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Abstract 
One of the principal goals motivating advances in lighting technology is maximization of 

luminous efficacy, the ratio of the total luminous flux to total power input (i.e., the 

"amount of light" per Watt). However, colorimetric properties, such as the apparent color 

and color rendering properties of the light, have a strong influence on the application and 

adoption of new light source technologies, probably because these properties can easily 

be directly assessed by consumers. There are cases where the efficacy of a new electric 

light source technology is very high but the color properties are unsuitable.  

 

It is possible to exchange some efficacy for better colorimetric properties: there are an 

infinite number of ways to filter a broad-spectrum light so that it has better colorimetric 

properties. However, almost all of these filters will reduce luminous efficacy by an 

unacceptable amount. A novel approach to multiobjective optimization, the target 

objectives genetic algorithm (TOGA), is introduced, and implemented to determine the 

tradeoff between luminous efficacy, chromaticity, and color rendering for four filtered 

lamp spectra.  

 

TOGA is a non-Pareto, non-aggregating function approach to multiobjective optimization 

similar in concept to goal programming. TOGA is computationally very fast, generates 

multiple optimal points during each run, and can be used for any multiobjective 

optimization problem. However, TOGA is most efficient when the researcher has some 

domain knowledge and is able to select good combinations of objectives. In addition, like 
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goal programming, TOGA can result in solutions that are not Pareto-optimal (but are 

optimal solutions at a particular level of target objectives).  

 

The resulting filtered lamp spectra are examined with respect to GA performance, and the 

deviation from the target chromaticities and target color rendering values are shown to be 

largely well within lighting industry limits, and the variance in efficiency of the resulting 

filtered lamp spectra is shown to be low. This technique can be use to determine how new 

electric light source technologies might be filtered so that they are more commercially 

viable.  
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1. Introduction 
The research on more efficient electrical light source technology is both well funded and 

highly motivated. Annual sales (worldwide) of electrical lighting is estimated to be over 

$15 billion (COST 2001). According to COST (European Co-operation in the field of 

Scientific and Technical Research), “currently, more than 7.5 billion lamps operate 

world-wide consuming 1,000 billion kWh per year (10-15% of the global energy 

production world-wide)” (COST 2001). Thus, periodically new electric light source 

technologies are developed, or major improvements on old technologies are made (Table 

1). Moreover, “…the industry is dynamic, and the introduction of new light sources is 

expected to continue at least at the present rate well into the next century.” (IESNA 2000; 

e.g., Gu, Burrows, and Venkatesh, 1997).  

 

Table 1. Selected milestones in lighting technology (IESNA 2000).  

Year Milestone 
1810 electric arc lamp demonstrated 
1840 early electric incandescent lamp demonstrated 
1862 electric arc lamp in use 
1878 Swan (England) and Edison (United States) independently develop 

practical filament incandescent lamp 
1904 discharge lamps developed 
1907 tungsten filament developed 
1910 neon lamp developed 
1913 inert gas filling for incandescent bulbs developed 
1931-33 discharge lamps developed 
1938 fluorescent lamp developed 
1959 tungsten halogen lamp developed 
1961 metal halide lamps developed 
1962 first practical visible light emitting diode developed 
1967-68 high pressure sodium lamp developed 
1980-84 compact (“folded”) fluorescent developed  
1990 sulphur lamp developed  
1992 induction lamp developed 
1993 indium-gallium-nitride light emitting diodes developed 
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One of the principal goals motivating advances in lighting technology is maximization of 

luminous efficacy, the ratio of the total luminous flux to total power input (i.e., the 

"amount of light" per Watt; Wyszecki and Stiles, 1982). However, there are many factors 

that affect the commercial viability of a new light source technology, including 

colorimetric properties (apparent color1, color rendering), lamp life, luminous efficacy 

and color stability when dimmed, source size, warm up time, color uniformity, color 

stability over life of the source, and lumen maintenance (light output over the life of the 

source). Colorimetric properties have a strong influence on the application and adoption 

of new light source technologies, probably because an observer (e.g., a consumer or 

client) can easily assess them (cf., lumen maintenance). For example, even though metal 

halide lamps (which produce a white light that renders color well) are less efficient and 

more expensive to manufacture than low pressure sodium lamps (which produce a yellow 

light that renders color poorly), there are many more applications in practice for metal 

halide lamps because they have much better colorimetric properties.  

 

Ideally, a new electric light source technology will have high luminous efficacy, have 

acceptable apparent color (typically “white”), and render colors well. While getting all 

three properties in a new light source technology just right is rare, there are cases where 

efficacy is very high and the color properties are just slightly off. For example, the 

sulphur lamp (Siminovitch, Gould, and Page, 1997; Turner, et al., 1997) has very high 

luminous efficacy (Figure 1), a color rendering index (CRI) of 78, and a greenish-white 

apparent color (1931 CIE chromaticity coordinates x=.33, y=.41, a poor color for many 

                                                 

1 The color of light coming directly from the source (cf., reflected light).  
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applications). It is possible to exchange some efficacy for better colorimetric properties: 

there are an infinite number of ways to filter a broad-spectrum light so that it has better 

colorimetric properties. However, almost all of these filters will reduce luminous efficacy 

by an unacceptable amount.  

0 20 40 60 80 100 120 140

       standard incandescent

                     halogen

        halogen w/ reflector

       high pressure mercury

 compact fluorescent (5−26W)

compact fluorescent (27−40W)

                 fluorescent

                metal halide

        compact metal halide

        high pressure sodium

  white high pressure sodium

                     sulphur

circuit luminous efficacy (lm/W)  
Figure 1. Luminous efficacy of common electric light sources (and the sulphur lamp). 

 

This dissertation is concerned with the tradeoff between luminous efficacy, apparent 

color, and color rendering properties of light sources. In particular, it describes a method 

for determining this tradeoff using a novel approach to multiobjective optimization 

employing genetic algorithms.  

1.1 Previous Work on Spectrum Optimization 
There are several different perspectives from which to examine the idea of spectrum 

optimization, depending on one’s application. One may wish to optimize a spectrum such 

that (from least to most complex) it: 

• maximizes luminous efficacy, regardless of color 
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• maximizes luminous efficacy for a particular chromaticity 

• maximizes luminous efficacy for a particular CRI 

• maximizes luminous efficacy for a particular chromaticity and CRI 

o for line or band spectra2 

o for continuous spectra3 

The history of spectrum optimization follows this progression, principally because of 

advances in optimization theory and computing power rather than lack of interest in more 

complex problems.  

 

In 1924, the CIE4 adopted a standard (based on psychophysical measurements of 

brightness matching) for photopic spectral luminous efficiency (which peaks at 555 nm) 

and a factor to convert radiant flux to photopic luminous flux, 683 lm/W (Wyszecki and 

Stiles, 1982). Therefore, by definition, the maximum luminous efficacy, where all of the 

electrical power is converted into a spectral line at 555nm, is 683 lm/W. However, this 

(theoretical) lamp, which optimizes efficacy alone, has terrible color properties: all 

objects appear yellowish green, gray, or black.  

 

MacAdam (1950) calculated the maximum attainable luminous efficacy at all 

chromaticities, which (for all non-spectral chromaticities) require the mixture of a single 

pair of wavelengths only. However, a source of light designed on this principal would 

                                                 

2 Line spectra have energy at discrete wavelengths, with very narrow bandwidth (e.g., <1 nm), and no 
energy elsewhere; band spectra have energy at discrete wavelengths, with wider bandwidth (e.g., 10 nm), 
and no energy elsewhere. 
3 Continuous spectra have energy at all wavelengths of the visible spectrum, and no sharp transitions (i.e., 
they are smooth).  
4 Commission Internationale de l'Eclairage 
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have poor color rendering, and “…would not be a satisfactory source of artificial daylight 

illumination.” (MacAdam, 1950). However, this represents an absolute upper bound 

against which the efficacy of real sources can be compared. Ivey (1963) expanded on 

MacAdam’s work, taking into account the emission spectra of real phosphors5 and the 

dependence of energy in a photon on frequency (e.g., assuming equal quantum efficiency, 

a 700 nm monochromatic phosphor will emit only 57% of the power input compared to a 

400 nm monochromatic phosphor). Ivey’s bounds were similar in shape to MacAdam’s 

(1950), although substantially reduced in magnitude.  

 

MacAdam (1935a) presents a proof of a theorem that allows the optimal spectral 

reflectance for a pigment to achieve a maximum colorimetric purity for a given 

illuminant and dominant wavelength to be determined. This can also be used (MacAdam, 

1935a, 1935b) to determine how an arbitrary SPD may be filtered to achieve any 

chromaticity at maximum efficiency. However, this method offers no guarantee that the 

color rendering will be acceptable (and it is likely to be poor for many chromaticities).  

 

Until this point, work had been done on optimizing efficiency at a given chromaticity. 

However, this approach is insufficient for the needs of the lighting industry: it is also 

necessary to account for color rendering properties of light.   

 

Koedam and Opstelten (1971) use trial and error (guided by color theory) to develop 

three-line spectra on the blackbody locus with CRI ≅ 80. Koedam, Opstelten, and 
                                                 

5 Which, “…for most phosphors … consist of a single broad bell-shaped curve, the width and peak 
wavelength depending on the particular phosphor considered.” 
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Radielović (1972) examined (again via trial and error) the effect of using three bands of 

differing bandwidth on color rendering and efficacy, although they only look at a few 

points. Thornton (1971) uses a similar approach to explore the tradeoff between CRI and 

efficiency of some three line spectra (for white light). All three of these papers identify 

similar regions of the spectrum (around 450, 540, and 610 nm) as being particularly 

important for color rendering in line or band spectra. 

 

Einhorn and Einhorn (1967), Walter (1971), Haft and Thornton (1972), and Opstelten, 

Radielović, and Verstegen (1975) were the first researchers to examine in a systematic 

way the relationship between CRI and efficacy for certain chromaticities, using three line 

or three band spectra. All four papers present calculations (starting with different 

assumptions) of CRI/efficacy Pareto optimal fronts for different colors, and note that the 

lighting industry was manufacturing many lamps that were far from this front (i.e., even 

given physical limitations, there was substantial room for improvement).  

 

Walter (1978) applied nonlinear programming to the spectrum optimization problem for 

efficacy and color rendering at a particular chromaticity. Although he was never able to 

get the algorithm to converge, he was able to find three and four line spectra with high 

efficiency and high CRI.  

 

Other researchers have applied a variety of approaches to solve related problems. Ohta 

and Wyszecki (1976b) use linear programming to design illuminants that render a limited 

number of objects at desired chromaticities. Ohta and Wyszecki (1976a) use nonlinear 
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programming to explore the relationship between illuminant changes and color change 

(in relation to setting tolerances for illuminant differences). Dupont (2002) applied a 

variety of methods (including neural networks, the simplex method, genetic algorithms, 

simulated annealing, et al.) to reconstruct reflectance curves from tristimulus values for a 

given SPD. Denbigh and Jones (1984) developed software to aid in the development of 

high pressure sodium lamps, which among other things incorporated previous research on 

spectrum optimization to propose lamp parameters that were likely to result in lamps with 

high CRI. Numerous papers describe experiments in lamp spectrum optimization (e.g., 

Krasko, Brates, and Nortrup, 1998; Carleton, Seinen, and Stoffels, 1997) dealing directly 

with the physical properties of the lamp (e.g., voltage, temperature, pressure, wall 

thickness, chemical components, etc.). 

1.2 Dissertation Outline 
The remainder of this document is arranged in six chapters and three appendices. Chapter 

2 defines color, and describes a standard method (used throughout industry since the 

1930s) for its measurement and quantification. The process for calculating a lighting 

industry standard for the measurement of color rendering (the Color Rendering Index, 

CRI) is also described. Finally, the concept of color temperature (a one-dimensional 

measure of chromaticity), which is used by the lighting industry to specify lamp apparent 

color, is introduced.  

 

Chapter 3 provides an introduction to the basic mechanics of genetic algorithms, and 

introduces the concept of Pareto-optimality in multiobjective optimization. Three broad 

approaches for using genetic algorithms for multiobjective optimization (aggregation 
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methods, non-Pareto methods, and Pareto methods) are described, and examples are 

given of each.  

 

Chapter 4 describes a genetic algorithm (GA) technique for the maximization of the 

filtered luminous efficacy of an arbitrary spectral power distribution (e.g., based on a new 

lamp technology) at a particular chromaticity. A chromosome encoding method and three 

related problem-specific mutation methods are presented. The results from the GA 

technique are shown to compare favorably to known optima, particularly at areas of 

likely interest for industrial applications, suggesting that the GA approach is suitable to 

this type of problem. However, some serious limitations of this approach are discussed 

(relating particularly to computational efficiency) and a direction for further research is 

identified.  

 

Chapter 5 presents the main results of this work. A novel approach to using genetic 

algorithms for multiobjective optimization, the Target Objectives Genetic Algorithm 

(TOGA), is described, and advantages and disadvantages of this technique are discussed. 

TOGA is implemented to determine the tradeoff between luminous efficacy, 

chromaticity, and color rendering for four filtered lamp spectra. The results are examined 

with respect to GA performance, and the deviation from the target chromaticities and 

target color rendering values are shown to be well within lighting industry limits, and the 

variance in efficiency of the resulting filtered lamp spectra is shown to be low. The 

results are also examined from a lighting perspective, and, for the range of color 

rendering and chromaticity examined, while there was a clear interaction, chromaticity 
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has a much greater effect on the maximum attainable luminous efficacy than color 

rendering. TOGA is also shown to produce filters with efficiencies quite near the 

maximum possible for any filtered light source at a particular chromaticity (i.e., 

regardless of color rendering).  

