haottling machines. A
mathematical model that maximizes utilization of thottleneck machines and
minimizes backlogged production is presented. Thdehincludes all the con-
straints resulting from the limited capacities wfrfaces and machine lines, lim-
ited resources, customers requirements and théreamgnts of the manufactur-
ing process itself. Test problems based on realymtion data were used for
evaluation of the different evolutionary algorithrariants. Finally, the plans
were calculated for a nine week rolling planningian and compared to real
historical data.

1 Introduction

One of the authors has been working for a Polismdoy to develop the software
which would help to improve shop production plamnprocess. A weekly task for
the planners at the operational level is to say hwmy castings for which orders will
be produced on molding machines during all worlshdts. The planning process is
done manually with a little support of spreadshesid basic MRPI/ERP (Mate-
rial/Enterprise Resource Planning) related todlss b common practice not only in
this particular foundry. The survey conducted by W&orhis and Peters [10] has
shown that also in the USA only a few foundriesduspecialized software to assist
the planning and scheduling process while the ritgjof them did it manually.

The production in small and medium iron foundriesfien done in short series so
the planners must take into consideration manyrerasach for a different product. In
the considered foundry there were about 100-200eactders a week for 10 to 500
castings of various weight and iron grade.

The castings manufacturing process itself can bel@tvinto following steps: de-
signing a pattern, preparing molding sand and c¢ameking molds, melting and
pouring hot iron and finally finishing operatiorihe patterns are prepared in a sepa-
rated pattern shop and once they are made thepecaised many times. If a casting
requires cores, they are made in a core shop. Ceealy can be prepared earlier,
even a few days before they are put in a mold. Mealding sand is compacted



around a pattern in a flask thus creating a moldenThot iron, melted in electric
furnaces is poured into the flasks, which are tiefsolidify. After several hours the
castings are taken from the molds and they undeegming and finishing operations
in a dressing shop.

Operations for the pattern shop are planned indigely of the main production
process. Operations for the core shop and theidgeskop can be planned easily on
the basis of a molding plan unless the plan induaie enormous number of castings
which require many cores or a lot of time to bésfied. This situation is very rare in
the foundry so it will not be considered in theigytation model.

Thus a priority for the planners is to prepare aprapriate molding plan con-
nected with a pouring schedule for the furnacessé&pans must be coordinated as
melted iron cannot wait too long to be poured, alst the room for the molds wait-
ing for pouring is limited. While building the planany technological and organiza-
tional constraints have to be taken into considemaihe most significant are:

— capacities of furnaces and molding machines,

- the number, desired delivery date and cast irodegcd ordered castings,

- the number of different castings which can be peeduduring one shift (setup
times are included in forming times),

— the number of flasks of various size available miyia working shift,

— the minimum batch size a customer can accept.

The data for the optimization model can be collectedrly automatically from the

existing production control system.

2 Mathematical model

A mathematical model was formulated on the basithefclassical discrete capaci-
tated lot-sizing problem with single level and mitiém production on parallel ma-
chines. A similar approach can be found in Santezd/et al. paper [8], which dis-
cusses a lot-sizing problem in an automated foun@ihe model proposed in this
paper, however differs in two main points. A comiyonsed minimization of an
artificially built sum cost function has been reggd by two objective functions indi-
cated directly by the planners. Another modificatis that the equality constraint
balancing inventory and demand has been change@minequality constraint.

The following symbols are used:
Decision variables:

Xijiz — humber of castings planned for ordéo be manufactured on machindur-

ing dayt and shiftz,

Vi — umber of heats of gratieduring dayt and shiftz.
Data:

7 —week for which the plan is created,

k — number of working days in a week,

m — number of working shifts for machines type

nj — number of active orders for machines type

Cp — daily melting capacity of the furnaces [kq],



W — weight of single heat [kg],

Cg — capacity of molding machines typduring a working shift [minutes],

wj — total iron weight needed to produce singtasting [kg],

a; — time of making a mold for castimgn maching [minutes],

d; — ordered number of castings of tyfe be produced on machifpe

y— number of iron grades,

g;j — iron grade for castinig g;J{1,...,)},

w— number of flask types,

S — flask number of type available during a working shift,

g; — flask type in which a mold for casting preparede; C{1,...,ak,

x; — number of different castings which can be preduon machine typeduring
one working shift,

oj — due week for castings of typto be produced on machipe

i — penalty value for tardiness,

7% — penalty value for earliness.

