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Abstract


A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by


pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is


applied to simultaneously minimize the (1) remedial design cost and (2) contaminant mass remaining at the end of the reme-


diation horizon. Three test scenarios consider pumping rates for two-, five-, and 15 fixed-location wells as the decision variables.


A single objective genetic algorithm (SGA) formulation and a random search (RS) are also applied to the three scenarios to


compare performances with NPGA. With 15 decision variables, the NPGA is demonstrated to outperform both the SGA al-


gorithm and the RS by generating a better tradeoff curve. For example, for a given cost of $100,000, the NPGA solution found a


design with 75% less mass remaining than the corresponding RS solution. In the 15-well scenario, the NPGA generated the full


span of the Pareto optimal designs, but with 30% less computational effort than that required by the SGA. The RS failed to find


any Pareto optimal solutions. The optimal population size for the NPGA was found by sensitivity analysis to be approximately


100, when the total computational cost was limited to 2000 function evaluations. The NPGA was found to be robust with respect


to the other algorithm parameters (tournament size and niche radius) when using an optimal population size. The inclusion of


niching produced better results in terms of covering the span of the tradeoff curve. As long as some niching was included, the


results were insensitive to the value of the parameter that controls niching ðrshare > 0Þ. � 2002 Elsevier Science Ltd. All rights


reserved.


1. Introduction


When faced with subsurface remediation manage-


ment problems, decision makers must frequently weigh


multiple objectives such as minimizing cost, minimizing


health risk, minimizing cleanup time, and maximizing


reliability. In these cases, it may be of value to the de-


cision makers to view the tradeoffs between the con-


flicting objectives, providing a more effective means of


selecting and implementing the best-suited remedial


alternative for a given site.


The majority of applications of optimization tools to


subsurface remediation problems have been based on


single objective optimization methods. Single objective


methods can accommodate multiobjective problems in


several ways, such as minimizing a weighted, linear


combination of the objective functions or minimizing a


single objective while transforming the remaining ob-


jectives into constraints. However, these methods rely


on a priori knowledge of the appropriate weights or


constraint values. Furthermore, they are only capable of


finding individual points on the tradeoff curve (or sur-


face) for each problem solution.


True multiobjective methods have the potential to


simultaneously generate all possible optimal combina-


tions of objectives, with less effort than other ap-


proaches. Multiobjective problems involve several


objective functions, each of which is a function of de-


cision ðdÞ and state variables ðsÞ. A generic multiobjec-


tive problem can be stated as:


O1 ¼ max =min½f1ðd1; d2; . . . dn1 ; s1; s2; . . . sn2Þ�
O2 ¼ max =min½f2ðd1; d2; . . . dn1 ; s1; s2; . . . sn2Þ�


..


.


Om ¼ max =min½fmðd1; d2; . . . dn1 ; s1; s2; . . . sn2Þ�


Advances in Water Resources 25 (2002) 51–65


www.elsevier.com/locate/advwatres


*Corresponding author. Tel.: +906-487-3372; fax: +906-487-3371.


E-mail address: asmayer@mtu.edu (A. Mayer).


0309-1708/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.


PII: S0309 -1708 (01)00020 -3







subject to the following set of constraints:


d1 6 d�
1 ; d2 6 d�


2 ; . . . ; dn1 6 d�
n1
;


s1 6 s�1; s2 6 s�2; . . . ; sn2 6 s�n2 ;


where there are m objective functions, n1 decision vari-


ables, and n2 state variables.


As already mentioned, previous approaches for


solving the multiobjective problem have involved re-


ducing the problem dimension, either by combining all


objectives into a single objective (e.g. [27]) or optimizing


one while the rest are constrained (e.g., [3]). Once this


reduction has been made, single-objective optimization


methods (e.g. linear programming, [10]; non-linear


programming, [11]; mixed-integer programming, [25],


simulated annealing, [4]; genetic algorithms, [21]) can be


applied to the optimal remediation design problem.


Wagner [26] and more recently, Freeze and Gorelick [7],


provide extensive reviews on the applications of opti-


mization to groundwater remediation design.


Alternative multiobjective methods optimize all ob-


jectives simultaneously, eliminating the need for deter-


mining appropriate weights or formulating constraints.


Multiobjective approaches in this category operate on


the concept of ‘‘Pareto domination’’, which states that


one candidate dominates another only if it is at least


equal in all objectives and superior in at least one. The


‘‘degree of domination’’ for a design is proportional to


the number of designs it is dominated by. For example,


in Fig. 1, where the objective is to minimize both ob-


jective functions, designs 1 and 2 dominate design 3


because they are superior in both objectives. Moreover,


designs 1 and 2 are said to be ‘‘non-dominated’’ because


there are no existing designs that dominate them. This


concept is utilized by evolutionary algorithms such as


the multiobjective genetic algorithm (MOGA, e.g. [6])


and the niched Pareto GA used in this work.