 

The main conclusions and suggestions for future work are discussed in Chapter 6. 

Fundamental results, in relation to both genetic algorithms and lighting, are presented, 

along with a description of the practical application of this method. The advantages and 

limitations of the TOGA method are discussed, and recommendations for future work are 

made.  

 

Appendix A presents some additional figures relating to lighting. Appendix B provides 

the code used for the results presented in Chapter 5 (the TOGA implementation). This is 

included for archival purposes only, rather than as ready to use software. Appendix C 

contains several related papers by this author that have been published elsewhere.   
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2. Color and the Measurement of Color 
All vision is colour vision, for it is only by observing 
differences of colour that we distinguish the forms of 
objects. I include differences of brightness among 
differences of colour.  

   -James Clerk Maxwell, 1872 

Color is the aspect of electromagnetic radiation evaluated by the visual system that 

allows an observer to distinguish two homogeneous fields of the same size and shape that 

differ only in spectral composition. Differences in spectra may elicit differences in the 

perception of hue, brightness or saturation. Hue is the attribute of visual sensation 

whereby an area might be described as either purely, or some combination of, red, green, 

yellow, or blue (this is the aspect that laymen usually think of as “color”). Brightness is 

the attribute of visual sensation whereby an area appears to emit more or less light (at one 

extreme barely perceptible, at the other dazzling). Saturation is the attribute of visual 

sensation describing the amount of whiteness in a particular hue (e.g., although they are 

of the same hue, pink is less saturated than red).  

 

Colorimetry is the branch of physics concerned with the quantification and prediction of 

color perception based on the radiometric properties of a stimulus. Colorimetry can be 

used to calculate various properties of a given spectral power distribution (SPD, the 

radiant power per unit wavelength as a function of wavelength) relating to how that SPD 

will appear to a typical observer with normal color vision. Colorimetry is used 

extensively in industry (Judd and Wyszecki, 1975), e.g., to specify colors of materials or 

to specify tolerances for color variation across different lots (Alman, 1993; CIE 1995a).  
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This chapter describes three metrics that are commonly used to describe light sources: 

chromaticity coordinates, the color rendering index, and (correlated) color temperature.  

2.1 The CIE Method for Color Specification 
The Commission Internationale de l'Eclairage (CIE) is the International Standards 

Organization recognized body for all matters regarding the science and art of lighting. 

Although each person perceives color slightly differently, the CIE has developed a 

colorimetric system to quantify the color of a light source from its SPD based on a 

“standard observer” (Judd, 1933). The properties of the standard observer are based on 

psychophysical measurements of color matching (Guild, 1931; Wright, 1928-29), and are 

used to derive the color matching functions (Fairman, Brill, and Hemmendinger, 1997; 

Wright, 1981b). The CIE 1931 color matching functions (Figure 2) are fundamental to 

colorimetry, and can be used to define a coordinate system for determining if two 

different spectra (when seen under identical conditions) will match or appear different 

(Kaiser and Boynton, 1996).   

350 400 450 500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

wavelength (nm)

x−bar
y−bar
z−bar

 

Figure 2. CIE color matching functions (dimensionless) for the 1931 CIE Standard Colorimetric Observer. 
These functions are based on psychophysical measurements of color matching, and can be used to define a 
coordinate system for determining if two different spectra (when seen under identical conditions) will 
match or appear different. 
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The X, Y and Z tristimulus values are the amount of three imaginary primaries required 

to produce a color, with the Y tristimulus value proportionate to the brightness of the 

color. Tristimulus values are calculated by weighting the SPD by the color matching 

functions and integrating over the visible spectrum (CIE, 1971): 

 

 

 

where ( )x λ , ( )y λ , and ( )z λ  are the color matching functions, ( )P λ  is the power at 

wavelengthλ , and k is an application specific constant6. The unit plane, X + Y + Z = 1, 

of the tristimulus color space is known as the chromaticity diagram (Judd and Wyszecki, 

1975), and points within this plane are known as x and y chromaticity coordinates: 

Xx
X Y Z

=
+ +

 

Yy
X Y Z

=
+ +

 

Figure 3 is a plot of the 1931 CIE chromaticity diagram. Monochromatic colors appear 

on the spectrum locus; monochromatic colors on the “purple line” are not possible – they 

are produced by a mixture of two (red and blue) primaries. All polychromatic colors have 

chromaticity coordinates within the bounds of the spectrum locus and purple line. White 

                                                 

6 Unimportant for this application, and set to 1.0.  
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light is near the equal energy point, W, so colors near the equal energy point are less 

saturated than colors near the spectrum locus. Brightness is not encoded in the 

chromaticity diagram so, for example, broad spectrum white light reflected from an 

orange and from a chocolate bar will have similar chromaticity coordinates.  

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

x

y

380450

480

500

520

560

540

580

600

620

770

W

spectrum locus
purple line

 
Figure 3. 1931 CIE (x,y) chromaticity diagram. Numbers are wavelength of indicated point (in 
nanometers); W is equal energy point. Monochromatic colors appear on the spectrum locus; colors on the 
"purple line" are produced by a mixture of two (red and blue) primaries. 

 

There have been several proposals to update the 1931 CIE standard colorimetric observer 

(e.g., Judd, 1951; Vos, 1978; Shaw, 1997; Estevez, 1982; Stiles and Burch, 1955; 

Thornton, 1992b, 1992c, 1998). It is well known (Stockman and Sharpe, 1998; Thornton, 

1992a; Vos, Estevez, and Walraven, 1990) that the luminous efficacy of the short 

wavelength (below 460 nm) region of the spectrum (particularly below 410 nm; Vos 
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1978; Smith and Pokorny, 1975) is underestimated in the CIE 1924 standard observer for 

luminance (which the 1931 standard colorimetric observer is partially based on), 

probably due to lenticular photoluminescence (Kandel, Eklund, and Schroeder, 1992; 

Kandel, et al., 1993; Said and Weale, 1959; Mäntyjärvi and Tuppurainen, 1996; Silk, 

1999). However, despite this limitation, the 1931 CIE standard colorimetric observer has 

remained a useful international standard (Fairchild, 1998; Wright, 1981a), and it is used 

here.  

2.2 Color Rendering 
Color rendering refers to the degree to which a test illuminant elicits color appearance in 

reflected objects similar to a reference illuminant (typically daylight or a blackbody 

radiator of similar color temperature, although in principal, any reference may be used). 

The CIE (1995b) has defined the general color rendering index (CRI), which is a measure 

of the average appearance of eight standardized reflective color samples chosen to be of 

intermediate saturation and spread throughout the range of hues. Although CRI has 

several deficiencies as a metric (van Trigt, 1999), it has nonetheless become entrenched 

as a standard in the lighting industry, and no lamp is designed without giving thought to 

it.  

 

The CIE method for determining color rendering uses a Planckian radiator as a standard 

for color temperatures below 5000 K; at or above 5000 K, one of a series of SPDs 

corresponding to phases of daylight are used (CIE, 1995b). CRI can range7 from 0 to 100; 

a CRI of 100 indicates that the test colors appear exactly the same as under the reference 

                                                 

7 Negative values of CRI can be calculated; however, these are generally considered invalid.  
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source, while lower values of CRI indicate that the colors appear progressively more 

different from the reference when illuminated by the test source. To calculate CRI by the 

CIE specified method (CIE, 1995b), colorimetric data (for both the test source and the 

reference) must be transformed from CIE 1931 system (x, y) to the (u, v) coordinates of 

the 1960 CIE Uniform Chromaticity Scale using: 

4 /( 15 3 )
6 /( 15 3 )

u X X Y Z
v Y X Y Z

= + +
= + +

 

The adaptive color shift due to the different state of chromatic adaptation under the lamp 

to be tested, k, under the reference illuminant, r, for reflectance standard, i, is accounted 

for by: 

, ,

,

, ,

10.872 0.404 4
'

16.518 1.481

r r
k i k i

k k
k i

r r
k i k i

k k

c dc d
c du c dc d
c d

+ −
=

+ −
 

 

,

, ,

5.520'
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k i
r r

k i k i
k k

v c dc d
c d

=
+ −

 

where: 

(4 10 ) /
(1.708 0.404 1.481 ) /

c u v v
d v u v

= − −
= + −

 

 

These colorimetric data must now be transformed into the CIE 1964 Uniform Color 

Space coordinates by the following: 

1 1
3 3* *

, , , ,

* * * * ' '
, , , , , ,

* * * * ' '
, , , , , ,

25( ) 17; 25( ) 17;

13 ( ); 13 ( );

13 ( ); 13 ( );

r i r i k i k i

r i r i r i r k i r i k i k

r i r i r i r k i r i k i k

W Y W Y

U W u u U W u u

V W v v V W v v

= − = −

= − = −

= − = −

 

where the Y tristimulus values, Yr,i and Yk,i, are normalized so that Yr = Yk = 100 . 
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In this coordinate space, the color difference between the test color sample under the test 

lamp k and illuminated by the reference source r is calculated: 

* 2 * 2 * 2( ) ( ) ( )i i iE U V W∆ = ∆ + ∆ + ∆  

The Special Color Rendering Index, Ri, for each test color sample is calculated by: 

100 4.6i iR E= − ∆  

Finally, the general color rendering index is calculated by: 

8

1

1
8 i

i
CRI R

=

= ∑  

The reflectance of the eight test color samples specified by the CIE is plotted in Figure 4.  
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Figure 4. Reflectance of the CIE standard CRI test samples. These standard test colors used to determine 
the degree to which a test illuminant elicits color appearance in reflected objects similar to a reference 
illuminant. 

 

2.2 Color Temperature and Correlated Color Temperature 
Another metric frequently used to characterize white light sources is color temperature. 

Color temperature is used to characterize spectra that are similar (in the visible range) to 
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Planckian radiators (Robertson, 1968). Planckian radiators are idealized8, but many 

radiators in nature are nearly Planckian (e.g., the sun, tungsten filament lamps). The 

spectral radiancy of a Planckian radiator depends only on its temperature, and can be 

characterized by Planck’s law (Halliday and Resnick, 1986): 

2

5 /

2 1( , )
1hc kT

c hR T
e λ

πλ
λ

=
−

 

where: 

231.381*10 /k J K−=  (Boltzmann constant) 
346.626*10h J s−= ⋅  (Planck constant) 

172.998*10 /c nm s=  (speed of light in vacuum) 

T = temperature (in Kelvin) 
λ = wavelength (in nm) 

 

Figure 5 is a plot of the chromaticity diagram showing the blackbody locus, the set of 

points in a chromaticity diagram that represent the chromaticities of spectra of Planckian 

radiators (blackbody radiators) at different temperatures.  

 

For spectra that are not well approximated by a Planckian radiator (e.g., fluorescent 

lamps, some light emitting diode combinations) but with chromaticities near the 

blackbody locus, correlated color temperature (CCT) is used. First suggested by Judd 

(1936), CCT is the temperature of the Planckian radiator with chromaticity nearest the 

chromaticity coordinates of the spectrum on the CIE 1960 (u,v) diagram. Like CRI, CCT 

is a somewhat flawed metric (Borbely, Samson, and Schanda, 2001) that is nonetheless 

firmly established in the lighting industry. 

                                                 

8 In the sense that their spectral radiancy depends only on temperature, and not, e.g., on material or surface 
properties. 
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Figure 5. Chromaticity diagram with blackbody locus (the set of points in a chromaticity diagram that 
represent the chromaticities of spectra of Planckian radiators at different temperatures) and selected 
blackbody temperatures indicated. 
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3. Genetic Algorithms and Multiobjective Optimization 
Classical optimization methods (either direct or derivative based) make strong 

assumptions about the search space (e.g., the fitness space is approximately quadratic; 

local minima or maxima are small or non-existent) that allow the optimal solution to be 

quickly determined. These methods are very powerful for the comparatively small set of 

problems for which their assumptions are known to be correct (or nearly so; Haupt, and 

Haupt, 1998). However, there are many problems where the character of the fitness space 

is unknown, or known to be unsuitable for classic optimization techniques. Moreover, 

there are many limitations to classical optimization techniques, including: 

• the resulting solution may be highly dependant on initial conditions (i.e., 

identifying a local but not global optima) 

• methods tailored to one class of problem are frequently unsuitable for other  
problems 

• they may require an initial feasible solution, which can be difficult to generate 

• integer (or discrete) variables are poorly handled 

• problems must typically be described in a very specific way 

 

Evolutionary algorithms (EAs) overcome these problems by employing techniques 

analogous to the ones that drive biological evolution; e.g., selection based on fitness, 

reproduction (sexual or asexual), and mutation (Michalewicz and Fogel, 2000). While 

there are some drawbacks to using EAs, they suffer from none of the limitations for 

classical optimization techniques mentioned above; hence, they are applicable to a broad 

variety of problems. The principal types of evolutionary algorithm include genetic 

algorithms (GAs), evolutionary programming, evolution strategies, and genetic 
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programming (Spears, et al., 1993; Koza 1995). Although all of these are driven by the 

principals of natural selection, and are therefore similar in overall operation, they differ 

substantially in the details of implementation.  

 

This dissertation deals only with genetic algorithms. First proposed by Holland (1962; 

1975), they did not really receive widespread attention from academia until the early 

nineteen eighties; the first conference dedicated to GAs was in 1985 (Grefenstette, 1985). 