First objective function:
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The first objective function (1) maximizes the iatiltion of both furnaces and
molding machines as these are bottlenecks in tbdugtion system. Although the
function (1) is to be maximized, for the sake ofieenience it is transformed to mini-
mization by multiplying it by —1. The second objeetfunction (2) minimizes the
penalty for not making as many castings as ordbyethe customer on time or for
making them earlier than in the week agreed withdhstomer. Constraints (3) and
(4) are the capacity constraints for the furnaaes the molding machines, respec-
tively. Constraint (5) ensures that no more produnctan be planned than ordered by
the customer. In the classic lot-sizing model ca@ist (5) is an equality. However, in
the considered foundry the sum of items orderedliysaxceeds production capabil-
ity so backlogging is a common practice and custemeceive their castings in sev-
eral batches. The penalty function (2) ensures thaklogging would is kept at a
possibly low level. Inequality constraint (6) limithe weight of the planned castings
of a particular cast iron grade to the weight & thetal which has to be melted. Ac-
cording to constraint (7) no more thandifferent castings may be produced during
one working shift. The last constraint (8) limitetflask availability.

The model is formulated as a nonlinear problem,édwaw it is possible to change it
into an integer programming formulation by enterauglitional binary variables.

3 Evolutionary algorithm

A weekly plan for molding machines is coded in g chromosome using integer
gene values. A single gene represents quantitastings planned for production or
equals zero if the production for particular ordering a given shift is not planned.
This can be presented as the matrix shown in fijure

1st working shift  2nd working shift m-th working shift
A AL A
s N N e ~
X1112 X211 -+, Xn1112 X1112 X2112+++5 Xn1112 -5 X124m1y X214mis - +5 Xn111mi,
machine
X1121 X2121+++5 Xn1123 X1122 X2122+++5 Xn1122 -5 X112m1y X212m1s-- -5 Xni12mi,s
1st type
X11k1y X21kis++ 5 Xn11k1s X11k2y X222s++ 5 Xn1k2s  +++ s X1 akiris X21kmls -+ 5 Xnddkmis
X1211 X221 -+ -5 Xn1213 X1212 X2212- -5 Xn1212 -3 X121m1s X221m1s- -+ Xn121mis
machines
X1221, X2221-++y Xn1221, X1222 X2222;+++3 Xn1222 ++-, X122m1s X222m1s- -5 Xn122m1, 2nd type
X12kty X22k1s« ey Xn12kds X12k2y X22k2y++oy Xn12@s  +-o0 X12kmmils X22kmis -+« Xn12kmis
X111 X211+ Xntl11s X2122) X21120-+05 Xn1112) «ooy Xaiamis X211ms--+0 Xntlimis
X1121s X21215 s X121y X11225 X21220- 005 Xn1122y +vs X112y X2l2mts-- - Xnli2mts machine
I-th type
Xilkis X2lkds -+ Xndlkls  Xalk2s X2lk2s--+5 Xn1lk2s «++5 Xlkmis X2lkmis- -5 Xnil kmis

Fig. 1. Molding plan coded in a chromosome



This chromosome structure leads to a situation &hetorrect plan should have a
lot of zeroes, regarding constraint (7). To avoekping incorrect individuals in a
population a simple repair algorithm is introduc®dhenever constraint (7) is vio-
lated for one of the machines and working shifig, $mallest lots planned so far are
eliminated successively from the plan until the bemof different lots which are
allowed for production during one working shifreached.

