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Abstract
Empirical modelling in high dimensional
spaces is usually preceded by a feature
selection stage. Irrelevant or noisy features
unnecessarily increase the complexity of the
problem and can degrade modelling
performance. Here, multiobjective genetic
algorithms are proposed as effective means of
evolving a diverse population of alternative
feature sets with various accuracy/complexity
trade-offs. They are shown to be particularly
successful in neurofuzzy modelling, in
conjunction with a method for performing fast
fitness evaluation. The major contributions of
this paper are in the use of a specific type of
multiobjective genetic algorithm, based on the
concept of dominance, for feature selection;
and the combination of fast fitness evaluation
of neurofuzzy models with a genetic
algorithm. The effectiveness of the proposed
approach is demonstrated on two high-
dimensional regression problems.

1  Introduction

Feature or subset selection is a challenging
and crucial stage of many empirical modelling
tasks. Its solution is neither trivial, nor
unique. The set of optimal features can be
different for different hypothesis spaces.
Therefore, optimality of a feature set should
only be defined in conjunction with the
particular choices made for the admissible
families of modelling functions and the
learning algorithm employed [12]. This
implies that it is inappropriate to evaluate the
usefulness of an input feature or variable on a
linear model, for example, and then perform
the final modelling with a non-linear model.
Even for a fixed family of admissible
functions, optimal feature selection can only
be guaranteed by exhaustive search. This is
clearly infeasible when the problem involves
large numbers of features.

It is also the case that relevant features may be
excluded from the subset of optimal features,
as other features encode the same information.
In addition, a feature that carries no
independent information can become of

critical importance when combined together
with other features. This fact is overlooked
when feature selection is based on correlation
tests or on information measures such as
mutual information, between the potential
predictors and the output variable. Such
interdependencies between features can also
become confounding factors for many feature
selection techniques.

Methods based on generating a single
solution, such as the popular forward stepwise
approach, can fail to select features which do
poorly alone but offer valuable information
together [1]. Approaches that maintain a
population of solutions, such as genetic
algorithms (GAs), are more likely to speedily
perform efficient searches in high dimensional
spaces, with strong interdependencies among
the features [18]. A feature subset is
represented as a bit-string, with the setting of
each bit indicating whether the corresponding
feature is used, or not. Yet, even for single
objective problems, GAs can prematurely
converge to sub-optimal solutions. This can be
due to the existence of super-fit individuals,
which dominate the entire population at an
early stage. Many modifications of the basic
GA have been proposed and implemented,
which aim at balancing the need for
maintaining a diverse population, while
keeping a desirable level of selective pressure
throughout the evolution process [6, 8]. GAs
have been used in the past for feature
selection, where the fitness of each individual
solution is evaluated with different regression
methods, including partial least squares (e.g.
[13]), principal components regression (e.g.
[7]) and neural networks (e.g. [15]). However,
in none of the previous GA approaches had
the feature selection problem been treated by
addressing simultaneously but also
independently both optimisation issues
involved, i.e. minimisation of the number of
selected features, and maximisation of the
achieved performance.

This work proposes the use of multiobjective
GAs for feature selection. In addition, the
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applicability of such an approach in
neurofuzzy modelling is shown. The key
features of the developed methodology are its
computational simplicity and its effectiveness
on real world problems of considerable
dimensionality. Since the subset selection
problem can become rather trivial for small
input dimensions, two test problems of
medium and large dimension are chosen. The
first is a standard benchmark problem, that of
predicting the hourly house consumption of
electrical energy, based on the date, time of
day, outside temperature and air humidity,
solar radiation and wind speed. It is taken
from “The Great Energy Prediction Shootout –
the first building data analysis and prediction
problem"” a contest organised in 1993 for the
ASHRAE Meeting in Denver, Colorado, USA.
The data is employed in exactly the same form
as in the PROBEN1 benchmarking problems
database [16]. The second, larger data set
contains vibration features for diagnosing
faults in rotating machinery [11].

The structure of the paper is as follows. The
next section introduces our multiobjective GA
approach to feature selection. In Section 3 a
description of the neurofuzzy models
employed is given, including the approach
taken for fast fitness evaluation. Section 4
demonstrates the effectiveness of our feature
selection method in neurofuzzy modelling
tasks on real world problems, followed by a
conclusion, in Section 5.