Goldberg’s (1989) book, which remains a standard text on the subject, substantially 

increased interest in the study of genetic algorithms.  

 

The remainder of this chapter introduces the basic mechanics of genetic algorithms, 

introduces multiobjective optimization, and reviews previous work employing GAs for 

multiobjective optimization. 

 

3.1 Genetic Algorithms 
This preservation of favourable variations and the rejection 
of injurious variations, I call Natural Selection.  

   - Charles Darwin, 1896 

Genetic algorithms are a general-purpose optimization method based on the theory of 

natural selection. GAs make no assumptions about the search space, so they can be 

applied to almost all optimization problems (Goldberg, 2002). However, GAs exchange 

applicability for speed – although they can be used on a wide variety of problems, they 

are typically slower to converge to a solution than algorithms designed for a specific 

problem.  
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Genetic algorithms employ a vocabulary borrowed from genetics (Michalewicz, 1996). A 

chromosome is an encoding of an individual solution to an optimization problem. A 

chromosome is composed of an ordered series9 of genes (i.e., a specific gene always 

occupies the same position in a chromosome), with each gene corresponding to a specific 

characteristic of the problem10. A chromosome in its raw form (i.e., the encoded form that 

the GA manipulates) is known as the genotype; the solution that the chromosome 

represents (i.e., the solution decoded from the chromosome) is known as the phenotype. 

Each gene has a set of alleles, which are valid values for that gene. A population is 

composed of a collection (typically of fixed size) of chromosomes. An iteration of the 

algorithm during which a new population is produced is known as a generation.  

 

The basic operation of a genetic algorithm is outlined in Figure 6. First, an initial 

population is generated (typically randomly). Then, the fitness of each chromosome is 

evaluated using a predefined fitness function. Fitness functions are used to evaluate the 

"goodness" of a chromosome, and can be either minimized or maximized, depending on 

the goal of the optimization. For example, consider a minimization problem represented 

by a chromosome with three genes, [ 1g , 2g , 3g ], and the simple fitness function: 

2 2
1 2 32 4fitness g g g= + −  

                                                 

9 Typically a vector, but sometimes arrays are used. 
10 Although there are some applications of diploid chromosomes (e.g., Green, 1994) the overwhelming 
majority of GA implementations employ haploid chromosomes (i.e., only one set of chromosomes per 
solution). 



 

 

 

23

The fitness of the chromosome with allele values of [9, 3, 5] is 79 and the fitness of 

chromosome [2, -5, 2] is 46; therefore, [2, -5, 2] is a fitter (“more near optimal”) solution 

for this minimization problem (although clearly not the optimal solution).  

 

initialize
population

evaluate
fitness

Is the stopping
criterion met?

crossover

mutation

selection

finished
no

yes

 
Figure 6. The GA optimization process. A population is initialized and the fitness of each chromosome is 
evaluated; if the stopping criterion is not met, selection, crossover, and mutation take place generating a 
new, presumably fitter, population, which is then returned to the fitness evaluation step; when the stopping 
criterion is met, the algorithm is terminated.  

 

There are many possibilities for the stopping criterion, including: 

• stopping after a fixed number of generations 

• stopping after a predefined fitness has been achieved 

• stopping when the rate of fitness improvement slows to a predefined level 

• stopping when the population has converged to a single solution (e.g., when the 
maximum and mean population fitness is nearly the same) 

A fixed number of generations and convergence are the most popular stopping criteria.  

 

Selection chooses (frequently with replacement) chromosomes in the current population 

to be members of the following generation, either passed directly, or modified by 

crossover or mutation. The goal of selection is to favor relatively more fit chromosomes; 

those not selected (presumably, the least fit) die out. The three most commonly used 

selection schemes (Goldberg and Deb, 1991) are proportionate selection, rank selection, 
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and tournament selection. In proportionate selection (“roulette wheel” selection), the 

likelihood of selecting a chromosome is equal to the ratio of the fitness of the 

chromosome to the sum of the fitness of all chromosomes. One serious limitation of this 

method is that one comparatively very fit chromosome can very quickly overcome a 

population; rank and tournament selection are designed to overcome this problem. In 

rank selection, the population is sorted from best to worst fitness, and the probability of 

selection is some (linear or nonlinear) function of rank. In tournament selection, some 

small number of chromosomes (frequently two) are chosen at random, compared, and the 

fittest chromosome is selected; this process is repeated until sufficient chromosomes have 

been selected.  

 

Crossover is the exchange of portions genetic material from a pair11 of 'parent' 

chromosomes to produce a pair of 'children'. There are many ways to perform crossover 

(Michalewicz, 1996). The simplest method is single point crossover, where the 

chromosomes are split at a randomly selected point, and genes to the left of the split from 

one chromosome are exchanged with genes to the right of the split from the other 

chromosome, and vice versa. For example, consider these two parent chromosomes: 

[3, 4, 9, 1, 7, 6, 4, 8, 1] 
[6, 3, 8, 1, 4, 3, 4, 6, 0] 

If the crossover point were between the third and fourth gene, these children would 

result: 

[6, 3, 8, 1, 7, 6, 4, 8, 1] 
[3, 4, 9, 1, 4, 3, 4, 6, 0] 

                                                 

11 Typically, although crossover schemes with greater than two parents exist.  
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The specific methods of crossover employed for this work are described below. 

 

Mutation (as it is typically implemented) is the assignment (with low probability of 

occurrence) of a random change to the allele value of one gene in a chromosome12. 

Mutation introduces new genetic material into the population and ensures that it is 

possible (over the course of the entire evolution) to search the entire solution space 

(Coello and Christiansen, 1999). 

 

The newly generated population is passed to the fitness evaluation stage, and the cycle 

continues until the stopping criterion is met.  

 

3.2 Multiobjective Optimization 
Most real-world optimization problems have several, often conflicting, objectives. 

Therefore, the optimum for a multiobjective problem is typically not a single solution; 

rather, it is a set of solutions that trade off between objectives. This concept was first 

formulated by the Italian economist Vilfredo Pareto in 1896 (Tarascio, 1968), and it bears 

his name today. A solution is Pareto optimal if (for a maximization problem) no increase 

in any criterion can be made without a simultaneous decrease in any other criterion 

(Winston, 1994). The set of all Pareto optimal points is known as the Pareto optimal 

front.  

 

                                                 

12 As with everything in GAs, there are no fixed rules: sometimes it is not a random change, and sometimes 
more than one gene is modified. 
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Figure 7 represents the objective space for an imaginary filtered lamp spectra, where one 

wants to maximize both luminous efficacy and CRI. The shaded area represents the 

feasible region (the region where solutions are possible). Solutions A and B are Pareto 

optimal: no increase in luminous efficacy can be made without an decrease in CRI, and 

vice versa. Solution C is dominated (not Pareto optimal): there are solutions with the 

same efficacy with a higher CRI (e.g., solution B), or with a higher efficacy for the same 

CRI (e.g., solution A). The heavy line indicates the Pareto optimal front – each point on it 

is non-dominated. Given the Pareto optimal front, an engineer can choose a solution 

based on other criteria (e.g., cost, ease of manufacture, parts availability). 
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Figure 7. Concepts of multiobjective optimality. Solutions A and B are Pareto optimal: no increase in 
luminous efficacy can be made without an decrease in CRI, and vice versa. Solution C is dominated (not 
Pareto optimal): there are solutions with the same efficacy with a higher CRI (e.g., solution B), or with a 
higher efficacy for the same CRI (e.g., solution A). The heavy line indicates the Pareto optimal front - each 
point on it is non-dominated. 

 

3.3 GAs for Multiobjective Optimization 
The first real application of GAs for multiobjective optimization was by Schaffer in his 

1984 Ph.D. dissertation (Deb, 2001; Schaffer, 1985); however it was not until the mid 

1990s that the field really began to grow. The first international conference dedicated to 

multiobjective evolutionary algorithms was held in 2001 (Zitzler, et al., 2001).  

 

Numerous approaches for using GAs for multiobjective optimization exist in the 

literature (Horn, Nafpliotis, and Goldberg, 1994; Fonseca and Fleming, 1995; Srinivas 



 

 

 

28

and Deb, 1995; Zitzler, 1999). There are two common goals in all multiobjective GA 

implementations (although the details of implementation differ dramatically). First, to 

move the population toward the Pareto optimal front; and second, to maintain diversity 

(either in parameter space or objective space; Deb, 1998a) in the population so that 

multiple solutions can be developed. GA approaches to multiobjective optimization can 

be grouped into three categories (Coello, 1999; Zitzler, 1999; Fonseca and Fleming, 

1995; van Veldhuizen, and Lamont, 1998; Coello, van Veldhuizen, and Lamont, 2002): 

approaches that use aggregating functions, non-Pareto based approaches, and Pareto-

based approaches. Examples of each of these techniques are described below.  

3.3.1 Approaches Employing Aggregating Functions  
The simplest and most obvious approach to multiobjective optimization is to combine the 

objectives into one aggregating function, and treat the problem like a single objective 

optimization problem. Three major approaches that employ aggregating functions are the 

weighted sum approach, the constraint method, and goal programming.  

 

The weighted sum approach combines k objectives using weights, wi: 

1 1 2 2( ) ( ) ... ( )k kfitness w f x w f x w f x= + + +  

(wi are typically normalized such that 
1

1
k

i
i

w
=

=∑ , although this is not necessary). 

Optimizing this function will result in one point on the Pareto-optimal front; therefore, 

multiple runs with different sets of weights are required to explore the whole of the 

Pareto-optimal front (Jones, et al., 1993). However, regardless of the weights employed, 

this technique will always miss concave portions of the Pareto-optimal front (Ritzel, 

Eheart, and Ranjithan, 1994; Liu, Begg, and Fishwick, 1998). Nonetheless, because of its 
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simplicity and computational efficiency, it is commonly used (e.g., Jakob, 

Gorges-Schleuter, and Blume, 1992; Wilson and Macleod, 1993) 

 

The constraint method (e.g., Ranjithan, Eheart, and Liebman, 1992; Quagliarella, and 

Vicini, 1997) uses k-1 objectives as constraints, and the remaining objective, h, as the 

fitness function: 

( )hfitness f x=  
subject to: 

( )i if x ε≥  (1 ,i k i h≤ ≤ ≠ ); 

the lower bounds, iε , are varied to find multiple points on the Pareto-optimal front. 

Unlike the weighted sum method, the constraint method is able to find points on any 

portion (including concave portions) of the Pareto-optimal front.  

 

Goal programming, originally developed by Charnes, Cooper, and Ferguson (1955) for 

linear models, has been adapted for use with genetic algorithms for nonlinear problems 

(e.g., Deb, 1998b; Sandgren, 1994; Wienke, Lucasius, and Kateman, 1992; Wienke, et 

al., 1993). In its simplest form (Duckstein, 1984), fitness is calculated using: 

1 1 2 2( ) ( ) ... ( )k kfitness f x T f x T f x T= − + − + + −  

where Ti is a target value for the ith objective, which must be chosen by the researcher. A 

more general form (Haimes, Hall, and Freedman, 1975) is: 

1 1 1 2 2 2( ( ) ) ( ( ) ) ... ( ( ) )p p p
k k kfitness w f x T w f x T w f x T= − + − + + −  

where p is typically 2, and wi are weights; this is known as generalized goal programming 

(Ignizio, 1976, 1981) or target vector optimization (Coello, 1996). The principal strength 

of this method is that it is computationally efficient. Note that this method can result in 
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solutions that are not Pareto-optimal (Deb, 1998b; Duckstein, 1984) if the target values 

are within the feasible region13. Moreover, the researcher is required to specify weights 

(that frequently compare “apples and oranges”) and targets for each objective, so 

considerable domain knowledge is frequently required (Deb, 1998b; Duckstein, 1984).  

 

Multiobjective optimization using aggregating functions are generally computationally 

efficient; however, they only identify one point on the Pareto optimal front during each 

run. Hence, to explore the shape of the Pareto-optimal front, multiple runs are required.  

Moreover, as Zitzler (1999) states, “As the runs are performed independently from each 

other, synergies can usually not be exploited which, in turn, may cause high computation 

overhead.” Thus, the practical utility of the computational efficiency of individual runs of 

techniques using aggregating functions is much reduced when the goal is to find the 

tradeoff between multiple objectives at multiple points.  

3.3.2 Non-Pareto Based Approaches 
Numerous GA approaches to multiobjective optimization that rely on neither aggregating 

functions nor the concept of Pareto-optimality14 have been developed (Coello, 1999; 

Zitzler, 1999; Fonseca and Fleming, 1995; Coello, van Veldhuizen, and Lamont, 2002; 

Deb, 2001). Several of the major approaches are described here.   

 

Schaffer (1984, 1985) developed the vector evaluated genetic algorithm (VEGA), based 

on Grefenstette’s (1984) GENESIS program. In VEGA, each of k objectives is used, 

individually, to select a fraction of the total population (N) using proportionate selection. 
                                                 

13 This is not a limitation per se; that is just the nature of goal programming.  
14 Approaches that employ the concept of Pareto-optimality are discussed in the following section. 
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These N/k subpopulations are mixed (shuffled), and crossover and mutation are applied. 

Like the weighted sum approach, this method can not find solutions on concave portions 

of the Pareto-optimal front (Richardson et al., 1989). However, because of its simplicity 

modified versions of VEGA have been used in a number of studies (e.g., Ritzel, Eheart, 

and Ranjithan, 1994; Cvetković, Parmee, and Webb, 1998; Tamaki et al., 1995; Tamaki, 

Kita, and Kobayashi, 1996), and it is particularly useful in the area of constraint 

handling15 (Coello, 2000; Surry, Radcliffe, and Boyd, 1995).  

