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ABSTRACT )

In this paper the design of a printed eccentric spiral
Antenna optimised for 3G nomadic devices such as
personal data assistants is discussed. An optimum
chromosome selection method for chromosomes that
constitute points on a Pareto surface of 3 dimensions is
used in a Genetic Algonthm (GA). The GA is used with
a Method of Mornents (MoM) technique [1] and small
populations of less than 25 and seeks to synthesize a
single arm’ spiral antenna suitable for use at UMTS,
GSM1800 and GSM900 frequencies. Two Pareto
ranking algorithms afre explored and their resulting
Pareto optimal chromosome sets compared using a
novel False Pareto Vector Magnitude metric. A
suggested strategy for optimisation of tri band antennas
usmg aGAis presented

INTRODUCTION
' Spiral antennas generally offer advantages of circular
‘polarisatio'n wide bandwidth and high efficiency, and
as the authors have shown [2] may be configured to
provide squmted ‘beams through variation of the spiral
parameters. UMTS in particular requires relatively
“larger ban_dwidths than current popular antenna
solutions whilst seamless roamifg requires multiple
frequency bands. These factors will generate increasing
demand for conformal antennns- on handheld nomadic
wireless devices such as personal data assistants. Such
_devices will support streaming video. For the first time
limited comparisons will be' ablé to be made in
performance between products. For example ‘two
‘products side by side with users watching the-same
televised event. The need for performance enhhancément
via highly specified multi-band antennas is therefore to
become more important with poor antenna performance
being identiﬁed more easily by a layman.

ANTENNA SYNTHESIS USING GENETIC
ALGORITHMS ’
GAs have now seen much apphcatron to wire antennas
where MoM models are used to assess fitness. Haupt [3]
used a GA to optlmrse radar cross-section scattering on
thinned gnds of strips and resistively loaded strips.
Boag [4] applied a GA to both ultra wide-band antennas
-and their matching networks. More recently, Altshuler
5] simulated a circularly polarised- GPS/IRIDIUM
vehicle antenna-and used a GA to drive the-Numerical
+ Electromagnetics Code (NEC) for his simulation and
- Coaosi. [6]" applied 'a GA .to a scattering problem
" -involving .-dielectric cylinders. --The _electromagnetic
community is now showing increased interest in GAs

that can be used to efficiently assist with the design of
electromagnetic structures. However, application of the
GA to electromagnetic problems is a comparatively
recent event and very few implementations currently
exist, and those that do generally have dependence on
cost functions. To elaborate, GAs have been likened to
natural selection and simplistically the concept is that
nature first creates an entity out of the available genetic
material and then tests it for viability against its
environment. Here, environment is taken to include all
other entities. If this creature survives then it becomes

~ part of the available genetic material from which future

generations are made. The process then, sometimes
called natural selection, can be considered as a filter..A
genetic algorithm is a search technique, which mimics
the natural selection process and uses for example a set
of antenna parameters grouped together to form a
chromosome. ’

The environment to, which the antennas are subjeeted
comes in two parts. Firstly, antenna specifications are
generated from parameters such as matenal
characteristics, element lengths and geometries of
elements. Each antenna set forms a chromosome and is
evaluated for one or several properties. using an
electromagnetic software model. Secondly the
chromosomes are sorted (rahkerl) according to how
well or poorly they satisfied the desired criteria. For
example, if the criterion looked for by the model is
radiation efficiency then chromosomes with the best
radiation efficiency. will have the highest rank. The
desired criterion, in this case efficiency, is described in
GA terms of fitness or cost. A cost function may be
single objéctive or multi-objective. The -authors have
previously discussed in [7,11] that the search space for
the GA may be adversely limited due to poor choice of
weighting and ranges of the fitness parameters used to
create the cost function which, is the key function of
procreation for a typical GA. In essence, the choice of
likely ranges made by an engineer ‘will have a
significant influence on possible outcomes and since the
choice is intuitive then valuable and interesting genetic
material may be excluded. Most GAs with antennas use
a weighted function of antenna goals, for example gain
and radiation efficiency, to rank designs. The weighting
functions are subjective and to achieve best results from
a simulation are, in practise often modified during the
design process. This would seem reasonable since for
example it is difficult to correctly assign a weight to a
goal of gain since it is not generally known what range
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of gains are possible for a new antenna. Also certain
properties may be more important than others.