Ritzel et al. [24] applied two variations of the genetic


algorithm (GA), a Pareto GA and a vector-evaluated


genetic algorithm (VEGA), to a multiobjective,


groundwater pollution containment problem. The mul-


tiobjective problem was formulated to minimize the


containment design cost while maximizing the design’s


reliability. The Pareto GA relied on a ranking scheme


that ordered the population according to each contain-


ment design’s degree of domination. The VEGA


searches for multiple solutions to multiobjective prob-


lems simultaneously by selecting a fraction of the next


population, based on the associated values of each ob-


jective function. Although the VEGA is considered a


multiobjective optimization method, Richardson et al.


[22] reported that VEGA tended to favor the extrema of


the objective functions, such that only the endpoints of


the tradeoff curve were found. Ritzel et al. [24] concluded


that the Pareto GA was superior to the VEGA in finding


the largest portion of the Pareto optimal solutions.


Cieniawski et al. [2] investigated the performance of


four GA formulations in solving a multiobjective


groundwater monitoring problem where they simul-


taneously maximized reliability of a monitoring system


and minimized the contaminant plume size at time of


first detection. They implemented a weighted GA,


VEGA, Pareto GA and a VEGA/Pareto GA combina-


tion and compared them to results generated by simu-


lated annealing. The VEGA/Pareto GA method was


shown to be more computationally efficient and more


successful at generating the greatest portion of the


tradeoff curve than the other GA formulations. They


recommended that a form of fitness sharing [9] be used


to enhance the Pareto GA in this area, where crowding


in the Pareto optimal solutions is alleviated by de-


creasing the fitness of crowded individuals.


Previous approaches for optimal groundwater re-


mediation design have largely focused on single-objec-


tive optimization. Although some groundwater quality


management efforts have considered multiobjective op-


timization, these approaches did not succeed in gener-


ating a sufficient representation of full range of Pareto


optimal designs. In this work, we present an improved


version of the niched Pareto genetic algorithm (NPGA),


a multiobjective technique originally developed by Horn


et al. [13], and apply it to a hypothetical contaminated


groundwater remediation scenario.


There are several parameters (i.e., population, niche


radius, tournament size, crossover rate, and mutation


rate) that control the performance of this version of the


NPGA. Although theoretical guidelines have been


suggested for choosing optimal values for some of the


algorithm parameters, these guidelines apply only to


idealized, abstract problems [14–16]. The objectives of


this work are to (a) develop a multiobjective approach


for optimal groundwater remediation design using the


NPGA, (b) explore the sensitivity of the NPGA to the
Fig. 1. Ranks of candidate designs based on the concept of Pareto


domination.
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parameters that control the behavior of the algorithm in


terms of computational performance, and (c) compare


the NPGA to two other optimization approaches: a


single-objective genetic algorithm (SGA) and a random


search (RS).


2. The niched pareto genetic algorithm


Horn et al. [13] developed an evolutionary multiob-


jective optimization algorithm based on a suggestion by


Goldberg [8] that introduced speciation along with the


theory of a spatially ordered search space. This method,


known as NPGA, extends the traditional GA to mul-


tiple objectives through the use of Pareto domination


ranking and fitness sharing (or niching). Exploitation of


the entire set of Pareto optimal designs is maximized by


the selection pressure induced by the Pareto ranking and


tournament competitions, and the diversity is main-


tained by fitness sharing. The addition of the sharing


function is expected to overcome the challenge of finding


and maintaining the entire tradeoff curve during the


optimization process, as noted by Ritzel et al. [24]. This


method is a promising approach for solving multiob-


jective optimization problems because of its adaptability


to a wide variety of problems and its ability to search


non-linear and discontinuous search spaces without


relying on the need for continuous first and second


derivatives.


McKinney and Lin [21], Ritzel et al. [24], and Huang


and Mayer [16] give detailed descriptions of the tra-


ditional GA selection, reproduction, and mutation op-


erators and a general overview of the GA as applied to


single-objective, groundwater quality management


problems. The heuristic parameters that are common


between single and multiobjective GAs are population


size, crossover probability, and mutation probability.


Both sets of methods also can rely on tournament


competition for deciding which candidates should go


forward into the next generation. The extension of the


traditional GA to the NPGA involves the addition of


two specialized genetic operators: (1) Pareto domination


ranking and (2) continuously updated fitness sharing.