 

Allenson (1992) and Lis and Eiben (1996) propose using gender (identified by a gene on 

each chromosome) to identify objectives. The objective function used for selection is 

based on the gender of the chromosome, and crossover requires one gender from each of 

k objectives to produce one child. Although this method can be used to successfully find 

Pareto-optimal solutions (Allenson, 1992; Lis and Eiben, 1996), it becomes 

computationally inefficient as the number of objectives increases because of the number 

of parents required to generate a child (Coello, 1999). 

 

The weighted min-max approach was originally developed for linear models in the late 

1960s (Coello, 1999), and was further developed by Osyczka (1978), Rao (1986), and 

Tseng and Lu (1990). Hajela and Lin (1992) were the first to apply this technique to 

genetic algorithms. They used weights for the objectives encoded in each chromosome 

combined with fitness sharing (after Goldberg and Richardson, 1987), mating 

restrictions, and a vector-evaluated approach similar to VEGA (Schaffer, 1984, 1985) to 

                                                 

15 i.e., where the solution must satisfy several constraints 
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evolve a set of Pareto-optimal solutions during a single run. Other researchers (Coello 

and Christiansen, 1998; Coello, Christiansen, and Hernandez, 1998; Coello, Hernandez, 

and Farrera, 1997) have developed variations on Hajela and Lin’s (1992) technique. This 

technique is computationally efficient and relatively simple to implement, although care 

has to be taken in the implementation to prevent premature convergence (Coello, 1996), 

and there are some parameters that typically have to be determined empirically.  

3.3.3 Pareto Based Approaches 
Goldberg (1989) proposed using the concept of Pareto dominance for ranking and 

selection combined with some kind of niching mechanism (to prevent convergence to one 

point on the Pareto-optimal front) to address the limitations of VEGA (Schaffer, 1984, 

1985). This concept has been successfully implemented directly by several researchers 

(e.g., Hilliard et al., 1989; Liepins et al., 1990; Stanley and Mudge, 1995). Two 

commonly employed (Deb, 2001; Coello, van Veldhuizen, and Lamont, 2002) variations 

on this idea are described below.  

 

Fonseca and Fleming (1993) proposed an approach (referred to below as FFGA) that 

ranks chromosomes by the number of other chromosomes by which they are dominated. 

All chromosomes with the same rank are given the same fitness (so that they are sampled 

at the same rate), which has the unintended effect of creating large selection pressure, 

which may lead to premature convergence (Goldberg, and Deb, 1991). To temper this 

tendency, fitness sharing is implemented based on objective function values. While this 

method is relatively simple to implement, it is quite sensitive to the sharing parameter 

and it is arguable (Deb, 1999) that sharing should be implemented in parameter space 

rather than objective space. The FFGA has been employed successfully by many 
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researchers (e.g., Chipperfield and Fleming, 1995; Aherne, Thacker, and Rockett, 1997; 

Tan, and Li, 1997).  

 

Horn and Nafpliotis (1993; also Horn, Nafpliotis, and Goldberg, 1994) proposed the 

niched Pareto genetic algorithm (NPGA), which uses Pareto dominance to decide the 

outcome of tournament selection. Two chromosomes are selected at random, and 

compared to a randomly selected set of (typically 10) chromosomes. If only one of the 

original pair is not dominated, it is the winner; otherwise (i.e., in the case of a tie), the 

outcome is decided using fitness sharing (Goldberg and Richardson, 1987). While it is 

computationally efficient (because selection uses only a subset of the population to 

determine Pareto dominance), Coello (1999) notes that “its main weakness is that besides 

requiring a sharing factor, this approach also requires a good choice of the size of the 

tournament to perform well, complicating its use in practice.” Nonetheless, the NPGA 

has been employed successfully by numerous researchers (e.g., Belegundu et al., 1994; 

Poloni and Pediroda, 1997). 
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4. Optimizing for Luminous Efficacy and Chromaticity Only 
While each SPD has only one pair of chromaticity coordinates, a certain pair of 

chromaticity coordinates can be produced by an infinite number of SPDs. Moreover, a 

light source might be filtered any number of ways to achieve a particular color - what will 

vary (among other properties, such as color rendering) is the brightness of the light 

source and, therefore, the relative efficiency of the filtered light source. For any 

chromaticity coordinates achievable16 by a light source, there is a way to filter the light 

source such that the efficiency at that color is maximized. Because the apparent color of a 

light is immediately obvious to the casual observer (and color rendering less obvious), it 

is of interest to be able to achieve a certain chromaticity at high efficiency, regardless of 

color rendering.  

 

This chapter details a GA approach for determining how an arbitrary SPD may be filtered 

to achieve any set of chromaticity coordinates at maximum efficiency. This problem was 

undertaken as a stepping stone toward the full (chromaticity, efficacy and CRI) problem, 

presented in the following chapter. It is less complex, and the work of MacAdam (1935a) 

provides a convenient way to check how well the approach works.  

 

The SPDs of three light sources employed in this chapter are plotted in Figure 8. Note 

that SPDs can be smooth and continuous (e.g., incandescent lamps, sulfur lamps), or 

spiky, with energy either spread throughout the visible spectrum (e.g., metal halide 

                                                 

16 Not all light sources can achieve all chromaticities; a light source must have non-zero energy throughout 
the visible range to potentially achieve any chromaticity through filtering.  
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lamps, fluorescent lamps), or concentrated principally in one portion of the visible 

spectrum (e.g., high pressure sodium lamps, low pressure sodium lamps). Thus, one 

might expect very different filters for each lamp type for a given chromaticity coordinate.  

 

400 500 600 700
0.0

0.2

0.4

0.6

0.8

1.0

wavelength (nm)

no
rm

al
iz

ed
 p

ow
er

HPS
MH

Inc

 
Figure 8. SPDs for Metal Halide, High Pressure Sodium and Incandescent lamps. Note that SPDs can be 
smooth and continuous (e.g., incandescent lamps, sulfur lamps), or spiky, with energy either spread 
throughout the visible spectrum (e.g., metal halide lamps, fluorescent lamps), or concentrated principally in 
one portion of the visible spectrum (e.g., high pressure sodium lamps, low pressure sodium lamps). 

 

4.1 Genetic Algorithm Implementation 
This optimization problem is unique, insofar as one is typically not interested in the 

whole of the chromaticity and efficacy Pareto optimal front (although that is developed 

below); rather, the maximum efficacy at a particular chromaticity (e.g., a point on the 

blackbody locus) is of interest. Thus, chromaticity will be “encouraged” to be near a 
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particular value17 by using a penalty function: chromosomes near the target chromaticity 

will be penalized slightly or not at all, while chromosomes far from the target 

chromaticity will be strongly penalized. The fitness of any chromosome will be a 

combination of luminous efficacy and the chromaticity penalty (described in Section 

4.1.2). 

 

For this preliminary work, a modified version of the Genetic Algorithm Optimization 

Toolbox (GAOT; Houck, Joines, and Kay, 1995) was employed to operate the mechanics 

of the GA. Population sizes between 8 and 100 were experimented with; the results 

presented here are all for a population size of 50.  

  

4.1.1 Chromosome Encoding 
A floating-point representation was used for this problem. Michalewicz (1996) suggests 

that floating point representations tend to converge faster, reach more consistent results, 

and provide higher precision than binary representations. Other researchers give similar 

recommendations (e.g., Goldberg, 1990; Todd, 1997, Deb and Kumar, 1995) 

 

The portion of the visible spectrum between 400 and 700 nm was partitioned in 151 bins, 

each 2 nm wide18. Each chromosome consisted of 151 genes, with each gene representing 

the transmittance of the filter in one of the bins. The order of the genes corresponded to 

                                                 

17 The target-value approach used here us similar in spirit to the classic non-GA multiobjective 
optimization method known as goal programming (Cohon, 1978), which as also been adapted to GA 
applications (e.g., Wienke, Lucasius, and Kateman, 1992; Wienke, et al., 1993).  
18 The influence on chromaticity coordinates of the visible spectrum outside this range is trivial, less than 
0.26% for a uniform SPD.  
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the order of the wavelength range in the spectrum; i.e., the first gene represented the 400 

to 402 nm interval, the second gene represented the 402 to 404 nm interval, and so on. 

The 2 nm bin width was chosen as a compromise between smoothness and computational 

tractability. Valid allele values for each gene could range from zero to one. 

4.1.2 Evaluating Fitness 
The function, 

2

0

400f
cie

Y
fitness d

Y
= −  

where fY  is the Y tristimulus value of the filtered SPD, 0Y  is the Y tristimulus value of 

the unfiltered SPD, and cied  is the Euclidean distance from the target chromaticity 

coordinates (in the 1931 CIE system) to the chromaticity coordinates of the filtered SPD, 

was used to evaluate the fitness of solutions. The 0/fY Y  term is the relative efficiency of 

the filtered source (used throughout this document as a surrogate for luminous efficacy) 

that can range from 0 to 1. The cied  term is scaled such that it was nearly zero near the 

target chromaticity (allowing the population some slack to search for more efficient 

solutions) and quite high away from the target chromaticity, penalizing chromosomes far 

from the target chromaticity. The scaling of the distance term was determined 

empirically.  

 

This small area of low penalty around the color objective allows the efficiency to 

improve (in slight steps), even if color gets slightly poorer (also in small steps). The 

balance between the two objectives in this aggregating approach is important: if one of 

the objectives dominates the other, the population will become “stuck” at unreasonable 
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solutions. For example, Figure 9 is a plot of an solution found with a poorly scaled 

distance penalty; the color is right, but the efficiency is very low (.31), and the solution is 

likely too irregular to be economically (or even physically) manufactured. However, 

when the objectives are not poorly scaled, tradeoffs between color and efficiency can be 

made in the population, and much better solutions can be found. For example, Figure 10 

is a plot of the transmittance of a filter with the same target chromaticity coordinates as 

for Figure 9; the efficiency is much higher (0.65), and the solution is (in principal) 

physically realizable. 
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Figure 9. An poor solution for the incandescent lamp. Color is correct (for target), but efficiency is low 
(.31) and filter is physically unrealizable.  
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Figure 10. A good solution for the incandescent lamp (cf., Figure 9). Transmittance of a filter with the 
same target chromaticity coordinates as for Figure 9; the efficiency is much higher (0.65), and the solution 
is (in principal) physically realizable. 

4.1.3 Selection 
During each iteration 50 chromosomes are selected (with replacement) for crossover and 

mutation. Selection probability is rank based, with the probability of selecting the ith 

chromosome (when the chromosomes are sorted according to fitness), Pi according to: 

1(1 )
1 (1 )

r

i n

q qP
q

−−
=

− −
 

where: 
    q = probability of selecting the fittest individual  
    r = rank of chromosome (1 is best) 
    n = population size 

Figure 11 is a plot of probability of selection against rank for the value of q used here 

(0.08). 
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Figure 11. Probability of selection for each rank.  

 

In addition to the regular selection process described above, the fittest chromosome in 

each generation is also passed on, unmodified by crossover and mutation (although also 

eligible for selection for crossover and mutation), to the next generation. This practice is 

known as “elitism”, and is meant to preserve progress from generation to generation, and 

is well known to improve overall GA performance (Michalewicz, 1996; Mitchell, 1996).  

 

4.1.4 Crossover 
Three mechanisms of crossover were applied simultaneously: single point crossover 

(described above; 20 times per generation), arithmetic crossover (15 times per 

generation); and heuristic cross-over (15 times per generation).  

 

Arithmetic crossover produces two complimentary linear combinations of the parents 

(Houck, Joines, and Kay, 1995): 
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(1 )X rX r Y′ = + −  

(1 )Y r X rY′ = − +  
where: 

    X  and Y  are parent chromosomes 
    X ′  and Y ′  are child chromosomes 
    (0,1)r U= 19  

Note that r is generated each time a pair of chromosomes is crossed, and that r is the 

same for all genes in both chromosomes crossed.  

 

Heuristic crossover is based on interpolation, moving in the direction of the fitter 

chromosome (Houck, Joines, and Kay, 1995). If X  is fitter than Y  then (using the same 

notation),  

( )X X r X Y′ = + −  
Y X′ =  

If any gene in X ′  violates its allele limits, a new r is generated and a new child 

produced. This is repeated at most three times until either a new child is generated, or the 

parents are passed unmodified to the new population.  

 

4.1.5 Mutation 
Optimal chromosomes developed using this fitness function tend to have two properties 

in common. First, many gene values are exactly at the limits of the allele (i.e., 100% 

transmission or 0% transmission) in relatively fit chromosomes. Second, adjacent genes 

have nearly the same value (smoothness). Moreover, from a colorimetric perspective, the 

                                                 

19 A uniformly distributed random variable between 0 and 1. 
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portion of the visible spectrum at either extreme has very little effect on efficiency; thus, 

there is little selection pressure applied by these regions (i.e., the central portion of the 

visible spectrum exerts much more influence on fitness than either end). This suggests 

several methods of mutation specific to the spectrum optimization problem that might be 

expected to produce a substantial decrease in the number of generations required to 

converge to a good solution.   

 

For example, consider the filter in Figure 12. Because region A has very little influence 

on efficiency, there is not much pressure to either smooth out the genes, or move them 

toward a boundary. In region B, there is clearly a notch developing, but many generations 

may be required to smooth it out. Region C is near but not at the boundary, and, like 

region A, has little effect on fitness. The following three problem-specific mutation 

methods were designed to address these issues.  