Note that there are ng,, variables related to the pouring schedule in @i
some. Instead of this a second repair algorithmsisd. Its role is to keep molding
plans always acceptable from a pouring schedulet pbiview. This means that there
is enough hot iron for filling all the molds prepdr The idea of the algorithm is
similar to the first repairing algorithm. If the Kimum number of heats of a particu-
lar iron grade is exceeded than the lot with thaimim weight of castings is re-
moved from the plan.

A new crossover operator which operates on worlshifts is introduced. Two
shifts in a plan are chosen randomly. Then thesilgs in these shifts are swapped.
The crossover operator is used with the probalilit§0%. A mutation pool is being
created using tournament selection together witleldist mechanism. The simple
uniform mutation is chosen experimentally as a trtaoperator and is used for
altering genes with the probability of 0.1%.

Many multicriteria evolutionary algorithms have hegroposed in literature. The
survey of them can be found in Coello Coello [1jroOsyczka [7]. Among the algo-
rithms proposed later, two are regarded as the effesttive: NSGAII created by Deb
et al. [2] and SPEA2 proposed by Zitzller et all][1Both algorithms were used for
generating the final approximation of Pareto frakdditionally, a slightly modified
SPEAZ2 algorithm version has been tested. In thee@mwental selection process the
best individuals regarding all the objective fuons are copied into a mutation pool
obligatorily. This modification will be denoted &PEA2e (SPEA2 with extended
elitism) in this paper.

The statistics proposed by Fonseca and Flemingn [Bie version implemented by
Knowles and Corne [5] is used to test which muttcia evolutionary algorithm
performs better in terms of the presented modeltasidproblems. Although the sta-
tistics fails in some cases [12], it enables usaimpare two Pareto front approxima-
tion sets when a reference set is not known.

4 Test problems

Test sets have been chosen from the productiomataamputer system used in the
foundry described in this study. The first testipeon fixedl) consists of 84 orders
while the secondfiked? has exactly 100 orders.

There are four molding lines in the considereddgct each consisting of two
molding machines, one for making a cope and onenfiking a drag (top and bottom
parts of a flask). However, there are only thrgeesyof molding machines. The type
of machine which is used for making a mold for atipalar casting is stated in its
operation sheet. Tables 1, 2 and 3 shows detgledfication of the orders which are
to be produced on machine types A, B, and C, reisipbe



Table 1. Detailed specification dixed1problem orders for machines type A (big flasks)

L = 2 ox © .8 =2 v x ©
e 5SESe S|828ES5EEC e 5
58 257235 3|c8 TEEs §

= Kel o = Kl o
1 2826123054 -3 04609 163732544 3 1.203
2 378203214 0 270710 2234.730.25 3 1.045
3 26616 29.04 0 228911 14510273 4 3 1.085
4 35403184 0 051112 24962.8 29.3 4 3 0.485
5 12543.027.34 0 0847113 3043.026.1 4 4 0.538
6 22665.03264 1 148214 65463184 5 0.518
7 10248.0 2564 2 0.58315 4480.03504 5 1.135
8 1630.4 2544 3 0.87016 54879.0 37.4 4 5 0.989

Table 2. Detailed specification dixed1problem orders for machines type B (small flasks)

s TE 8% 8|s: TE L% 8
S =58 ¢ J |ty gl e 2
O n 8 £ = O = O pn® £ = © =
S XE D =ZEc® B | DXEDEc o ©
sg CETE8 5|58 TETEB S
= — o = w o
1 322401425 -3 015423 161291325 1 0.096
2 352401425 -3 015924 371281325 1 0.126
3 23118.011.82 -3 0.06925 26159 1325 1 0.117
4 424 931164 -3 018326 242141515 1 0.207
5 8 34 554 -2 012927 229135115 4 2 0.423
6 311561392 -2 012828 8 6.8 1435 3 0.083
7 404151 1424 -2 032129 16 6.0 143 5 3 0.078
8 5381511424 -1 032130 31 1.8 3.6 5 3 0.093
9 4321621535 0 045831 61041395 3 0.161
10 441431274 0 0.10832 11 9.1 1395 3 0.133
11 281811434 0 0.15333 1610.813.95 3 0.158
12 832501394 0 0.83134 51091405 3 0.030
13 912501394 0 083135 51311405 3 0.049
14 212104 1212 0 021736 19152 131 2 3 0.183
15 1591221212 0 0.23837 1013.9 1232 3 0.055
16 4 9.01265 0 0.20938 112 9.6 1335 3 0.072
17 47 13.812.05 0 0.31039 45812.2 12.7 5 3 0.212
18 161241395 0 0.16940 3212.613.05 3 0.209
19 1611.6 13.95 0 0.14741 184238 12.1 4 5 0.348
20 1611.01395 0 0.16142 52 831305 5 0.370
21 1612.01395 0 0.17343 59 42 1155 5 0.138
22 13312.012.35 1 0.09444 545289 132 4 5 0.431