2  Multiobjective Genetic Algorithm
Feature Selection

It is frequently useful to select not just a single
feature subset, but a range of subsets with
different trade-offs between performance and
complexity (i.e. we may tolerate lower
performance in a model that also requires
fewer features). Since the GA is population
based, it seems natural to look for a method
that produces a diverse range of such feature
sets in the final population. This also helps to
mitigate the problem of premature
convergence, to which GAs are prone. We
therefore use a multiobjective GA, where there
are two objectives: to minimise the number of
features in the subset, and to maximise
modelling performance. A common approach
for a multiobjective GA is to aggregate the
different objectives by introducing a single,
composite objective function [19]. The main
drawback of such an approach is that it makes
it very difficult to explore different
possibilities of trade-offs between model
accuracy and complexity. Alternatively,
multiple runs can be performed in order to
optimise each objective separately, while
keeping the other one at a desirable level. This

will inevitably involve increased
computational costs. Other multiobjective
approaches include Shaffer’s VEGA (Vector
Evaluated Genetic Algorithm) [17], which
develops different sub-populations, optimising
each objective separately and the overall
population at each generation is being formed
by merging and shuffling the sub-populations.
However, this method produces individuals
that perform well for each objective separately,
while no consideration of trade-offs is taken.

A more promising approach for performing
feature selection is the multiobjective GAs
aimed at producing Pareto optimal solutions
[9, 5]. The key concept here is dominance – a
solution is dominant over another only if it
has superior performance in all criteria. A
solution is said to be Pareto optimal if it
cannot be dominated by any other solution
available in the search space. The use of a
multiple criteria algorithm based on the
concept of dominance can maintain
population diversity, in order to allow the
algorithm to discover a range of feature sets
with different performance versus complexity
trade-offs. However, the success of a Pareto
Optimal GA depends largely on its ability to
maintain diversity, so that there are members
of the population in the vicinity of various
Pareto optimal solutions. Usually, this is
achieved by employing niching techniques
such as fitness sharing [6]. The multiobjective
GA employed in this work can be described as
a niched Pareto Optimal GA with random
sampling tournament selection. The algorithm
uses a specialised tournament selection
approach, based on the concept of dominance
[9]. The selection procedure is as follows:

1. Individuals are randomly selected from the
population to form a dominance tournament
group.
2. A dominance tournament sampling set is
formed by randomly selecting individuals
from the population.
3. Each individual in the tournament group is
checked for domination by the dominance
sampling group (i.e. if dominated by at least
one individual).
4. If all but one of the individuals in the
tournament group are dominated by the
dominance tournament sampling group, the
non dominated one is copied and included in
the mating pool.
5. If all individuals in the tournament group
are dominated, or if at least two of them are
non-dominated, the winner which best seems
to maintain diversity is chosen by selecting the
individual with the smallest niche count. The
niche count for each individual is calculated
by following a typical sharing technique:
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where im  is the niche count of the i-th
individual in the tournament group, s is
calculated by the Hamming distances ijd  of
the above individual with each of the N
individuals already present in the mating pool
and sσ  is the Hamming distance threshold,
below which two individuals are considered
similar enough to affect the niche count.
6. If the mating pool is full end tournament
selection; otherwise go back to step 1.

Using some simple bitwise functions, Horn et.
al. [9] reported that this dominance sampling
tournament selection was superior to a simple
dominance tournament where the winner was
chosen by checking the dominance among the
members of the tournament group. Using
Horn’s approach, the domination pressure can
be controlled by appropriate choice of the size
of the dominance tournament sampling set.

3  Fuzzy Models and Fitness
Evaluation

A major computational cost when employing
GAs for subset selection is related to the
evaluation of the fitness of its individual. In
most cases for each set of input variables a
new model has to be built, thus the
computational cost of the genetic search is
increased considerably by the cost of building
each new model. Depending on the
complexity of the modelling problem, this
increase can make the whole procedure
computationally prohibitive. Adopting a fuzzy
systems modelling approach allows the use of
a fast fitness evaluation procedure, which
together with the use of a multiobjective GA
result in a computationally very efficient
approach for feature selection.

In many engineering problem domains, fuzzy
set methods offer an attractive modelling
approach [14]. Fuzzy systems can naturally
process both numerical data and linguistic
information. Integrated hybrid fuzzy-neural
representations or inherently fuzzy logic
models equipped with neural network-like
learning capabilities are powerful adaptive
modelling tools, which combine the individual
merits of both fuzzy logic systems and neural
networks. However, building fuzzy models
from data can be problematic in high
dimensional spaces. In such cases, feature
selection is of critical importance. Despite the

weakness of many fuzzy modelling approaches
in high dimensional input spaces, the problem
of feature selection for fuzzy modelling has
not yet attracted enough attention.