 

Boundary chunk mutation (BCM) selects a random contiguous portion of the 

chromosome (up to 10% of the total length) and sets it to the one of the allele limits 

(either 1 or 0). This mutation was expected to be effective because many of the genes of 

fit solutions were at the maximum or minimum value (i.e., either 100% transmission, or 

0%). Moreover, because most of the genes for any color could be expected to be at 100% 

transmission, the selection of which boundary to mutate to was biased slightly: 65% of 

the time it went to 1, 35% of the time it went to 0. Figure 13 shows BCM applied to part 

of region A of the solution depicted in Figure 12. 
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Figure 12. A sub-optimal filter. Because region A has very little influence on efficiency, there is not much 
pressure to either smooth out the genes, or move them toward a boundary. In region B, there is clearly a 
notch developing, but many generations may be required to smooth it out. Region C is near but not at the 
boundary, and, like region A, has little effect on fitness. 
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Figure 13. BCM applied to part of region A (bold line). BCM selects a random contiguous portion of the 
chromosome (up to 10% of the total length) and sets it to the one of the allele limits (either 1 or 0).  
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Push mutation (PM) selects a random contiguous portion of the chromosome (up to 20% 

of the total length) and scales the genes from their current value towards either 1 or 0 by a 

randomly chosen fixed amount (up to 20%). Figure 14 shows PM applied to part of 

region C of the solution depicted in Figure 12. Note that this might be effectively applied 

to region B as well, to help shape the developing notch.  
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Figure 14. PM applied to part of region C (bold line). PM selects a random contiguous portion of the 
chromosome (up to 20% of the total length) and scales the genes from their current value towards either 1 
or 0 by a randomly chosen fixed amount (up to 20%). 

 

The smooth mutation (SM) selects a random contiguous portion of the chromosome (up 

to 20% of the total length) and smoothes it. Specifically, the value of each gene in the 

mutated portion is weighted by the value of its neighboring genes: 

1 1.2 .6 .2i i i ig g g g− += + +  

where g is a gene and i is the order of the gene in the chromosome. Figure 15 shows SM 

applied to part of region B of the solution depicted in Figure 12. 
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During each generation, the three types of problem specific mutation methods were 

applied five times each. 
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Figure 15. SM applied to part of region B (bold line). SM selects a random contiguous portion of the 
chromosome (up to 20% of the total length) and smoothes it by weighting it by the value of descent genes.  

 

4.2 Efficacy & Chromaticity Results 
Figure 16 presents the filters evolved by three typical runs of this technique (with stopping 

criterion of 1000 generations), one on each of the three spectra (MH, HPS, and 

incandescent), for the target chromaticity (x = 0.48; y = 0.32). This target chromaticity was 

selected to be about equidistant from the unfiltered spectra of the three lamps considered 

and achievable (albeit at low efficiency) by all three lamps. Also plotted are optimal filters 

produced for that color following MacAdam’s (1935a) method.  
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The incandescent and metal halide filters are simple notches, very similar to the optimal 

notches found by MacAdam’s (1935a) technique. The form of the HPS filter is quite 

different from the MacAdam optimal; however, the difference in efficiency between the two 

is less than 0.56%. This example illustrates two important features of genetic algorithms. 

First, the exact optimum is rarely found, although the difference is usually trivial (as it is 

here). Second, the GA approach is easily able to develop a variety of solutions20 that have 

different form, but similar performance, allowing an engineer to choose from these 

(essentially) Pareto-optimal solutions based on criteria not encoded in the GA (e.g., ease of 

manufacture).  

 

Table 2 gives the chromaticity coordinates, efficiency, and CRI of the filters plotted in 

Figure 16. Note that the CRI (which was not part of the fitness function) of the 

incandescent and MH spectra are reduced substantially by filtering.  

 

Table 2. Chromaticity coordinates and efficiency of the filtered spectra. 

 Unfiltered Filtered 
Lamp x y CRI x y CRI Efficiency 
Incandescent 0.418 0.397 100 0.479 0.321 57 0.650 
HPS 0.525 0.414 20 0.480 0.321 38 0.233 
MH 0.369 0.382 66 0.479 0.321 0 0.510 
 

                                                 

20 e.g., other runs for this problem have produced notches for the HPS lamp similar in form to the 
MacAdam optimal 
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Figure 16. Filter transmittance for the three spectra (for the given chromaticity coordinates). The 
incandescent and metal halide filters are very similar the optimal notches found by MacAdam's technique; 
while the form of the HPS filter is quite different from the MacAdam optimal, the difference in efficiency 
between the two is less than 0.56%. 

 

Figure 17 shows the progress of the fittest chromosomes through the chromaticity 

diagram for typical runs using each lamp spectra. The filled symbol shows the 

chromaticity coordinates of the unfiltered lamp. The line leading from each symbol is the 

chromaticity coordinate of the lamp filtered by the filter encoded in the best chromosome 
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each time a new best solution is generated. The inset figure in the lower left corner shows 

the CIE chromaticity coordinates plotted (not to the scale of the main figure) in the x-y 

plane. The box in the inset figure shows the area plotted in the main portion of the figure. 

About 260 filtered spectra are plotted for each lamp. Note that only approximately the 

first 20 are distinguishable outside the “blob” at (.48, .32).  

 

Figure 18 is a way to visualize the path of the population through the color and efficiency 

space. This figure plots efficiency against x and y chromaticity coordinates 

(individually), with each spectrum in a different subplot. The symbols represent the 

unfiltered chromaticity coordinates. The filled symbols represent the x chromaticity 

coordinate; the empty symbols represent the y chromaticity coordinate. The line leading 

from each symbol is the efficiency of the lamp filtered by the filter encoded in the best 

chromosome each time a new best solution is generated, plotted against the respective x 

or y chromaticity coordinate.  
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Figure 17. Path of the fittest chromosome through chromaticity diagram. The filled symbol shows the 
chromaticity coordinates of the unfiltered lamp. The line leading from each symbol is the chromaticity 
coordinate of the lamp filtered by the filter encoded in the best chromosome each time a new best solution 
is generated. About 260 filtered spectra are plotted for each lamp, but only about the first 20 are 
distinguishable outside the "blob" at (.48, .32). 

 

Figures 17 and 18 plot the path of the fittest chromosome through chromaticity and 

efficiency space over time. Early on, relatively large steps toward the correct color are 

made, as shown in the region of Figure 17 where the individual points are distinguishable 

and the region of relatively horizontal movement in Figure 18 (following the first big step 

from the unfiltered SPD). After the neighborhood of the target color is found, efficiency 

is optimized in many small steps (the predominantly vertical, “squiggly” portion of 

Figure 18, at the opposite end of the line from the symbol). The small horizontal 

movements in this portion of the line represent tradeoffs between color and efficiency 

(i.e., a small deviation from the ideal color for a small gain in efficiency). 
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Figure 18. Path of the fittest chromosome through the search space. Efficiency is plotted against x and y 
chromaticity coordinates, with each spectrum in a different subplot; the symbols represent the unfiltered 
chromaticity coordinates (filled is x, empty is y); the line leading from each symbol is the efficiency of the 
lamp filtered by the filter encoded in the best chromosome each time a new best solution is generated, 
plotted against the respective x or y chromaticity coordinate. 

 

The two portions of the path of the best chromosome through the chromaticity and 

efficiency space described above are a feature of the solution space (rather than a result 

of the way color and efficiency are scaled). It is easier to find the right color, because 

there are many different solutions to that portion of the problem. Meanwhile, it is quite 
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difficult to find the most efficient solution because there are very few (probably only one) 

“most efficient” solutions, and comparatively few solutions that are “very efficient”. It is 

a tribute to the power of genetic algorithms that they are able to find an efficient solution 

at all.  

4.2.1 The Pareto-Optimal Chromaticity-Efficiency Surface 
The Pareto-optimal front for chromaticity and efficiency is a surface, because 

chromaticity has two dimensions (x and y), and efficiency provides the third. It is 

possible to determine the Pareto-Optimal chromaticity-efficiency surface using the 

method outlined in this chapter. This can be compared to the limits derived by 

MacAdam’s (1935a) method, to determine how well the method outlined here performs.  

 

A regularly spaced series of points (Figure 19) on the chromaticity diagram was cycled 

through as the target chromaticity coordinates for separate runs of the algorithm (with 

stopping criterion of 500 generations) in order to determine the nature of the tradeoff 

between efficiency and chromaticity. 

 

Figures 20-22 are plots of the chromaticity-efficiency surface obtained using both 

methods21. The GA approach does a good job of defining the MacAdam limit of 

efficiency at any chromaticity, particularly where filtered efficiency is above 50% (which 

encompasses the area of likely interest for any industrial application). The GA performs 

less well at very low efficiencies; this is a relatively more difficult area to find the 

                                                 

21 These data are plotted in the more perceptually uniform CIE 1976 (u’,v’) chromaticity space in Appendix 
A. The differences between MacAdam’s limit and the results generated using the current method does not 
appear to be related to the nonuniformity of the 1931 CIE chromaticity space.  
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optimum filter in, so the stopping criterion (500 generations) was probably too restrictive 

for this region (i.e., if it had run longer, it would have performed better).  
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Figure 19. The points sampled for determining the chromaticity-efficiency surface. 
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Figure 20. Efficiency contours for the incandescent source. Results from GA approach (solid line) are 
compared to the macadam limit (dashed line). 
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Figure 21. Efficiency contours for the MH source. Results from GA approach (solid line) are compared to 
the macadam limit (dashed line). 
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Figure 22. Efficiency contours for the HPS source. Results from GA approach (solid line) are compared to 
the macadam limit (dashed line). 
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The shape of the chromaticity-efficiency surface is consistent with what one might expect 

from the SPDs of the three sources. All three sources are capable of being filtered at a 

high (90%) efficiency so as to move the chromaticity coordinates of the filtered SPD in 

the “more saturated yellow” direction (toward ~580 nm on the chromaticity diagram). 

Meanwhile, there is very little slack to make the filtered SPD “more blue” at high 

efficiency. Figure 23 is a plot of “chromatic efficacy”, the (normalized) amount of 

change in chromaticity when a small amount of energy is added at each wavelength (in 

turn) to a uniform (i.e., white) SPD, and the luminous efficacy at each wavelength (the Y 

tristimulus value). Note that wavelengths below 475 nm have a pronounced effect on 

chromaticity, but little effect on luminous efficacy: that is why moving in the yellow 

direction at high efficiency is possible, and moving in the blue direction is not.   

 

The area of the chromaticity diagram achievable at any level of efficiency by the HPS 

source is much smaller than the area achievable by the other two sources, due to the HPS 

lamp having most of its energy in a relatively small region of the visible spectrum.  
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Figure 23. Normalized luminous efficacy and chromatic efficacy. Chromatic efficacy is the (normalized) 
amount of change in chromaticity for an incremental amount of energy added at each wavelength. Note that 
wavelengths below 475 nm have a pronounced effect on chromaticity, but very little effect on luminous 
efficacy. 

 

4.3 Implications for Future Work 
The results presented in this chapter are worthwhile insofar as they demonstrate two 

things. First, that the GA approach can produce results that are similar in fitness space, 

but quite different in solution space (e.g., Figure 16). Second, that this approach can 

develop solutions at or quite near known optima for this kind of problem (Figures 20-22), 

which suggests that GAs might be a reasonable approach for the three objective 

(chromaticity, efficacy, and CRI) case, for which there is no general solution.   

 

However, this approach is quite inefficient, for two reasons. First, the chromosome 

encoding, while allowing very precise control (every 2 nm) over the location of changes 

in the filter transmittance, is quite long (for the same problem and level of precision, 

shorter chromosome encodings outperform longer representations; Michalewicz, 1996). 

Specialized mutation methods make up for this in part (e.g., by modifying blocks of 

genes), but a more compact representation is likely to be more efficient.  
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The second reason that this approach is inefficient is that one run only identifies a 

solution (or a couple of solutions) at a single chromaticity point. For applications like 

determining the Pareto-optimal front for chromaticity and efficiency, this approach is 

extremely inefficient, because many separate runs of the algorithm are required, and good 

building blocks of genetic material built up during one run are not shared in other runs 

(i.e., the GA is starting from scratch each run). Hence, an approach for developing 

solutions at many chromaticity points in parallel (and sharing good chunks of genetic 

material as these solutions are developed) is called for.  
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5. Main Results: Optimizing for Efficacy, Chromaticity, and CRI 
The development of gas discharge lamps is 

primarily concerned with the improvement of (a) the total 
light output, and (b) the colour quality of light.  
 This colour quality may be quantified using (i) the 
colour co-ordinates of the correlated colour temperature 
and (ii) the colour rendering indices.  

   - Koedam and Opstelten, 1971 

 

There are two paths light from an electric light source may take to the eye: either directly 

from the source (apparent color), or reflected from an object (evaluated using CRI). The 

method outlined in the previous chapter addresses only the chromaticity of light directly 

from the source. While this is important (white22 objects take on the hue of the 

illuminant), the degree to which an illuminant makes objects appear natural (e.g., 

compared to their appearance in daylight), that is, color rendering, is equally if not more 

important. As noted in the previous chapter (Table 2), the method described there (and 

MacAdam’s method) do not consider color rendering, and frequently result in solutions 

that render colors poorly. Thus, if one is to consider the optimization of lamp spectra, it is 

necessary to account for luminous efficacy, chromaticity, and color rendering.  