The number of flasks to make is calculated as timaber of castings ordered by
the customers divided by the number of castingshwhit in a single flask. Thus the
weight and forming time refer to the whole flaskf to a single casting.



Table 3. Detailed specification dixed1problem orders for machines type C (medium flasks)

e 2 o 3.2 = 2 o 3
$ 98 5 SEEC2e 5 |8¢E B EEC o 2
58 ¢ E 23 |58 TE 23 g

= - (o8 5= w o
1 3 156 1724 -3 020913 36 69 295 2 0.203
2 257 182 1514 -3 050114 36 34 145 2 0.09
3 26 10.7 1644 -2 023915 83 58 245 2 0171
4 25 108 1814 -2 029916 122 90 6.8 5 3 0.122
5 58 522 19.04 -2 065717 96 236 16,7 5 3 0.148
6 196 29.6 17.74 -1 045418 249 136 102 5 3 0.181
7 4 700 1925 0 129119 22217 186 5 3 0.279
8 26 186 1734 0 032220 62 26.8 184 4 5 0.186
9 37 62.0 1655 0 138921 108 30.2 141 4 5 0.499
10 43 295 1905 0 0.75§22 27 36.6 147 4 5 0.248
11 265 23.0 1804 0 0.68423 401 304 174 4 5 0.489
12 67 183 1594 1 053924 53 39.2 186 4 5 0.391

Due week is a week which has been agreed withue®mer as a term of deliv-
ery. A negative number indicates that the remaimiagfings are overdue. A penalty
coefficient for not making castings on time is cddted on the basis of the castings
price and the customer’s importance rating. A pgnalue for earliness is set arbi-
trarily to 60% of the penalty coefficient value fardiness, although this ratio can be
set differently by the decision maker.

There are 3 working shifts for the lines of machiyyee A and C while there are
only 2 working shifts for the lines of machine tyBeA common practice in the con-
sidered foundry is that only two different castirgs be produced during one work-
ing shift, sox; andx; are set to 2 angb,=4. The total daily capacity of the furnaces is
21 000 kg while a single pouring weighs 1400 ke, ihere are 15 heats a day. The
number of flasks available for all molding machimkesing one working shift is lim-
ited to 50 big flasks, 100 medium and 120 smalkone

The goal for the two fixed planning horizon probteis to create a set of plans for
a week which consists of 5 working days. The taskélling horizon problem, pre-
sented later in this paper, is to build a serieweekly molding plans for 9 weeks,
taking into account production quantities planned grevious weeks and the new
orders appearing every week.

The second test set for fixed planning horizfixefl2 and the set for the 9 week
rolling horizon ¢ollingl) can be found at http://www.zarz.agh.edu.pl/jdtaiaidry.

4 Resultsfor asingle week

Evolutionary algorithms for both test problefirsedlandfixed2were run for 30 000
generations. The size of the population and the giizhe external sets were set to 50
individuals. The number of evaluated generatiortsthe size of the population were



chosen experimentally, as the best compromise le@twiee solution quality and the
computational time. It took about 10-15 minutesgémerate a single set of plans,
which is reasonable from a practical point of vie®alculations were repeated 20
times for every combination of the problem and atpm type.