For example Gain may be considered twice as important
as input impedance and therefore have a weighting of
two.

Pareto Ranking

Pareto ranking {7, 8] as used by the authors ameliorates
this cost function handicap by mapping goals onto free
running axes, one axis per goal, and allowing goal
ranges to run to and from infinity thus allowing the
creation of a closed Pareto surface upon which all
chromosomes are considered equal in each generation.
The novel Pareto ranking as adopted by the authors is
based on the fact that there exists no simple solution as
to which range of parameters will specify the ideal
antenna. This implies that parameters resulting from the
model should not limit the range of the search and that
the search should therefore be constrained only by the
specification of the antenna. In this way all possible
permutations as a function of specification can exist.
Clearly, the Pareto set from which antennas are bred
cannot be infinite and therefore a method for reducing
the size of the Pareto surface to dimensions containing a
manageable number of chromosomes has to be used.

CHOICE OF PARETO RANKING ALGORITHM
The choice of which chromosomes are used to yield
genetic material for forthcoming generations is critical
[8]. In Figure 1 a pseudo code Pareto ranking algorithm
is shown. One objective or optimisation criteria would
be ranked by this algorithm; for example a good
circularly polarised main lobe. A tri-band version of the
same antenna would involve three objectives and
therefore three separate axes in the Pareto space.

Initialisation

A
Dominance(p)=0
(A@)<=A(p))

[ Dominance(p)=Dominance(p)+1 l
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Figure 1. Pseudo code Pareto ranking algorithm.
(most dominating)

The algorithm can be used to define a Pareto set. In this
way better genetic material is sought for successive
generations of the GA. A Pareto optimal chromosome
is said to be Pareto optimal if no gene can be altered
without producing a worse antenna in some important
respect. A Pareto optimal set is formed by a group of
Pareto optimal chromosomes. Chromosomes plotted on
a multi-dimensional surface with an axis for each
sought after antenna property are consider equal and
form a Pareto surface in that they are all actually better
than other chromosomes but are not better than each
other. The overall goal of the GA is that by selective
breeding through successive generations an optimum
antenna can be found thatis bred from antennas on the
Pareto surface (plus an amount of mutated gene
diversity). Clearly, in the limit all antennas on the
surface would be Pareto optimal and form a Pareto
optimal set.

Chromosomes ranked by an algorithm are generally
used in two ways. Both [1,8] suggest for choice of
dominance that best least dominated is better since it
may avoid premature convergence where one
chromosome is so dominating that no other
chromosome can surpass it. This would be equivalent to
getting stuck in a local minimum. However, both best
least dominated and best most dominating have been
used by the authors with success. The difference may be
due to the fact that [8] did not use small populations and
in addition used a vector function to prevent niching.

IMPLEMENTATION ON A PRINTED SPIRAL

A typical implementation is now described with
reference to a printed spiral antenna. The antenna can be
fully described for manufacture using six specifications
(note that this is not a constraint). For a microstrip
eccentric spiral antenna these might be those shown in

the Table 1.

Table 1. Specifications of a Printed Spiral Antenna
mapped to six genes of a chromosome.

No

Spiral Specification mapped onto Gene
The winding angle
The radius of the conductor
Rate of growth of the spiral
Substrate €,. (u, =1))
The length of the linear feed
The eccentricity constant
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To allow meaningful comparison to be made between
ranking algorithms and dominance regimes the antenna
sought in this research was deliberately chosen to be
one that was thought to be very difficult to locate within
the constricted search space available. Physically the
antenna was required to sit on a space similar to that of



existing PDAs being 100mm x 70mm x 3mm. The
material for the- substrate was chosen to be a typical
plastic with relatlve perrmttxwty of 1.5 to 3. (Assumed
loss less) ‘ - .

The type of spiral antenna investigated here is a
variation on the Curl antenna, Nakano et al'[9; 10]. A
single spiral arm is fed by a probe running-through the
dielectric, this feed arrangement obviating the need for
a balun :

Eccentric spirals can be described in parametric form as

p=(p,+ap)(cosg +K)i+sing 3)
y Equn. 1.
with p,, aand K as constants.