When building neurofuzzy systems for a non-
trivial problem, there is usually a trade-off
between model interpretability and
performance. This is reflected to the two
different approaches currently available in
neurofuzzy computing. The first one is
focused on building functional fuzzy models.
These are weighted local models. The second
approach aims to build fully transparent fuzzy
systems, having fuzzy output sets as
consequent parts of the fuzzy rules. The
former can offer better approximations, but as
the dimension of the problem increases, the
overall system transparency is increasingly
sacrificed. The latter preserves model
interpretability but the complexity is then
transferred to the size of the fuzzy rule base.
Here the focus is on functional fuzzy models
and, in particular, on fuzzy models having
zero order or first order polynomials as
consequent parts. These are also known as
Adaptive Network-Based Fuzzy Inference
Systems (ANFIS) [10].

The input output mapping performed by an
ANFIS model is:
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where L is the number of the fuzzy rules,
)( iA x

ij
µ  is the degree (membership value) to

which the input ix  satisfies the premise part

of the j-th rule, n is the dimension of the input
vector, y is the network output and ( )xjf  is

the consequent function of the j-th rule. Here a
method for constructing ANFIS models based
on cluster estimation out of data is employed
[2]. A particularly interesting charactersitic of
such models is that it is straightforward to
study the effect of removing an input, by
simply removing all the antecedent clauses in
Equation (3), which are associated with it.
Following such an approach Chiu [3]
developed a backwards elimination procedure
to perform input selection. The basic idea is to
build an initial 0-order ANFIS model (i.e. a
model with singleton consequent parts) and
study the effect of input removals on that. The
premise parts of the initial ANFIS model are
identified by cluster estimation, whereas the
optimal consequent parts for the current
premise parameters are optimised using linear
least squares. Fine tuning of both the premise
and consequent parameters is performed by a
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gradient descent algorithm. Usually, a small
number of iterations are needed, since the
initial model is already a fairly good one. It is
argued that as long as the initial fuzzy model
is not overfitting the data, such an evaluation
is a reliable way of estimating the influence of
each variable on the output [3].

This paper extends Chiu's method by using the
multiobjective GA described in the previous
section, to search for Pareto-optimal subsets of
inputs. The GA approach taken here has all
the benefits of a population-based approach,
i.e better chance to avoid convergence in a
suboptimal solution, while providing a series
of good solutions at different complexity
levels, instead of a single solution. In the next
section, the  niched Pareto GA sampling
tournament selection approach for feature
selection in neurofuzzy modelling is tested on
two different modelling problems.

4 Evaluation of the Feature Selection

The input selection algorithms described
earlier are now applied to the machinery fault
diagnosis and the building energy
consumption prediction problems.

Fault Diagnosis in Rotating Machinery
Neurofuzzy techniques can be applied to
perform diagnosis of faults in rotating
machinery [4]. The vibration data set
employed here consists of 3068 patterns
randomly split into training, verification and
final independent check sets of 1534, 767 and
767 patterns respectively. The first set is
employed for training; the second is employed
for validation during training and for
assessing the impact of different subsets of
inputs during the GA feature selection
procedure. The same two sets are also used for
building the final models based on the selected
subset of inputs. The third data set is kept
aside for independent evaluation of the final
models.

The algorithm has to choose out of 56 spectral
and cepstral features (cepstrum is an anagram
of spectrum and stands for the spectrum of the
logarithm of the power spectrum of the
vibration signal). The aim is to identify
relevant features for diagnosing common fault
types such as unbalance, misalignment and
various types of bearing faults. In this paper
only results of modelling unbalance faults are
presented. Experiments with other fault types
yielded results consistent with those in the
unbalance case, in terms of efficiency in
performing input selection. The diagnosis
accuracy varies for bearing faults, but this is

attributed to the nature of the diagnosis task
(bearing faults and in particular train and ball
defects are much more difficult to diagnose)
rather than the input selection algorithm. The
output is the estimate of fault severity,
quantified on a scale between 0-100, where 0
corresponds to absence of the specific fault
and 100 to the presence of a severe fault [11].
The data correspond to various scenarios,
including healthy, single fault and multiple
fault cases, in the presence of noise.