 

In the generic case of multiobjective optimization, one is interested in determining the 

whole of the Pareto-optimal front (e.g., the Pareto-optimal chromaticity-efficiency 

surface). However, in this specific case of spectrum optimization, the bulk of the Pareto-

optimal front is known a priori to be uninteresting. In particular, chromaticities far from 

the Planckian locus are of little interest (because they appear non-white); moreover, even 

                                                 

22 Characterized by high, uniform spectral reflectance over the visible range. 



 

 

 

58

within chromaticities on the Planckian locus, there are some points that are “more 

interesting” (principally, from a marketing perspective) than others (e.g., at color 

temperatures that match older lamp technologies). Similarly, for the most part CRI values 

below 50 (if that) are of little interest (because the color rendering below CRI 50 is so 

poor), and in practice, CRI differences below 5 units are ignored (so a solution at 87 CRI 

and a solution at 83 CRI are, from a CRI perspective, essentially equivalent). Thus, a 

method for specifying the location of solutions in objective space (i.e., CRI, efficacy, and 

chromaticity) would be valuable.  

5.1 Target Objectives Genetic Algorithm 
Here, a novel approach to multiobjective optimization, the target objectives genetic 

algorithm (TOGA), is introduced. TOGA is a non-Pareto, non-aggregating function 

approach to multiobjective optimization that borrows concepts from goal programming 

and Schaffer’s (1984, 1985) VEGA.  

 

Given k objectives, TOGA requires the researcher to provide a set of c target vectors, cT ,  

for k-1 objectives, where c is the number of optimal points the researcher wishes to find 

in one run of the GA. In the absence of domain knowledge to the contrary, taking all 

combinations of “interesting” points for each objective (considered separately) is the 

recommend method for developing cT . In addition, k-1 scaling factors, w, are required 

(which can typically be determined empirically). During each generation, the objective 

values for each chromosome in the population are evaluated once23, then the fitness 

                                                 

23 Note that this property is particularly important in cases where the fitness function is very costly to 
evaluate; e.g., finite element analysis.  
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“from the perspective” of each target vector is calculated based on the objective values 

using (for a maximization problem): 

2 2 2
1 1 2 1 2 2 1 ( 1) ( 1)( ) ( ( ) ) ( ( ) ) ... ( ( ) )c c c c

k k kF f x w f x T w f x T w f x T− −= − − − − − − −  
where: 
  cF  is the fitness from the perspective of target vector c 
  ( )kf x  is the objective value of objective k 
  ( 1)kw −  is a scaling factor for objective k 

  ( 1)
c
kT −  is the target value for objective k in target combination c 

 

Given cF , selection (with replacement) of a small, even number (e.g., 4, 6, or 8) of 

chromosomes is performed for each of c target combinations using a rank based 

procedure, with the probability of selecting the ith chromosome (when the chromosomes 

are sorted according to fitness), Pi according to: 

1(1 )
1 (1 )

r

i n

q qP
q

−−
=

− −
 

where: 

     q is the probability of selecting the fittest individual 
     r is the rank of chromosome (1 is best) 
     n is the population size 
 

Crossover is performed separately on each of the c subpopulations formed. It is 

recommended that q be kept quite low (certainly less than .1), to promote exchange of 

genetic material from different locations on the optimal front (i.e., so that universally 

good building blocks developed in one region can spread rapidly to other regions). 

However, because of the low likelihood of preserving the best chromosome from each 

target combination, elitism is a critical feature of TOGA. During each generation the 
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chromosome with the maximum cF  for each of the c combinations24 is passed on, 

unmodified, to the next generation. The method of mutation is not specified for TOGA 

(mutation should occur, but the particulars of implementation are not dictated by the 

approach). 

 

The selection and elitism strategies are the key element in TOGA. By selecting from the 

perspective of each cT , subpopulations specializing in performance at that particular 

point on the optimal front are developed. However, diversity is maintained by having 

multiple cT , and by elitism. Moreover, by sharing good genetic building blocks 

developed on different regions of the optimal front, substantial efficiency is gained when 

compared to individual goal programming runs, which have to start from scratch.  

 

TOGA has several advantages as an optimization method. First, TOGA is 

computationally very fast (i.e., the mechanics of the TOGA process do not require much 

computing power, particularly compared to Pareto based approaches). Second, TOGA 

can find points on a concave or convex Pareto front. Third, TOGA generates multiple 

optimal points during each run. However, TOGA also has a several limitations. First, 

TOGA is more efficient when the researcher has some domain knowledge and is able to 

select good combinations of objectives. Second, some trials are typically required to 

determine good scaling factors (although only k-1 scaling factors are needed). Finally, 

like goal programming, TOGA can results in points that are not on the Pareto-optimal 

                                                 

24 Note that this might be the same chromosome for different target combinations, particularly during early 
generations.  
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front. This is not a limitation per se, rather it is the answer at that particular cT , but for 

practical purposes this answer may represent wasted computation25.   

5.2 TOGA Implementation 
TOGA was implemented by defining target values for chromaticity and CRI, and leaving 

luminous efficacy unspecified. In particular, all combinations of five levels of CRI and 

seven levels of chromaticity on the blackbody locus (corresponding to levels of color 

temperature commonly encountered in the lighting industry worldwide) were combined 

(Table 3) to form the 35 target vectors, cT .  

 

TOGA addresses both of the issues for multiobjective optimization outlined in Section 

3.2: diversity is maintained by selecting for chromosomes near the cT , and selection 

pressure drives the population toward the Pareto-optimal front. Moreover, the selection 

method allows for crossover throughout the population (with greater likelihood of 

crossover between neighboring targets), so good “building blocks” of genetic material 

can spread rapidly through the population (which addresses one of the principal 

deficiencies of the method described in the previous chapter).   

                                                 

25 Note that when multiple runs are performed, non-Pareto-optimal cT  can be removed, or repositioned. 
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Table 3. Target values for CRI and chromaticity, with corresponding color temperature.  

Combination CRI CIE x CIE y 
Color 

Temperature 
1 50 0.468 0.412 2600 
2 50 0.437 0.404 3000 
3 50 0.405 0.391 3500 
4 50 0.380 0.377 4000 
5 50 0.361 0.364 4500 
6 50 0.345 0.352 5000 
7 50 0.322 0.332 6000 
8 60 0.468 0.412 2600 
9 60 0.437 0.404 3000 

10 60 0.405 0.391 3500 
11 60 0.380 0.377 4000 
12 60 0.361 0.364 4500 
13 60 0.345 0.352 5000 
14 60 0.322 0.332 6000 
15 70 0.468 0.412 2600 
16 70 0.437 0.404 3000 
17 70 0.405 0.391 3500 
18 70 0.380 0.377 4000 
19 70 0.361 0.364 4500 
20 70 0.345 0.352 5000 
21 70 0.322 0.332 6000 
22 80 0.468 0.412 2600 
23 80 0.437 0.404 3000 
24 80 0.405 0.391 3500 
25 80 0.380 0.377 4000 
26 80 0.361 0.364 4500 
27 80 0.345 0.352 5000 
28 80 0.322 0.332 6000 
29 90 0.468 0.412 2600 
30 90 0.437 0.404 3000 
31 90 0.405 0.391 3500 
32 90 0.380 0.377 4000 
33 90 0.361 0.364 4500 
34 90 0.345 0.352 5000 
35 90 0.322 0.332 6000 

 

 

Figure 24 shows the spectra employed in this chapter. Like the incandescent spectrum, 

the sulphur lamp spectrum is smooth and continuous, with energy throughout the visible 

portion of the spectrum. Figures 25 and 26 show the locations of the unfiltered spectra 

and target chromaticities on the 1931 CIE chromaticity diagram. 
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Figure 24. SPDs for incandescent, high pressure sodium, metal halide, and sulphur lamps. Note that like 
the incandescent SPD, the sulphur lamp SPD is smooth and continuous, with energy throughout the visible 
portion of the spectrum. 
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Figure 25. Positions of unfiltered spectra and target chromaticities on the CIE 1931 chromaticity diagram. 
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Figure 26. Boxed region of Figure 25. 

 

Custom Matlab code was written to implement TOGA. The population size was 175 (five 

chromosomes allocated for each of 35 cT ), and was randomly initialized. The algorithm 

was allowed to run for 500 generations before it was stopped.  

 

5.2.1 Chromosome Encoding 
A floating point representation was used for this problem, with allele values ranging from 

zero to one (although most were rescaled during decoding). Rather than encoding 

transmittance directly in the chromosome, a filter was constructed from four trapezoids 

(six and eight trapezoid encodings were examined, and found to produce filters similar in 

performance from four trapezoid encodings). While the use of trapezoids to construct the 

filter places some limitations on the shape of the filter, it is a good compromise between 
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computational tractability and flexibility: triangles would be easier to compute, but less 

flexible; a pentagon slightly more difficult to compute but more flexible; etc.  

 

Each trapezoid was encoded by five parameters (Figure 27): base start position (a; scaled 

to 399 to 701 nm), left side width (b; scaled to 0 to 50 nm), top width (c; scaled to 0 to 50 

nm), right side width (d; scaled to 0 to 50 nm), and height (e; a proportion, 0 to 1). 

Parameter ‘a’ determined where the leftmost edge of the trapezoid was; 1 nm on either 

side of the evaluated range (400 to 700 nm) was added to allow for trapezoids that did not 

affect the filter26. Parameters ‘b’ and ‘d’ were the width of the two sides; note that to 

produce right-angle notches, this width could be zero. Parameter ‘c’ was the width of the 

top of the trapezoid; a width of zero results in a triangle. Finally, parameter ‘e’ 

represented the height of the trapezoid; a height of zero meant no filtering at all, while a 

height of one meant 100% filtering (over the top of the trapezoid). The twenty parameters 

for all four trapezoids were concatenated to form the chromosome: 1 1 1 1 1 2 2 5 5...a b c d e a b d e .  

 

 
Figure 27. Trapezoid encoding. Parameter 'a' determined where the leftmost edge of the trapezoid was; 
parameters 'b' and 'd' were the width of the two sides (note that to produce notches, this width could be 
zero); parameter 'c' was the width of the top of the trapezoid; parameter 'e' represented the height of the 
trapezoid (note that a height of zero meant no filtering at all). 

 

To decode the chromosome (converting it to a filter), the sum of the depths of each of the 

four trapezoids was evaluated at 3 nm intervals from 400 to 700 nm, and subtracted from 

                                                 

26 This could also be accomplished by setting the height of the filter to zero.  
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a 100% transmittance filter (Figure 28). For example, the intermediate steps of decoding 

the chromosome: 

[0.13 0.78 0.22 0.88 0.33 0.51 0.20 0.48 0.47 0.50 … 
0.33 0.96 0.07 0.05 0.48 0.43 0.98 0.18 0.05 0.55] 

is presented in Figure 28. The top four sets of axes show the individual trapezoids.  The 

fifth axis shows the sum of the four trapezoids – note that where the sum is less than zero 

(dashed line), it is truncated. The bottom axis shows the final filter. Note that this method 

can produce anything from a fairly complex filter (Figure 28) to a simple notch.   

 



 

 

 

67

400 450 500 550 600 650 700

0

0.5

1

tr
ap

 1

wavelength

0

0.5

1

tr
ap

 2

0

0.5

1

tr
ap

 3

0

0.5

1

tr
ap

 4

0

0.2

0.4

0.6

0.8

1

su
m

 o
f t

ra
pe

zo
id

s

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

1

fin
al

 fi
lte

r

wavelength

 
Figure 28. Intermediate steps to decoding a chromosome. The top four sets of axes show the individual 
trapezoids; the fifth axis shows the sum of the four trapezoids.  Where the sum is less than zero (dashed 
line), it is truncated, resulting in the final filter shown in the bottom axis. 
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5.2.2 Evaluating Fitness 
The function, 

2
2

0

900
400

f CRI
cie

Y dfitness d
Y

= − −  

where fY  is the Y tristimulus value of the filtered SPD, 0Y  is the Y tristimulus value of 

the unfiltered SPD, cied  is the Euclidean distance from the target chromaticity 

coordinates (in the 1931 CIE system) to the chromaticity coordinates of the filtered SPD, 

and CRId  was the difference between the target CRI and the filtered CRI, was used to 

evaluate the fitness of solutions. The 0/fY Y  term is the relative efficiency of the filtered 

source (used here as a surrogate for luminous efficacy), which can range from 1 to 0. 

The cied  and CRId  terms are scaled such that they were nearly zero near the target 

(allowing the population some slack to search for more efficient solutions) and quite high 

away from the target, penalizing chromosomes far from the target chromaticity or CRI. 

The scaling of the distance terms was determined empirically. 

5.2.3 Selection and Crossover 
The fitness of each chromosome was calculated from the perspective of each cT . Then, 

for each cT , four chromosomes were selected (with replacement) for further crossover 

and mutation based on the rank-based method outlined in Section 4.1.3, with q set to 

0.05. Chromosomes were crossed-over in the order they were selected (i.e., odd 

numbered chromosomes were crossed with even numbered chromosomes). Two 

mechanisms of crossover (single point and arithmetic) were applied, one every other 

generation.  
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Note that this selection and crossover scheme allows genetic material from very different 

places in fitness space to be combined (albeit at low likelihood). Crossover with 

chromosomes that are relatively near in fitness space is much more likely to occur. These 

two events in combination allow relatively fit building blocks to propagate easily 

throughout the population.  

 

Elitism was also implemented, selecting the fittest chromosome from each cT  (for a total 

of five chromosomes selected for each cT ).  