These operators alter the traditional mechanism of se-


lection by partial ordering of the population and by


maintaining diversity in the population through suc-


cessive generations.


Tournament competition and fitness sharing create


two principal genetic pressures that control the evolu-


tionary process in the optimization algorithm. Selection


pressure is controlled by the tournament size and


propagates the designs towards the optimal frontier.


Larger tournament sizes induce greater selection pres-


sures. Fitness sharing promotes diversity by dispersing


the designs over the limits of the tradeoff curves. The


amount of searching performed by the NPGA is con-


tingent on the size of the population and the level of


selection pressure applied.


Fig. 2 summarizes the basic steps followed by the


NPGA. To initiate the selection process in the NPGA,


each individual in the population of designs is assigned a


rank equal to the degree of Pareto domination experi-


enced by that design. The degree of domination, or


rank, of an individual design is the total number of


designs in the population that dominate that design. A


design is said to dominate another individual in the


population if it is at least equal in all objectives to that


individual and better in at least one. Non-dominated


designs, or those that are not dominated by any indi-


viduals in the population, are assigned a rank of zero. In


Fig. 3, where the objectives are to minimize both cost


and mass remaining, an example of a Pareto domination


ranked population of 10 designs is shown.


Once the entire population has been ranked accord-


ing to the Pareto domination rank, candidate designs


are chosen for reproduction. The mechanism of selec-


tion used here is similar to the tournament selection


process described by Ritzel et al. [24] and Cieniawski et


al. [2]. The controlling variable in tournament selection


competitions is the tournament size. Tournament se-


lection begins by randomly selecting a group of candi-


dates from the population of ranked designs. The


candidates in the tournament selection are then pitted


against each other by comparing their respective ranks.


If there is a single candidate with the lowest rank (i.e.


less dominated), this candidate is the ‘‘clear winner’’ of


the tournament and is selected for reproduction. If all


the lowest ranked candidates in the tournament are non-


dominated or otherwise equal in rank (i.e. no clear


winner), none of the candidates are preferred and the


tournament selection ends in a tie. Fig. 4 demonstrates


each of these outcomes for a tournament size of two (the


minimum tournament size). If the two candidates des-


ignated by triangles were selected in the tournament, the


design designated by the open triangle would be the


clear winner, because it is dominated by fewer designs


than the solid triangle. If the candidates designated by


the squares in Fig. 4 were chosen for the tournament,


the tournament would end in a tie (‘‘no clear winner’’).


In the case of a tie, an additional process is needed to


select a tournament winner. Fitness sharing is a method


for selecting the winning candidate that promotes the


dispersal of candidate designs along the Pareto front.


Our application of fitness sharing involves assessing the


degree of crowding, or population density, experienced


by each candidate. The population density around each


candidate is calculated within a specified Cartesian dis-


tance (in objective function-space), called the niche


radius (see Fig. 5). The niche count is calculated by


summing the number of designs within the niche radius


of each candidate, weighted by the radial distance be-


tween the candidate and the other designs, or
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mi ¼
X


j2pop
1


 


�
d 0
ij


rshare


!


; ð1Þ


where d 0
i;j is the scaled, radial distance between candidate


i and candidate j and rshare is the niche radius. Both di;j
and rshare are measured in scaled, objective function


space, such that 0 < d 0
i;j <


ffiffiffi


2
p


. The values of the ob-


jective functions are scaled as in


O0
i ¼


Oi � Oi;min


Oi;max � Oi;min


; ð2Þ


where O0
i, Oi;min; and Oi;max are the scaled, minimum, and


maximum values of objective Oi, respectively.


Thus, in the no clear winner case, preference is given


to the candidate with the lowest niche count. In Fig. 5,


the design shown as a solid square has two candidate


designs within the niche radius, whereas the design


Fig. 2. Process flowchart for the NPGA. The parameters that control specific algorithm steps are listed in italics to the right of the flow chart.


Fig. 3. Pareto domination ranking for a population of ten designs.


Designs of equal rank are designated by the same symbol.
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shown as an open square has no candidate designs


within this distance. The open square would be given


preference and would be the winner of the tournament


selection process.


3. Numerical experiments


The objectives of the numerical experiments are to (1)


investigate the performance of the NPGA as a function


of the size of the search space, (2) compare the NPGA


performance with two other methods for generating the


tradeoff curve, and (3) investigate the NPGA per-


formance as a function of algorithm parameters.