Table 2 shows the ranges of the specifications used for
each of the six genes used to form each chromosome.
For this work the thickness of the substrate was set to
2mm which is reasonable for a PDA cover or lid.

Table 2. Genes ranges.

Gene Value
Winding Angle @ ¥, t0 20 (m)
Wire radius 0.1 to 1.5 (mm)

Spiral Constant (@ ) (8 to 16) x ((wire rad)/2x) mm/rad

Perm. of substrate 1.5t03.0
Length of Feed 5 to 20 (mm)
Eccentricity Constant 0.1t00.8

Arbitrarily, the objective used for this research was
good axial ratio on main beam at three frequencies.
Thus a three dimensional search space was creatéd.
Consequently, 24 chromosomes each one containing an
‘antenna specification is put to the electromagnetic
engine, which produces a set of characteristics for each
antenna. This process is repeated three times, once. for
each of the three chosen frequencies. Clearly a perfect
antenna would have unity axial ratio at each frequency.

Table 3 shows the initial results for the three goals prior
to any sort of ranking. Values of 1000.0 for axial ratio
show that a non-convergent integral was encountered in
the model and that these antennas are to be discarded by
low ranking. Even with such a small population it can
be quite difficult to easily pick out an antenna -from
Table 3 that has merit over all others. For example,
antenna number 18 has good axial ratio at UMTS2015.
but poor axial ratio at GSM900. Nevertheless, these 24
chromosomes form -the initial genetic pool ‘and a
decision must therefore be made as to which of these
‘chromosomes be allowed to pass on-its genetic material
‘and also which of these antennas has such merit when
compared to others that it should be kept un-bred as
well and therefore copled back in after the breedmg
process. v o .
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The previously mentioned electromagnetic analysis
code is therefore run 72 times for the first set of
chromosomes, and-the four chromosomes.having the
highest dominance. are copied. The four worst
chromosomes are. discarded. The 20 remaining
chromosomes including the duplicates of the four best
are now randomly paired for cross breeding, with an
additional mutation probability of 0.2 applied to each
chromosome. Mutation requires that one gene of that
chromosome is randomly recreated. Twenty new
chromosomes and the four previously saved best
examples now form the new population.

Table 3. Initial Population Characteristics for Axial
Ratio (dB) at GSM900, DCS1800 & UMTSZ()]§

UMTS2015

No | GSM 900 | DCS1800

1 65.76. * 5.17 6.94
2 20.07 55.07 45.73
3 46.24 29.78 61.76
4 24.57 30.87 70.21
S 40.98 1000.00 6.87
6 31.75 2.13 15.69
7 9.16 10.86 9.27
8 38.92 - 4145 . |~ 892
9 55.16 18.44 1247
10 24.16 44.61 1000.00
11 99.05 17.66 1000.00 -
12 44.40 9.23 227
13 3.08 10.10 28.26
14 44.55 37.21 37.38
15 50.32 72.54 30.05
16 33.16 47.12 3941
17 38.67 - 5.05 42.75
18 19.11 17.31 1.49
19 72.81 22.77 39.54
20 49.41 10.90 14.52
21 72.27 - 4.80 39.18
22 27.94 ©37.33 25.96
23 39.00 31.47 26.64
24 82.77 40.65 4.19

For clarity let the goals have the designations shown in

Table 4.

Table 4. Goal Designations.

GSM900 | A
DCS 1800 ..| B
UMTS2.05 | C

Thus, the two Pareto ranking algorithms to be
considered are in pseudo code shown in Table 5. Each
sub-term forms the kernel of Figure 1 and three such
sub-terms form a complete ranking algorithm.

Table S. Pareto Ranking algorithms.

1} (A(q) <A(p)) AND ANDed
(B{(q) < B(p)) AND | Most dominating
(€@ =C) ,
2 [ (A(q) 2A(p)) AND ANDed
(B(q) 2 B(p)) AND | Least dominated
(C@)=CE) ]




Table 6 tabulates the top 6 chromosomes from Table 3
as ranked by each of the algorithms of Table 5. The
right hand column shows either how many
chromosomes are dominated by that chromosome or
how many chromosomes dominate the chromosome
depending on whether algorithm one or two is used.
Additional mini-terms can be added if required for
example a mini-term seeking low axial ratio and high
gain at one frequency would be written as

((A(q) A(p)) AND (D(q) < D(p}))
AND

Table 6. Axial ratios (dB) of 1st six ranked
chromosomes from each of the Pareto. ranking
algorithms after 1 generation.