Figure 2 shows nondominated sets generated usi@®@ANSSPEA2 and SPEA2e
algorithms for the first test problerfixedl). A nondominated set for a given MOEA
was obtained by putting all the solutions from 2@g together and choosing only
nondominated ones. The solutions in a single setieker, did not differ from the
solutions in the remaining 19 sets for more thanr@yarding each objective func-
tion.
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Fig. 2. Pareto sets achieved for probléredl

It is worth noticing that the solutions generatgdie NSGAII algorithm preferred
the first objective function to the second one kmmBPEA2 algorithms. In 20 runs the
algorithm achieved the highest overall machine &mthace utilization, however
accompanied by the biggest penalty value.

Table 4 shows the area percentage of the solupiacesfor which the tested algo-
rithms are unbeaten by the others and the areamege for which the tested algo-
rithms beat all the others.

Table 4. Knowles Corne statistic fdixed1problem.

NSGAII SPEA2 SPEA2e
unbeaten 42.6 81.2 99.8
beats all 0 0.2 0.5




The calculations were done using Knowles and Calgerithm at 0.95 confidence
level with 500 lines generated. The area for whteh tested algorithms remain un-
beaten is the biggest for both versions of SPHE&arahms with a little superiority
of the latter. However, SPEA2e algorithm beatstaltivals only in 0.5% of the solu-
tion space.

Figure 3 illustrates the Pareto sets generatediXed2problem. The NSGAII al-
gorithm again gave the highest utilization levelyg confirmed its tendency to prefer
the first objective function. This time the SPEABaithm seems to prefer the sec-
ond objective function to the first one. Only thBEA2e treats both optimization
criteria equally in this case. Nevertheless, tresgervations cannot be generalized to
other problems without making additional tests #reluse of additional metrics like
for example generalization distance and error nataposed by Van Veldhuizen and
Lamont [9].
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Fig. 3. Pareto sets achieved for probléred2

Fonseca and Fleming statistics, presented in Tabiledicates that SPEA2e algo-
rithm in the case ofixed2problem is unbeaten by the other algorithms, betehs
no solution space where any of the algorithms bibatethers.

Table 5. Knowles Corne statistic fdixed1problem.

NSGAII SPEA2 SPEA2e
unbeaten 54.7 81.2 100
beats all 0 0 0

The general conclusion is that all the tested wrnitdiria evolutionary algorithms
perform well enough to be applicable in real-wopidduction optimization. The



choice of the algorithm will be easier if the plenmegards one objective function a
little more important that the other.

To build the series of weekly plans for the rollingrizon problemrpllingl) the
proposed modification of SPEA2 algorithm was choaeiit performed slightly better
than the other algorithms.

6 Resultsfor arolling planning horizon

In order to verify the effects resulting from thgpécation of the proposed method
the historical production data were compared agdiresplans created by the multic-
riteria evolutionary algorithm. The plans were HuNeek after week within 9 weeks.
Starting from 53 orders for machine type A, 129ewsdfor machine type B and 73
orders for machine types C (total 255 orders, @tl80% of them were overdue) in
each following week new orders appeared (in thebrarof 3 to 21).

Each time the multicriteria evolutionary algorithaelivered weekly plans, only
one was automatically chosen as the accepted piodydan. After choosing a sin-
gle plan the remaining orders were consequentgreadt by the planned production
quantities.

Two variants of such automatic choice were considlein the first variant a com-
promise solution in a min-max sense as defined yceka [6] was taken. Instead of
using a relative increment of objective functiossalarized increment (9) was used,
as the objective functions have very different ealanges.

f (= R €)
.I:imax _ fimm

In the second variant of the simulation the solutidth the first objective function
equaled at least 1.95 with the smallest possidigevaf the second objective function
was taken as the plan accepted for the next wéskich solution did not exist in the
obtained Pareto set, the solution with the high&ktation value was taken.

Table 6 shows the utilization level of the furnaeesl molding machines calcu-
lated on the basis of the historical data and coethto the utilization attained in the
simulation variants.