3.1. Multiobjective management model


The application of the multiobjective problem focuses


on the active remediation of a hypothetical, contami-


nated groundwater site by pump-and-treat (PAT) tech-


nology. The decision variables are well extraction rates


as a function of location. It was assumed that the ex situ


treatment technology for the contaminated groundwater


is granular activated carbon (GAC). The two objectives


are to minimize cost and maximize cleanup per-


formance. The cost of a PAT remediation system in-


cludes capital costs incurred from installation of


recovery wells and operational costs from pumping and


groundwater treatment as in


min J ¼ a1New þ
X


New


k¼1
a2QkHkTð Þ


"


þ
X


NTSP


l¼1
a3tlQk


Ck;l


KABC
1=n
k;l


 !#


; ð3Þ


where J is the total cost of the remedial design, New is the


number of active wells, NSTP is the number of time steps


within the remediation horizon T ¼ Rtl;Qk is the ex-


traction rate of well k, Hk is the total drawdown at well


k, Ck;l is the average flow-weighted concentration re-


moved by well k in time step l, tl is the length of time


step l, KAB and 1/n are the Freundlich GAC adsorption


parameters for a given contaminant and carbon adsor-


bent, and a1, a2; and a3 are the coefficients for capital,


pumping, and treatment costs, respectively. The treat-


ment cost term is linearly related to the GAC utilization


rate, _mmGAC, which is based on a steady-state mass bal-


ance on the GAC reactor


q _mmGAC ¼ QCk;l � QC�;


where q is the concentration of the contaminant on the


adsorbent and is given by a Freundlich isotherm equa-


tion, q ¼ KAB C�ð Þ1=n [23], and C� is the target effluent


concentration from the GAC reactor. The second term


on the right-hand side is ignored because Ck;l � C� for
most of the simulation period.


The second objective function is based on a measure


of cleanup performance. The usual approach is to re-


quire that point concentrations at monitoring or


pumped wells do not exceed a target concentration. The


approach used here is different in that cleanup per-


formance is treated as a variable to be maximized, rather


than as a fixed constraint. Furthermore, the total con-


taminant mass remaining in the aquifer ðMRÞ is used as a
measure of cleanup performance, rather than point


concentrations. In the simulations, the use of MR avoids


the arbitrariness of selecting well locations for moni-


toring performance. In the field, point concentrations


are inherently uncertain, due to variability in aquifer


properties and measurement errors. Since the MR is


Fig. 4. Two possible tournament selection outcomes, where the


candidates have equal ranks (designated by a j) or unequal ranks


(designated by either an M or N). The open triangle is the winner in the


case of unequal ranks.


Fig. 5. Performing fitness sharing on two tournament selection can-


didates ranks (designated by either an � or j) with equal ranks. The


winner here is the less crowded design represented by the open square.
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determined by integrating over point concentration


values, it tends to average out the uncertainty.


The mass remaining objective function is formulated


as:


minMR0 ¼ 100
MR


MI
; ð4Þ


where MR0 is the percent mass remaining after the re-


medial horizon is complete; MI and MR are the initial


mass present in the aquifer at the beginning of the


remediation horizon and the mass remaining at the end


of the remediation horizon, respectively. In the simula-


tions of the aquifer-contaminant system, MI is a known.


However, in the field, the value of MI usually is not


known, unless the initial contaminant release has been


documented or there is a conservative constituent


present and the composition of the contaminant source


is known.


In groundwater management and remediation prob-


lems, drawdown constraints are usually enforced to


protect against aquifer dewatering. Constraints can be


applied explicitly in optimization problems by formu-


lating penalty functions that decrease the values of the


objective functions proportionally to the magnitude of


constraint violations. Although the algorithm per-


formance is sensitive to the form of the penalty function,


there are only qualitative guidelines for choosing the


optimal formulation. In an effort to avoid the use of


penalty functions, the drawdown constraint is enforced


by limiting the maximum extraction rate per well Qmax
k ,


as in the following:


06Qk 6Qmax
k for Qmax


k ¼ Qmax
T =New;


yk ¼ 1; . . . ;New; ð5Þ


where Qmax
T is the maximum total extraction rate, Qmax


T is


determined by running a series of single-well flow sim-


ulations, where the extraction rate is varied until the


maximum allowable drawdown (15% of the aquifer


thickness) is reached. The constraint is applied through


the encoding/decoding of the decision variables, such


that the value of the individual well extraction rates


cannot exceed Qmax
k . Although this approach for en-


forcing the drawdown constraint is straightforward for


the cases presented here, it may not be appropriate for


heterogeneous cases or cases with a large number of


decision variables.