The GA solutions are evaluated based on
simple 0-order ANFIS models. For the case of
unbalance the initial model consists of 10
fuzzy rules. Among the potential predictor
variables there is considerable information
redundancy and strong interdependencies or
correlation among some of them. The
following GA settings were applied: mutation
rate: 0.03; 2 point crossover; elitism; number
of individuals in population: 100; number of
generations: 220; crossover rate 0.5,
tournament size: 2; tournament sampling set
size: 10. A snapshot of the root mean squared
error (RMSE) of the best individuals at each
complexity level and at each generation, for
the first 100 generations, is shown in Figure 1.
The whole evolution process involved 220
generations.
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Figure 1: Machine fault diagnosis: best individuals
during evolution

It can be observed from Figure 1 that
dominated solutions are gradually eliminated
from the population. It is also worth noting
that a range of solutions at the vicinity of the
Pareto front is preserved throughout the
evolution process. The best subsets at each
complexity level after 220 generations are
shown in Figure 2, while summary statistics of
the final models are shown in Table 1. The
final models are a 0-order and a 1-order model
with 18 and 10 rules respectively.
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1-order
model

0-order
model

Data Statistics

Selected
Inputs

10 10 Inputs 56

Training
RMSE

3.63 5.30 Training Set
Output STD

19.33

Validation
RMSE

3.98 6.33 Validation Set
Output STD

21.54

Evaluation
RMSE

3.88 6.24 Evaluation Set
Output STD

19.04

Table 1. RMSE of final models and standard
deviation of the output at each data set
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Figure 2: Machine fault diagnosis: Non-dominated
solutions after 220 generations

A point worth mentioning in this particular
problem is that one of the variables always
selected from the GA input selection
algorithm is the rotational speed of the
machine. This parameter, when examined
alone, can not of course indicate the presence
or absence of a fault. If the input selection was
based on simple correlation tests or on other
estimated information measures, such as
mutual information, between the inputs and
the outputs, this variable would never have
been selected. It is the simultaneous presence
of these variables with other important ones,
such as the background vibration level, the
harmonic power of the spectrum etc., which
makes it particularly useful.

Energy Consumption Prediction
Since only 14 inputs are involved in this
problem, some of the settings of the genetic
algorithm were modified to allow more
exploration to take place, i.e. mutation rate
0.12, crossover rate 0.95. These settings can
considered to be quite disruptive for the
evolution process, however, the relatively
small number of inputs makes the search
procedure considerably easier. The rest of the
GA settings were the same as before but now
an evolution of 100 generations was adequate.
Here only results from the first output, the
energy consumption are presented. The best
individuals found, up to the current
generation, are shown in Figure 3, for 80
generations.
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Figure 3: House energy prediction: best individuals
during evolution

A particular characteristic of this problem is
that practically all inputs are relevant. Even in
such cases, it is particularly beneficial to
employ a feature selection algorithm, which
aims at identifying a range of solutions with
different complexity/performance trade-offs.
When such a subset becomes available, an
informed choice can be made of the predictor
variables finally employed, by considering
practical issues related to costs and ease of
data acquisition. The order in which the
inputs are selected is shown in Table 2.

Number of
Selected Selected Inputs

Inputs
1 1
2 1 8
3 1 2 8
4 1 2 8 9
5 1 2 3 8 10
6 1 2 3 8 10 11
7 1 2 3 6 8 10 11
8 1 2 3 5 8 9 11 13
9 1 2 3 7 8 10 12 13 14

10 1 2 3 6 7 8 10 11 13 14
11 1 2 3 4 5 6 7 8 9 10 13
12 1 2 3 4 5 6 7 8 9 10 11 13
13 1 2 3 4 5 6 7 8 9 10 12 13 14
14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Table 2: Energy consumption prediction:
order of inputs insertion at the final set of
non-dominated solutions

From this table it is evident that, in contrast
with stepwise methods which add or delete
one input at a time, our approach can find
solutions where an increase in the number of
selected inputs does not necessarily mean
simply addition of one variable. Instead, it
may be the case, for example, that one input is
removed and two other are included. For
example, when moving from 10 inputs to 11,
that involves removing the variables 11 and
14, while adding 4, 5 and 9.

5  Conclusion

We have experimented with the application of
niched Pareto-optimal tournament selection
GAs to feature selection, using neurofuzzy
modelling. We have shown that this
specialised form of Genetic Algorithm is well-
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suited to feature selection; in particular, it can
produce a diverse set of solutions with
differing performance versus complexity
trade-off characteristics in a single population.
We have experimented on two data sets, both
with a large number of inputs, and have
achieved consistently good results on both of
these. Although we have used neurofuzzy
models, the proposed approach to feature
selection can be equally well applied to any
modelling approach.
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