Table 6. Comparison between the results obtained in thelation and the historical data

historical MOEA variant1 MOEA variant 2

average furnaces utilization (weekly) 84% 90% 93%
lowest furnaces utilization 7% 80% 82%
average molding machines utilization 70% 84% 83%
lowest molding machines utilization 64% 73% 78%
average penalty value for tardiness 1880 1610 1790

average penalty value for earliness 230 390 410




In the first variant the average utilization leeglthe furnaces equaled 90%, com-
pared to 84%, which was observed in reality. In $keond variant this utilization
was even higher and equaled on average 93%, byetety value was bigger than
the one calculated on the basis of historical daltso the average utilization level of
molding machines was 1% worse than in the firstavdr In the plans obtained by
evolutionary algorithm this utilization equaled 85%hile in reality it was only 70%.

It can be seen that in case of the simulationotherdue production generally de-
creased. The higgest penalty value for the produmotthich was made earlier than
required by the customers as compared with theriial data might be seen as a
disadvantage. However, this was not caused byasaorg the penalty value for the
overdue castings, which simply means that the frme order acceptance to its re-
alization can be shortened.

In Table 7 the mini-max optimal solution obtained the first week is shown. This
solution may be viewed as the best compromiseisala@onsidering both criteria as
equally important. The value of the first objectiuaction (summarized utilization) is
1.91 (0.96 for furnaces and 0.95 for molding shapjle the value of the second
objective function (summarized penalty) is 440 (3@Btardiness and 67 for earli-
ness).

Table 7. The exemplary solution obtained for the first wéetder | quantity).

day/shift | machine type A machine type B machine type C
11 3|19 36J|20] 17|98 52|13413|82 63|10
1/2 6|32 23|15 4|56 24|13717|37 29|40
1/3 4120 12]29 3|36 20]42
2/1 11|36  18|3| 55|15788|64 | 10|98 13|54
2/2 3|14 22|25 15|11869|104| 13|52 38|25
2/3 11127 29|19 25|39 28|36
3/1 7|15 8|27 | 17|13345|96 | 7]101 9|101
3/2 14|17 17|20] 1|140 46|65 8|96 12|61
3/3 3|18 36|20 31|68
4/1 8|27  16]19| 34|93 44|1325|35  40]40
4/2 2|16  21]14| 1|94 16]10616|31 35|41
4/3 8|27 19|17 15|68 21|5
5/1 5|13  18|24| 4|98 53|14417|78
5/2 16|22 19|25 15|85 110]1518|60 36|20
5/3 13|22 16|28 13|72 43|18

7. Conclusions

The results presented here look very promisingHerfuture application not only in
the foundry considered, but also in other similanofactures. The model shown in
this paper will be successively complemented welw iechnological and organiza-



tional constraints, especially resulting from theggence of heats. Unfortunately,
reliable data concerning the costs of iron gradengbs were hard to collect because
they were not present in the current computer gyste

The multicriteria evolutionary algorithms togetheith the proposed repair algo-
rithms prove to be a very effective optimizationltaot only for standard test prob-
lems but also for real scale production optimizatiasks. It is worth underlining that
the simulation performed for a nine week rollingikon can involve in a single run
as many as 3125 variables and 345 constraints.

The introduction of additional objective functioalso seems to be a very interest-
ing alternative to the traditional approach witheoobjective function which opti-
mizes usually artificially constructed sum of th@guction and relevant costs. This
paper covered only two important aspects of opamnatiproduction planning: how to
maintain high utilization level of bottleneck maabs and how to keep backlogged
production as low as possible. The two objectiveslyeed in this paper are very
similar to the first two criteria proposed by Grhgeal. [4] for scheduling continuous
casting of aluminum. This similarity, however notantional, confirms that the pro-
posed approach can be applied to a wider rangtaohing and scheduling problems
in cast making companies of various kinds.

The main aim of the presented approach was tothwelecision maker not a sin-
gle plan which has to be implemented, but a setlaris from which she or he may
choose the one which suits the best the currentaguizal circumstances of the en-
terprise. The multicriteria evolutionary algorithrasable to obtain a wide spread of
the solutions in a single run. This lets the decignaker to perform a quick what-if
analysis before making the right planning decision.
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