The state variables, hydraulic head and contaminant


concentration are determined with a groundwater flow


and contaminant transport simulator. The steady-state


confined groundwater flow equation for a non-deform-


ing, saturated, aquifer system is


r K � rhð Þ ¼
X


k


Q0
kdðx� xk; y � ykÞ; ð6Þ


where K is the hydraulic conductivity, Q0
k is the extrac-


tion rate per unit aquifer volume from well k located at


xk and yk, and d is the delta Dirac function. The hy-


draulic head, h, is related to the total drawdown, H , by


H ¼ zgs � hþ hl, where zgs is the ground surface eleva-


tion and hl is the estimated head loss due to piping in


treatment train.


Contaminant concentrations are determined by


solving the mass balance equation for a neutrally


buoyant, conservative aqueous chemical constituent,


given by


oC


ot
þrðvCÞ � r D � rCð Þ


¼ �
X


j


Ck


n
Q0


kdðx� xk; y � ykÞ; ð7Þ


where C is the aqueous concentration in the aquifer, Ck


is the aqueous concentration removed by well k, and n is


the effective porosity. The hydrodynamic dispersion


tensor, D, is defined as


D ¼ aT vj jð þ D�ÞIþ aLð � aTÞ
vv


vj j ; ð8Þ


where aL and aT are the effective longitudinal and


transverses dispersivity coefficients, I is the unit tensor;


and D� is the molecular diffusivity. The pore velocity, v,
is given by Darcy’s relationship as


nv ¼ �Krh: ð9Þ
We employ a two-dimensional finite difference ap-


proximation to solve the groundwater flow Eq. (6) and a


particle-tracking method to solve the mass transport


Eq. (7). The numerical codes have been validated by


Maxwell [18,19]. Additional background information


pertaining to the development of this numerical simu-


lator can be found in [17].


3.2. Description of groundwater system


To explore the performance and efficiency of the


NPGA, the simulation/optimization algorithm was ap-


plied to a simple, hypothetical contaminated ground-


water site. The site is modeled as a confined


homogeneous aquifer 1000 m long by 1010 m wide and


30 m thick (see Fig. 6). The two-dimensional finite-dif-


ference grid system consists of 10-m square grid blocks.


Constant-head boundaries are imposed on the east and


west sides of the model domain and no-flow boundaries


are imposed on the north and south sides. The aquifer is


modeled as having a homogeneous, isotropic hydraulic


conductivity. Groundwater extraction wells are modeled


as being open over the entire thickness of the confined


aquifer. Removal of contaminant by the treatment sys-


tem is simulated as equilibrium, non-linear adsorption


onto the GAC.


Trichloroethlyene (TCE), a commonly observed and


studied groundwater contaminant, is used as the hypo-
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thetical contaminant and is treated as a conservative,


dissolved species. A constant source of approximately


750 ppm is used to generate the initial concentration


plume shown in Fig. 6. The contaminant plume evolves


until approximately 1000 kg of TCE is released into the


confined aquifer system as a dissolved species. The


source is then removed and active remediation begins.


The length of the remediation horizon is ten years. Table


1 summarizes the aquifer, contaminant, and treatment


system properties. The aquifer properties (porosity, hy-


draulic conductivity, and background pore velocity) are


similar to those found for a non-uniform, fine to me-


dium sand. The longitudinal dispersivity was chosen to


be equivalent to the gridblock size so that numerical


errors would be minimized and the transverse disper-


sivity is set as a typical fraction of the longitudinal dis-


persivity ðaT ¼ aL=5Þ.


3.3. Structure of numerical experiments


We chose to examine the performance of the NPGA


with two, five, and 15 decision variables, where each


decision variable corresponds to the pumping rate at a


fixed-location well. The NGPA parameters we investi-


gate are population size, tournament selection size, and


niche radius. Table 2 lists the cost coefficients used in the


numerical experiments. Table 3 describes the problem


characteristics for each scenario.


SGA and RS methods. We compare the performance


of the NPGA with two methods for generating the


tradeoff curve: an SGA and RS. With the SGA method,


minimizing cost is the objective and the percent mass


remaining is held as a constraint. The tradeoff curve is


constructed by executing separate SGA runs, each with


a different value of the mass remaining constraint. The


percent mass remaining constraint was imposed via the


multiplicative penalty approach described by Chan


Hilton and Culver [1]. The constrained optimization


problem can be formulated as


min J 1
��


þ wMR0 	
; ð10Þ


where the cost function, J , is identical to the cost


function in Eq. (3), w is the constraint violation weight,


and MR0 is defined as Eq. (4). We assumed that three


separate SGA runs with the constraint values equally


distributed (on a log scale) over the possible range of


mass remaining would be sufficient to delineate the


tradeoff curve.