5.2.4 Mutation 
Five different mutation methods were used; two general purpose, and three problem-

specific. The two general purpose (in the sense that these mutation methods were 

intended to promote diversity in the population, rather than address some specific feature 

of the problem) methods were “uniform mutation” and “normal mutation”. Uniform 

mutation sets the value of a randomly selected gene to a uniform random value, and was 

applied five times per generation. Normal mutation sets the value of a randomly selected 

gene to a normally distributed random value, and was applied 50 times per generation. 

The mean for normal mutation was zero and the standard deviation was: 

max

2.40.2(1 tanh( ))g
g

σ = −  

where g is the current generation, and gmax is the maximum number of generations 

(Figure 29). 



 

 

 

70

0 100 200 300 400 500
0

0.05

0.1

0.15

0.2

generation

σ

 
Figure 29. Standard deviation for normal mutation as a function of generation. 

 

The three problem specific mutation methods modified particular features of the problem 

(based on speculation on what might lead to a good solution), and were intended to insert 

into the population genetic material that would lead to fitter chromosomes. Boundary 

mutation set a randomly chosen gene to the allele limit (either 0 or 1), and was applied to 

genes representing the ‘e’ parameter (depth) of the trapezoid, 15 times per generation. 

This mutation method served two purposes, either removing entirely the effect of a 

trapezoid (when set to zero), or helped convert the trapezoid to a full depth notch (when 

set to one).  

 

Max mutation set a randomly chosen gene to the maximum allele value, and was applied 

to genes representing the ‘a’ parameter (start wavelength) of the trapezoid, 15 times per 

generation. This mutation method served to remove entirely the effect of a trapezoid, by 

pushing it beyond the evaluated region.  
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Zero mutation set a randomly chosen gene to the minimum allele value, and was applied 

to genes representing the ‘b’, ‘c’, and ‘d’ parameters, which correspond to first side 

width, top width, and second side width, respectively. In the case of parameter ‘c’, this 

mutation converts the trapezoid to a triangle. When affecting parameters ‘b’ or ‘d’, this 

mutation forms one side of the trapezoid into a right-angle notch. This mutation method 

was applied 15 times per generation per parameter.  

5.3 Efficacy, Chromaticity & CRI Results 
The main results are presented in two sections, one dealing with GA performance, and 

the other dealing with lighting. Results presented are for 150 separate runs for each of the 

four lamp spectra.  

5.3.1 GA Results 
For the method described here to be a good approach for determining the tradeoff 

between chromaticity, efficiency, and CRI for an arbitrary SPD, it is necessary that: 

• chromaticity error (relative to the cT ) be within acceptable limits 

• CRI error  (relative to the cT ) be within acceptable limits 

• the same (presumably global) optimum be found on most runs  

These issues are assessed in this section.  

 

Figure 30 is a plot of the distribution of chromaticity coordinate error 

( arg[ , ] [ , ]filtered t etx y x y− ) from 150 runs of the GA, for each cT  for the incandescent 

spectrum (results from the other spectra are presented in Appendix A). Each point 

represents error from an individual run.  The horizontal and vertical bell curves are 

normal probability density functions with height normalized and scaled to fit within the 
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axes, and with the same mean and variance as the x and y chromaticity error, 

respectively. The dashed line represents a three standard deviation MacAdam ellipse 

(MacAdam 1942; MacAdam, 1943; Brown, et al., 1956) for the target chromaticity. A 

one standard deviation MacAdam ellipse is the boundary for just noticeable difference 

(JND) in chromaticity under ideal viewing conditions (adjacent fields, unlimited 

observation time, photopic conditions, foveal viewing); the JND will be larger for less 

than ideal viewing conditions (Brown, 1952, 1957; Brown, and MacAdam, 1949; 

Narendran, et al., 2000;). A four standard deviation MacAdam ellipse is the ANSI 

standard tolerance for lamp color difference (ANSI, 1996), although major manufactures 

stay within a three standard deviation limit (OSI, 2002). The chromaticity coordinates of 

solutions developed using this method are quite close to the target chromaticity, almost 

all falling well within industry standards of color tolerance (Table 4).  

Table 4. Percentage of filtered spectrum chromaticity coordinates 
falling within MacAdam ellipses of different size.  

MacAdam Ellipse σ  
Spectrum 1 2 3 4 

Sulphur 32 95 100 100 
Incandescent 73 98 100 100 
High Pressure Sodium 76 95 98 99 
Metal Halide 22 75 96 99 
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Figure 30. Distribution of chromaticity coordinate error by color temperature and CRI, incandescent 
spectrum.   
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Figure 31 is a set of boxplots of CRI error ( argfiltered t etCRI CRI− ) for each cT . The box 

runs from the lower quartile (25th percentile) to the upper quartile (75th percentile), with a 

vertical line at the median. The “notch” at the median is a robust estimate of uncertainty 

in the median (analogous to the standard error of the mean). The whiskers (the lines 

extending from each end of the box) extend to 1.5 times the interquartile range (75th 

percentile minus the 25th percentile). If there is no data outside the whiskers, a dot is 

placed at the leftmost whisker; values beyond the ends of the whiskers (outliers) are 

plotted with a “+” symbol. The vertical dashed line represents zero error.  

 

Five units of CRI is just perceptibly different (IESNA 2000). The CRI error for the filters 

developed here are quite small (well with industry limits) for the overwhelming source 

and cT combinations, with the exception of the MH spectrum at color temperatures 

below 3500K. Overall, the CRI of solutions developed using this method are quite close 

to the target CRI, almost all falling well within industry standards of color tolerance 

(Table 5).  

Table 5. Percentage of filtered spectra with CRI within one to five units of the target CRI. 

Absolute CRI Error  
Spectrum 1 2 3 4 5 

Sulphur 70 97 100 100 100 
Incandescent 82 97 99 100 100 
High Pressure Sodium 85 97 99 100 100 
Metal Halide 52 81 91 96 98 
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Figure 31. Boxplots of CRI error by color temperature and CRI, for all spectra (S, sulphur; I, incandescent; 
H, high pressure sodium; M, metal halide) 
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Figure 32 is a set of Boxplots of variability in efficiency (efficiency for each run minus 

median efficiency) for each cT combination. The range of efficiency values resulting 

from this method (with the exception of the MH spectrum at low color temperatures and 

high CRI, discussed below) is quite small (Table 6). 

 

Table 6. Range of values encompassing the center 50% (i.e., the interquartile 
range), 90%, and 98% of the variability in efficiency.  

Spectrum 50% 90% 98% 
Sulphur  0.005   0.015  0.027  
Incandescent  0.004   0.013  0.029  
High Pressure Sodium  0.002   0.016  0.045  
Metal Halide  0.005   0.029  0.078  
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Figure 32. Boxplots of efficiency by color temperature and CRI, for all spectra (S, sulphur; I, incandescent; 
H, high pressure sodium; M, metal halide) 
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It was noted above that for the metal halide spectrum at low color temperature (below 

3500 K) and high CRI (90), this method tends to produce filters with comparatively high 

CRI error and comparatively high variability in efficiency. The reason for this is likely 

idiosyncratic to the distribution of energy in the MH spectrum, which has a lot of energy 

around 570 nm (23% between 550 and 590 nm). The filters for the MH spectrum have a 

notch centered at 570 nm, which is wider for lower color temperatures (Appendix A, 

Figure 41). This results in a pronounced tradeoff between CRI and efficiency (small 

changes in CRI require comparatively large changes in efficiency). For example, Figure 

33 is a plot of the relationship between CRI and efficiency at two different color 

temperatures; at the high color temperature, there is almost no relationship between CRI 

and efficiency (r2 = 0.03), while at the lower color temperature, there is a clear 

relationship  (r2 = 0.63). Note that this is not a result of the way the fitness function is 

scaled – the filtered sulphur lamp spectrum has efficiency comparable to the filtered MH 

spectrum (Figure 34), but exhibits no significant correlation between CRI and efficiency.  

 

Moving the MH spectrum to low color temperatures at high CRI is a comparatively 

difficult problem and suggests that if this were of particular interest, the GA parameters 

should be adjusted (e.g., increase the maximum generations, or adjust the scaling 

parameters for the cT  penalties) to compensate (note that the coefficients were tuned, by 

hand, to produce good performance overall, and not for individual spectra). However, for 

this application, it is not critical. 



 

 

 

79

80 82 84 86 88 90 92
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

CRI

ef
fic

ie
nc

y

2600 K
6000 K

 
Figure 33. Relationship between efficiency and CRI at two different color temperatures. At the high color 
temperature, there is almost no relationship between CRI and efficiency (r2 = 0.03), while at the lower 
color temperature, there is a clear relationship  (r2 = 0.63). 

 

The results presented in this section suggest that the technique outlined here is a good 

approach for determining the tradeoff between chromaticity, CRI, and efficiency in 

filtered spectra. In particular, they show that this method results in solutions that are near 

the target chromaticity and CRI (both are well within industry tolerances), and that the 

variability in efficiency of the filtered spectra is small.  

5.3.2 Lighting Results 
Figure 34 is a series of plots of the tradeoff between chromaticity, CRI, and luminous 

efficacy (represented by the median efficiency across all runs) in filtered spectra. Note 

that not all of these points are Pareto-optimal: within each set of axes, only points to the 

right of the highest point are Pareto-optimal. For example, for the sulphur lamp at 3500 

K, the first point (CRI 50) is not Pareto-optimal – it is dominated by the CRI 60 and 70 
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solutions (e.g., all other things being equal, why make a lamp at CRI 50 when one could 

make a lamp at CRI 70 with the same luminous efficacy).  

 

This figure shows that there is a clear interaction between CRI and chromaticity with 

respect to efficiency (i.e., the effect of CRI on maximum attainable level of efficiency is 

dependant on the chromaticity, which was expected). For the incandescent and HPS 

spectra, over the range of both variables examined (i.e., the range of interest to industry), 

changes in chromaticity have a greater effect on maximum attainable efficiency than 

changes in CRI; for the sulphur and MH spectra, the effect of CRI and chromaticity is 

comparable.  
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Figure 34. Median efficiency of filtered spectra for the four different lamp types. For each set of axes, the 
ordinate is efficiency and the abscissa is CRI.   
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Figure 35 is the same data, plotted a way that makes picking out Pareto-optimal points 

less easy, but, from the perspective of a lighting engineer, is more useful. The abscissa is 

color temperature, the ordinate is efficiency, and each solid curve is for a different CRI. 

Also plotted is the maximum efficiency (regardless of CRI) at each color temperature 

derived using MacAdam’s (1935a) method. Note that (as discussed in the previous 

section) because the solutions found by the GA have some leeway in chromaticity, the 

efficiency of some the solutions found with the GA appear to be slightly greater than 

MacAdam’s limit at some points (the GA “cheats” slightly, taking slight gains in 

efficiency for small error in chromaticity).  

 

There are several interesting features highlighted by Figure 35. First, the maximum 

efficiency is quite close to the MacAdam limit for each chromaticity (again, with the 

exception of the metal halide lamp at low color temperatures).  This is further evidence 

that the GA approach is finding true global optima: at some CRI, the efficiency for just 

chromaticity and for chromaticity and CRI optimized must be the same. Second, as color 

temperature is increased (i.e., the light becomes “more blue”) the effect of CRI on 

maximum efficiency is decreased. The reason for this is that it is necessary (for these 

spectra) to remove a relatively broad band of energy in the yellow-red region of the 

spectrum to increase the color temperature; this permits a wider range of options for 

balancing CRI at about the same efficiency.  
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Figure 35. Tradeoff between efficiency and CRI at each chromaticity. Note that the maximum efficiency is 
quite close to the MacAdam limit for each chromaticity (except metal halide at low color temperatures). 
This is additional evidence that the GA approach is finding true global optima: at some CRI, the efficiency 
for just chromaticity and for chromaticity and CRI optimized must be the same. Also, as color temperature 
is increased the effect of CRI on maximum efficiency is decreased. 
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Figure 36 is a plot of the 50th, 25th and 75th percentiles of transmittance across all filters at 

each cT  for the incandescent spectrum (results from the other spectra are presented in 

Appendix A). Naturally, the filters evolved are different for the different spectra, but they 

do share some commonalities. For target x-chromaticities greater than the unfiltered lamp 

x-chromaticity (see Figures 25 and 26), some wavelengths shorter than 520 nm are 

invariably reduced; conversely, for target x-chromaticities less than the unfiltered lamp x-

chromaticity, some wavelengths greater than 570 are attenuated. The incandescent 

spectrum (Figure 36) for 3000 K and 3500 K at CRI of 90 provides a good example of 

this: for 3500 K (which has a lower x chromaticity coordinate than the unfiltered 

spectrum), there is a substantial notch at 670 nm; for 3000 K (which has a higher x 

chromaticity coordinate than the unfiltered spectrum), there is a substantial notch at 490 

nm.  