Case 1, ANDed and most dominating
Rank | GSM 900 DCS1800 UMTS2015 Dom

1 19.11 17.31 1.49 16
2 916 10.86 927 14
3 31.75 2.13 15.69 10
4 3.08 10.10 28.26 10
5 44.40 9.23 2.27 9
3 29.41 10.90 14.52 7

Case 2, ANDed and least dominated
1 65.76 5.17 6.94 1
2 31.75 2.13 15.60 1
3 9.16 10.86 9.27 1
4 44.40 9.23 227 1
5 3.08 10.10 2826 1
6 19.11 17.31 1.49 1

In case 1 each goal is ANDed with every other as per
ranking algorithm number 1. From Table 6 we see that
there is one chromosome that dominates sixteen others
for all three antennas. (Note that by default with the
algorithm a chromosome always dominates itself). The
algorithm of Case 2 is that most commonly used for
Pareto ranking and shows six chromosomes that are
dominated only by themselves. More importantly it
should be noted that in Case 2 the ranking is quite
barmonious with many chromosomes of equal merit and
may not be well suited to the choosing of good
chromosomes from small populations.

The simulation is run for 10 generations for both cases
of algorithm. This involved 720 runs of the EM model
or 1440 in total. The final populations are then
compared for merit using the following method.

Table 7. Axial Ratios (dB) after 10 Generations.

Case 1, ANDed and most dominating

Rank GSM 900 DCS1800 UMTS2015
1 9.16 10.86 9.27
2 31.75 213 15.69
3 28.12 5.82 10.63
4 -19.11 17.31 1.49

Combined FPVM = 108.98

Case 2, ANDed least dominated
1 65.76 5.17 6.94
2 31.756 213 15.69
3 9.16 10.86 9.27
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4440 | 923 | 2.27

Combined FPVM = 164.18
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FALSE PARETO VECTOR MAGNITUDE

As previously defined all members of a Pareto set are
equal. .Consequently the algorithms are used only to
decide which chromosomes have enough merit to exist
on the newly defined Pareto surface (24 points in this
implementation). However, a way must be devised to
determine a figure of merit for a part or whole
population. We therefore introduce the False Pareto
Vector Magnitude (FPVM) metric by treating each
chromosome as a 3 component vector. Components are
axial ratio at each frequency. The magnitude of the
vector is then taken and the all of the magnitudes for the
top four chromosomes then added. (Note that where
only a single objective exists per axis normalisation is
not necessary). Since the axial ratio is better as it gets
lower, the lower the FPVM the higher the merit.

False Pareto Vector Magnitude (FPVM) vs.
Generations

150
= <
E 1gg 0~ <. 5 case 1
0 e Jm Caise 2
1 2 3 4 5 6 7 8 9 10

Generations

Figure 2. Relative merits for tbp four chromosomes
after 10 generations.

DISCUSSION OF RESULTS .

The chart in Figure 2 shows that the best chromosomes
in 90% of the generations are found by ranking
algorithm 1 (the dotted line) and that these are
significantly fitter than those chosen by the normal
ranking algorithm 2 that uses least dominating.
However, even the best of those chromosomes found
by the algorithm is not particularly good which may be
caused by the constricted physical space upon which the

. antennas were sought. Results for these are not

presented here since better solutions are likely to exist.

CONCLUSIONS

A new ranking algorithm has been shown that can be
used with a Genetic Algorithm with small populations
of less than thirty. Results presented here have shown
that a least dominating regime may. lead to blandness
amongst a significant number of chromosomes and
therefore prevent satisfactory copy out when elitism is
used. Thus a most dominating algorithm can be applied
which gives rise to a more diverse ranking and allows
chromosomes to be ranked more accurately. A general
strategy for tri-band antenna assessment using a GA
with . Pareto ranking has been illustrated. The
presentation will show the results of further analysis,



with antenha performances which are better than that

could be achieved via intuitive runs of the
electromagnetic engine alone, in terms of good axial
ratios with viable gain and efficiency values.
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