The RS is a simplistic approach to finding optimal


solutions, where values of the decision variables are


randomly generated from a uniform distribution. The


tradeoff curve is formed by the Pareto optimal subset of


the randomly generated set of decision variables. We


compare the NGPA, SGA, and RS in terms of (a) the


Pareto optimality of the tradeoff curves and (b) the span


of the tradeoff curves. Table 4 lists the values of the


algorithm parameters used in the comparisons. We use


the same random seed in each numerical experiment.


Coding of decision variables, size of search space, and


scaling of objective functions. For all three methods, the


decision variables are coded in binary form. The binary


Table 1


Parameters for flow, transport and treatment simulations


Parameter Value Source


Porosity 0.25 (dimensionless) Assumed


Hydraulic conductivity 3:82� 10�5 m/s Assumed


Background pore velocity 2:7� 10�2 m/d (west to east) Calculated from constant head boundary


conditions and above parameters


Longitudinal dispersivity 10 m Assumed


Transverse dispersivity 2 m Assumed


GAC adsorption coefficient, KAB 28.4 (mg/gm) (l/mg)1=n Hand [12]


GAC adsorption coefficient, 1/n 0.48 Hand [12]


GAC effluent concentration 5 ppm Fetter [5]


Fig. 6. Plan view of the hypothetical aquifer system showing the initial


contaminant plume and fixed-location extraction wells used in the


numerical experiments. The contaminant plume is contoured at 100,


10, 1, and 0.1 ppm levels.
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representation is transformed to a real form by scaling


with maximum ðQmax
k Þ and minimum ðQmin


k ¼ 0Þ allow-
able pumping rates. The size of the search space, or the


number of possible solutions, Np, is dependent on the


number of bits, Nb, used to represent the decision vari-


ables in the search methods, which corresponds to the


precision of the decision variables, dQk. The number of


bits is calculated as follows:


2Nb � 1 ¼ Qmax
k � Qmin


k


dQk


ð11Þ


and the number of possible solutions is given by


Np ¼ 2Nb
� 	New : ð12Þ


The objective functions are scaled as described in


Eq. (2), so that the scaled distances in Eq. (1) can be


calculated. The maximum and minimum objective


function values do not change from generation to gen-


eration; they are fixed at the beginning of a run. The


maximum cost value is estimated using results from


initial sets of optimization runs. The NPGA results were


insensitive to changes in the maximum objective func-


tion values. A 100% increase and 50% decrease in the


maximum cost were found to have no impact on final


results. The minimum value for cost assuming no action


is zero; similarly, the minimum mass removed is 0%. The


maximum mass removal is 100%.


Performance measures. The algorithms (NPGA,


SGA, or RS) proceed until a fixed amount of compu-


tational effort is consumed. One unit of computational


effort is equivalent to one set of objective function


evaluations, which involves one execution each of the


flow and transport simulators and the corresponding


calculation of the cost and mass remaining objective


function values. The computational time required to run


the flow and transport simulators is typically more than


90% of the total time needed to evaluate the objective


functions. Thus, one unit of computational effort is


approximately equal to the effort required for one run of


the flow and transport simulators. One execution of the


flow and transport simulators consumes approximately


2.5 min of CPU time on a Sun Ultra 80 workstation


with a 450 MHz processor.


Since the computational effort is fixed for the simu-


lation/optimization experiments, we use as performance


measures: (a) the percentage of Pareto optimal solutions


found by each method and (b) a qualitative evaluation


of the span of the tradeoff curve covered by these solu-


tions. We determine the percentage of Pareto optimal


solutions found by a method m by aggregating all of the


Pareto optimal solutions found by the methods and


calculating Pm=PM , where PM is the total number of


Pareto optimal solutions found by all methods and Pm is


the number of Pareto optimal solutions found by


method m. The endpoints of the tradeoff curve are de-


fined as the maximum MR0 achievable ð�100%) and the


minimum MR0 achievable, given the maximum pumping


rate constraint.


Table 4


Optimization algorithm parameters for the multiobjective (NPGA) and single-objective (SGA) solution methods applied to two-, five-, and 15-well


scenarios


Parameter NPGA 2 wells NPGA 5 wells NPGA 15 wells SGA all scenarios


Population size 50 50 100 50


Tournament selection size 2 2 10 2


Niche radius 0.5 0.05 0.5 –


Probability of crossover 0.9 0.9 0.9 0.9


Probability of mutation 0.001 0.001 0.001 0.001


MR0 constraint violation weight – – – 150


Table 3


Problem characteristics for two-, five-, and 15-well scenario scenarios


Scenario Candidate well


locationsa
Maximum number


of objective function


evaluations allowed


Decimal pre-


cision in flow


rate (m3/d)


Maximum flow


rate per well


ðm3=dÞ


Number of bits


per decision


variable


Number of


possible


designs


2 wells 7, 8 500 2.5 250 7 �104
5 wells 2, 6, 7, 8, 12 1000 2.5 100 6 �109
15 wells All wells 2000 2.5 33 4 �1018


aNote that these locations refer only to the possible locations for the given scenario, and that not all of these wells will be active for a given design.