 

In cases where a cT is not on the Pareto-optimal front, the GA is forced to decrease color 

rendering at a minimum loss of efficiency, while holding chromaticity constant. For the 

smooth, continuous spectra (incandescent and sulphur), two widely separated notches 

appear to be the most efficient way to do this. The incandescent spectrum (Figure 36) at 

2600 K is a good example of this. The CRIs of 90 and 80 are on the Pareto-optimal front 

(Figure 34); as CRI decreases below this, the short wavelength notch widens slightly, and 

a long wavelength notch grows substantially. For the sulphur and incandescent spectra, 

all Pareto-optimal filters have only one connected region of decreased transmittance. It is 
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difficult to make generalizations about the MH and HPS spectra, as the filters developed 

are substantially influenced by the idiosyncratic distribution of energy.  
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Figure 36. Median (solid line), 25th percentile (dashed line), and 75th percentile (dotted line) of the 
transmittance (at each wavelength sampled) of the filter designed for the incandescent spectrum, at each cT . 
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6. Conclusions and Future Work 
While high luminous efficacy is an important property for new electric light source 

technologies, good colorimetric properties are required to be truly successful in the 

lighting marketplace. There are cases, e.g., the sulphur lamp, where the efficacy of a new 

electric light source technology is very high but the colorimetric properties are unsuitable 

for many applications. In cases like this, an effective strategy might be to filter the light 

source such that its colorimetric properties improve, but its efficacy remains competitive. 

The goal of this work was to develop a method to determine the tradeoff between 

luminous efficacy, apparent color, and color rendering index for filtered spectra. 

 

By adopting a definition of photopic spectral luminous efficiency, the CIE defined the 

maximum attainable luminous efficacy (regardless of apparent color or CRI properties) 

for any lamp in 1924 (Wyszecki and Stiles, 1982). MacAdam (1935a, 1935b) determined 

how to filter an arbitrary SPD such that it achieves maximum efficiency for any apparent 

color, but did not account for CRI. Several studies27 during the 1970s employ a variety of 

techniques to examine the relationship between efficacy, chromaticity, and CRI for line 

and band spectra. Thus, a technique for the simultaneous optimization of chromaticity, 

CRI, and luminous efficacy in filtered light sources with broadband spectra is a natural 

step in the evolution of lighting research.  

 

                                                 

27 Koedam and Opstelten, 1971; Koedam, Opstelten, and Radielovic, 1972; Thornton, 1971; Einhorn and 
Einhorn, 1967; Walter, 1971; Haft and Thornton, 1972; Opstelten, Radielovic, and Verstegen, 1975; 
Walter, 1978 
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A GA approach to spectrum optimization for chromaticity and efficacy only was 

undertaken principally as a proof of concept, as MacAdam’s work (1935a, 1935b) offers 

a covenant benchmark for comparison. The results produced using this method 

demonstrate two things. First, that the GA approach can produce filters that exhibit 

performance quite close to the optimal, but are quite different in form (e.g., Figure 16) 

from the (deterministically generated) optimum filter; this may have application, e.g., to 

providing alternatives for manufacturing28. Second, that the GA approach can develop 

solutions at or quite near known optima for this kind of problem (Figures 20-22), which 

suggests that GAs might reasonably be employed to solve the three objective 

(chromaticity, efficacy, and CRI) spectrum optimization problem, for which there is no 

general solution.   

 

However, from a computational perspective, this approach is quite inefficient, insofar as 

during one run only one solution at a single chromaticity point is identified. Thus, for 

applications like determining the Pareto-optimal front for chromaticity and efficiency, 

which would require many separate runs of the algorithm, this approach is extremely 

inefficient, because good components of solutions (“building blocks”) are not shared 

across the populations during separate runs, requiring the GA to reinvent the wheel each 

time. This suggested that an approach for developing solutions at many chromaticity 

points in parallel (and sharing good chunks of genetic material as these solutions are 

developed) was called for, which led to a novel approach to multiobjective optimization, 

the target objectives genetic algorithm (TOGA).  
                                                 

28 Although if this were the goal, a slightly different approach would be called for, as this approach is not 
designed to insure variety.  
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TOGA is a non-Pareto, non-aggregating function approach to multiobjective optimization 

similar in concept to both goal programming and Schaffer’s (1984, 1985) VEGA. TOGA 

was used to evolve 150 filters for each of four different lamps at 35 combinations of 

target chromaticity and CRI ( cT ). The properties of the filtered spectra were examined to 

assess the suitability of TOGA as a spectrum optimization procedure. The deviations 

from the target chromaticity and CRI were small (particularly when considering one set 

of coefficients was used for all spectra), and well within the limits of error commonly 

accepted by the lighting industry. The variability in efficiency of the filtered light sources 

was shown to be quite low, suggesting that the use of TOGA for optimizing filtered lamp 

spectra is a reliable technique.  

 

TOGA has several advantages as an optimization method. First, the mechanics of the 

TOGA process do not require much computing power, particularly when compared to 

Pareto based approaches. TOGA takes advantage of a priori knowledge of the objective 

space to efficiently evolve solutions. By knowing where to search (for the example 

presented here, in chromaticity and CRI space), and driving the population toward these 

points, efficiency at these points of interest can be effectively maximized. The use of 

disparate target points for subpopulation formation insures diversity in the population 

overall, allows TOGA to generate multiple optimal points during each run, and allows 

these points to be generated on either a concave or convex Pareto front. Moreover, 

because TOGA shares good building blocks developed during a run throughout a 

population , substantial computing time is saved when compared to individual runs of an 
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aggregating GA approach. For example, if the approach employed in Chapter 4 (i.e., 

individual runs for each target combination) were employed to examine the target values 

listed in Table 3, 875,000 chromosomes would have to be evaluated29; TOGA can 

generate the same results in 87,500 chromosome evaluations30 (note that this argument is 

independent of chromosome encoding for a fixed number of generations).  

 

However, TOGA also has a several limitations. TOGA is most efficient when the 

researcher has some domain knowledge and is able to select good combinations of 

objectives, and the resulting solutions (as with goal programming) may not be Pareto-

optimal, depending on the target points chosen, but are optimal solutions at that particular 

combination of objectives. Another limitation is that some experimentation is typically 

required to determine good scaling factors for the objectives. 

 

Finally, it is important to note that while TOGA was employed to solve a lighting 

problem here, it is in principal a general purpose methodology, and might be used to 

solve any multiobjective optimization problem.  

6.1 Practical Application of this Method 
The core problem in this dissertation was inspired by a real-world engineering problem. 

The sulphur lamp was developed in the late 1980s, and was commercialized during the 

early to mid 1990s. The sulphur lamp has a very high luminous efficacy (around 100 

lm/W), a color rendering index of 78, and a greenish-white apparent color. The sulphur 

lamp was found to be a good source for industrial applications (e.g., Eklund and Boyce, 
                                                 

29 35 runs * 50 chromosomes/run * 500 generations 
30 1 run * 175 chromosomes * 500 generations 
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1997a, 1997b, 1997c; Richman, Heerwagen, and Hollomon, 1998), and for lighting 

public spaces where color is not important (e.g., subway platforms; Boyce and Eklund, 

1997). However, the apparent color of the sulphur lamp limited its application, and the 

company manufacturing it ultimately withdrew it from the market while it sought ways to 

produce better apparent color (through filtering and other means).  

 

The method outlined in this dissertation shows that the sulphur lamp is capable of being 

filtered to a color temperature of 4000 K or 4500 K, at a CRI of 70 or 80 (respectively), 

at a luminous efficacy of around 80 lm/W. Given the many other desirable properties 

(high efficacy, very long lamp life, stable apparent color when dimmed, stable luminous 

efficacy when dimmed, small size, stable color over the life of the lamp, etc.) of the 

sulphur lamp technology, such filtered lamps would find many applications where 

colorimetric properties are important. For example, the filtered sulphur lamp described 

above would probably compete well (depending on price) with metal halide lamps, which 

have similar chromaticity and luminous efficacy, but lower CRI, shorter lamp life, poor 

luminous efficacy when dimmed, and unstable color over the life of the lamp.  

 

As other light source technologies are developed (particularly broad spectrum sources) 

with undesirable colorimetric properties (e.g., white light emitting diodes), this 

methodology can be applied to determine how the lamp might be filtered to result in a 

more marketable lamp. The most efficient way to do this is in two stages. The first stage 

is to use MacAdam’s (1935a) method (which is very fast) to test the variety of spectra 

that can typically be produced using the novel lamp technology (e.g., by varying the 
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physical parameters of the lamp, such as pressure, chemical composition, temperature, 

etc.). This will establish an absolute upper bound for filtered efficacy, and can show, at 

minimal computational cost, what combination of physical parameters might be 

competitive when filtered (note that it might be practical to manufacture two versions of a 

lamp, one meant to be used unfiltered for industrial applications, and the other to be 

filtered for non-industrial applications). However, good apparent color and high 

efficiency are not enough to be a marketable light source; it must also have good color 

rendering. Therefore, having identified promising spectra during the first stage, the 

second stage is to use the method described in this dissertation to determine the tradeoff 

between CRI, efficacy, and chromaticity. Given these results and other known properties 

of the lamp (e.g., source life, source size, stability and efficacy when dimmed, etc.) the 

marketability of the filtered lamp in comparison to other currently used light sources can 

be assessed.  

6.2 Future Work 
There are several opportunities for future work. It would be interesting to assess the 

performance of TOGA on other multiobjective optimization problems, and to compare its 

performance on these problems to other multiobjective optimization methods.  

 

An interesting approach would be to hybridize the TOGA method with traditional 

optimization methods – the GA would be used to get close to the global optimum 

(avoiding local optima) and the traditional optimization method (e.g., the Nelder-Mead 

simplex method; Nelder and Mead, 1965) could be used as a starting point to find the 

exact optimum. Goel and Deb (2001) tested a similar approach, and found that, “…hybrid 
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methods are candidates of being a good and robust algorithm for solving the real-world 

multiobjective optimization problems.” [sic]. 

 

An interesting extension of this method would be to use the eight individual values of the 

CIE Special Color Rendering Index, Ri, as individual objectives. For this implementation, 

it would make more sense to treat Ri as thresholds rather than targets. This would 

overcome one common criticism of the general CRI, that occasionally one reference 

color will be significantly skewed but the overall CRI will remain high (which may be 

the case, given the shape of some of the filters developed using TOGA). The addition of 

this constraint would add non-trivial value for the lighting industry.   

 

There are numerous other areas where the techniques outlined here might be applied. For 

example, rather than luminous efficacy, many safety related applications (e.g., signal 

lights) are concerned with maximizing conspicuity. Researchers interested in roadway 

lighting might be interested in optimizing lamps for both foveal and off-axis sensitivity 

(e.g., determining the tradeoff between photopic luminous efficacy and some measure of 

mesopic luminous efficacy).  The chromosome encoding and related specialized mutation 

methods outlined in Chapter 4 might be easily adapted to electronic filtering applications.  
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Appendix A: Additional Figures 
Several additional figures are presented for completeness in this appendix.  

 

Figures 37-39 are plots of the distribution of chromaticity coordinate error 

( arg[ , ] [ , ]filtered t etx y x y− ) from 150 runs of the GA, for each cT  for the sulphur lamp, high 

pressure sodium, and metal halide spectra, respectively.  Each point represents error from 

an individual run.  The horizontal and vertical bell curves are normal probability density 

functions with height normalized and scaled to fit within the axes, and with the same 

mean and variance as the x and y chromaticity error, respectively. The dashed line 

represents a three standard deviation MacAdam ellipse (MacAdam 1942; MacAdam, 

1943; Brown, et al., 1956) for the target chromaticity. A one standard deviation 

MacAdam ellipse is the boundary for just noticeable difference (JND) in chromaticity 

under ideal viewing conditions (adjacent fields, unlimited observation time, photopic 

conditions, foveal viewing); the JND will be larger for less than ideal viewing conditions 

(Narendran, et al., 2000; Brown, 1952, 1957; Brown, and MacAdam, 1949). A four 

standard deviation MacAdam ellipse is the ANSI standard tolerance for lamp color 

difference (ANSI, 1996), although major manufactures stay within a three standard 

deviation limit (OSI, 2002).  

 

Figures 40-42 are plots of the 50th, 25th and 75th percentiles of transmittance across all 

filters at each cT  for the sulphur lamp, high pressure sodium, and metal halide spectra, 

respectively. 
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Figure 37. Distribution of chromaticity coordinate error by color temperature and CRI, sulphur lamp 
spectrum. 
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Figure 38. Distribution of chromaticity coordinate error by color temperature and CRI, HPS spectrum. 
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Figure 39. Distribution of chromaticity coordinate error by color temperature and CRI, MH spectrum. 
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Figure 40. Median (solid line), 25th percentile (dashed line), and 75th percentile (dotted line) of the 
transmittance (at each wavelength sampled) of the filter designed for the sulphur lamp spectrum, at each cT . 
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Figure 41. Median (solid line), 25th percentile (dashed line), and 75th percentile (dotted line) of the 
transmittance (at each wavelength sampled) of the filter designed for the MH spectrum, at each cT . 
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Figure 42. Median (solid line), 25th percentile (dashed line), and 75th percentile (dotted line) of the 
transmittance (at each wavelength sampled) of the filter designed for the HPS spectrum, at each cT . 
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Figures 43-45 are the same data shown in Figures 20-22, plotted in the perceptually 

uniform CIE 1976 (u’,v’) color space. Note that the difference between MacAdam’s limit 

and the results generated using GAs does not appear to be an artifact of the perceptual 

nonuniformity of the 1931 CIE (x,y) chromaticity system.   
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Figure 43. Efficiency contours for the incandescent source plotted in the CIE 1976 (u’,v’) coordinate 
system. Results from GA approach (solid line) are compared to the macadam limit (dashed line). 
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Figure 44. Efficiency contours for the MH source plotted in the CIE 1976 (u’,v’) coordinate system. 

Results from GA approach (solid line) are compared to the macadam limit (dashed line). 
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Figure 45. Efficiency contours for the HPS source plotted in the CIE 1976 (u’,v’) coordinate system. 

Results from GA approach (solid line) are compared to the macadam limit (dashed line). 