Refer to Fig. 6 for locations.


Table 2


Cost coefficients used in numerical experiments


Parameter Value Source


Capital cost coefficient, a1
8 in. (two-well scenario) 10,800 $/well Means [20]


6 in. (five-well scenario) 8500 $/well Means [20]


4 in. (15-well scenario) 5800 $/well Means [20]


Power cost coefficient, a2 1.05 Means [20]


Treatment cost coefficient, a3 2.14 Means [20]
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Although the SGA was nominally subjected to a


stopping criterion based on a fixed amount of compu-


tational effort, each SGA run converged before the


stopping criterion was reached. We report the number of


flow and transport simulations expended to reach con-


vergence, which is defined as the point where the entire


population converges to a single solution. The best


solution (lowest cost) found during the run was used as


the optimal value.


Archiving. In the NPGA, SGA and RS methods, we


implement design archiving. Archiving eliminates re-


dundant objective function evaluations by saving the


objective function values for every design, beginning


with the initial population. If, in a subsequent genera-


tion, a design is found to have been evaluated previ-


ously, the previous evaluation is used, and only the


remaining, new designs are evaluated. The archives are


searched by comparing the active set of decision vari-


ables to the sets stored in the archives, using a hashing


algorithm.


Archiving typically resulted in reducing the number


of objective function evaluations by 50%, which is ap-


proximately the same as the reduction observed for


CPU time. As the number of digits used to code the


decision variables or the number of decision variables


increases, the archive search requires more CPU time


and storage space. However, only the binary decision


variables and the associated, floating point values of the


objective function are stored, so that only of the order of


100 bytes are required for each design. For the simula-


tions reported in this work, the archiving effort did not


exceed 0.01% of the total CPU time for a simulation and


the maximum archive file size was less than 10 kB.


4. Results and discussion


We present the results in terms of the distribution of


the Pareto offline data. The Pareto offline data consist of


the Pareto optimal designs found in each generation,


beginning with the initial population. In subsequent


generations, Pareto optimal designs are copied into the


Pareto offline data set, and any designs from previous


generations that are now dominated are removed.


Fig. 7 shows the results from a typical NPGA run,


where the cost is plotted against the mass remaining on a


log scale. In this computational experiment, the NPGA


ran for 200 generations with a population size of 50,


tournament selection size of 2, and niche radius of 0.005.


The PAT remedial design involved estimating extraction


rates for fifteen fixed-location wells (see Fig. 6 for lo-


cations). In Fig. 7, the Pareto offline designs are shown


for every 50th generation. In this case, the minimumMR0


possible was 2%, due to the maximum extraction rate


constraint. The improvements seen in the final set of


optimal solutions are significant when compared to the


initial population. As the algorithm proceeded, the span


of the tradeoff curve increased until Pareto optimal de-


signs were found over the entire possible range of


tradeoffs. While designs in the higher cost region of the


tradeoff curve (greater than about $140,000) appear to


have converged quickly (within 50 generations), the re-


maining portion of the tradeoff curve was not generated


until at least 150–200 generations elapsed.


The designs also improved considerably in terms of


Pareto optimality as the algorithm proceeded. For ex-


ample, the cost of designs with about 5% mass remain-


ing improved by nearly 20% from the first to the 50th


generation. The cost of the designs with 50% mass re-


maining improved by about 50% from the first to the


100th generation. Although the position of the starting


set of solutions varies from random population to ran-


dom population, the convergence behavior shown in


Fig. 7 is typical of all of the runs conducted with the


NPGA.


In Fig. 8, the extraction rate distribution and final


contaminant plume contours are given for 60%, 15%,


and 4% MR0 designs, respectively. These figures dem-


onstrate that the NPGA is finding reasonable results,


since as MR0 decreases, more extraction wells are re-


quired. In addition, the distribution of extraction rates is


symmetric about the mean direction of flow, for the


most part, as is the final contaminant plume. The ex-


traction rate distribution shown in Fig. 8(c) is not an


entirely intuitive result, however, since the two wells not


on the plume centerline (wells #3 and #15, see Fig. 6 for


well numbering system) are not opposite each other. The


optimization algorithm cannot be expected to recognize


the physical nature of the optimal solution, i.e. sym-


metry, but it should yield optimal results. To assess the


optimality of the asymmetric solution, a new simulation


Fig. 7. NPGA results for the 15-well scenario: Pareto optimal designs


at intervals of 50 generations with a population size of 50 designs.
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was conducted where the extraction rate at well #15 was


exchanged with that of #13 to produce an almost sym-


metric design. A simulation using the new, almost


symmetric design resulted in costs and mass removals


that were only 2.5% and 0.5% lower, respectively, than


the cost associated with the asymmetric design. These


small differences imply that, since the solution is insen-


sitive to the pumping rate distribution in the off-cen-


terline wells, the optimization algorithm will not


necessarily find a symmetric solution.


The relationships of the total extraction rates,


treatment costs, and total costs to percent mass re-


maining are illustrated in Fig. 9. For higher values of


MR0, treatment costs dominate the overall cost of a


design. However, as MR0 decreases below 10%, in-


stallation costs are increasingly significant, since the


number of wells required to meet the given value of


MR0 increases sharply below this level. The total ex-


traction rate also increases sharply for MR0 < 10%,


since below this level, the volume of water that must


be extracted to meet the given level of MR0 increases
exponentially.


As mentioned in the Section 3, it is likely that the


initial mass ðMIÞ will be uncertain in a field situation. If


the transport equation is linear in concentration, then


the concentrations are linearly related to the source


concentration and thus the initial mass of contaminant.


In this case, the effects of uncertainty in MI can be an-


alyzed by shifting the tradeoff curves along the MI axis.


If the processes active in the contaminant-aquifer system


result in non-linear transport, a more involved analysis


is required and is the subject of the ongoing work.


Fig. 8. NPGA results for the 15-well scenario: distribution of extraction rates (left-hand side) and contaminant plume at the end of remediation


(right-hand side) for: (a) a 60% MR design, (b) a 15% MR design, and (c) a 4% MR design. Plume contours are spaced by a factor of 10 ppm. Well


locations are indicated by dots.


60 M. Erickson et al. / Advances in Water Resources 25 (2002) 51–65







4.1. Sensitivity to number of decision variables and


comparison of NGPA performance with SGA and RS


We applied the NPGA, SGA, and RS to hypothetical


remediation scenarios using two, five, and 15 as the


number of wells for which optimal extraction rates must


be found. Table 5 shows a component cost breakdown


for MR0 ¼ 5% designs for these scenarios. The cost


breakdown shows that, in general, the treatment costs


account for the majority of the total costs. The results in


Table 5 also show that, for designs that can achieve


MR0 ¼ 5%, not all of the possible wells are used in each


scenario.


For the two-well tradeoff curve (Fig. 10), the cost


increases from MR0 ¼ 100% until a level of approxi-


mately MR0 ¼ 0:1% is achieved, below which the cost


begins to approach an asymptotic value. The asymptotic


behavior is primarily due to the fact that, for


MR0 < 0:1%, the concentration of water extracted from


the aquifer is below the desired effluent concentration


for the treatment system. Thus, as MR0 decreases further
below 0.1%, the only additional increase in cost is due to


the energy requirements for pumping.


The results in Fig. 10 show that each method is


equally effective at generating the trend of a tradeoff


curve, for the case where the search space is relatively


small. If the NPGA, SGA, and RS results are


aggregated, we find that the NPGA generated 70% of


the aggregated Pareto optimal designs, spanning the


entire range of MR0. The RS found the remainder of


the aggregate Pareto optimal designs, spanning


MR0 ¼ 0.0001% to MR0 ¼ 40%. The NPGA and RS


runs each consumed the limit of 500 objective function


evaluations. The three SGA runs, using mass re-


maining constraints of 0.001%, 0.1% and 10%,


consumed a total of 641 evaluations. All of the


SGA runs converged to a single solution before the


limit of 500 objective function evaluations was


reached.


The final Pareto offline results for the five-well


scenario are shown in Fig. 11. In this scenario, the costs


increase sharply as a function as MR0 decreases, but
approach an asymptotic value asMR0 drops below about


1%. This behavior is similar to that of the two-well case,


which is explained by the fact that the treatment costs


approach zero for MR0 < 0:1%. The NPGA generated


95% of the aggregate Pareto optimal designs, compared


to 4% for the RS. The minimum cost designs found by


SGA for the three constraint values of MR0 ¼ 0.05%,


5%, and 50% are nearly Pareto optimal solutions. The


SGA designs were found at the expense of 1661 evalu-


ations. The NPGA and RS runs each consumed the limit


of 1000 objective function evaluations. Although the


NGPA clearly found more Pareto optimal solutions


than the other methods, the tradeoff curves generated by


each method are of a similar shape and position.


The Pareto offline results for the fifteen-well sce-


nario are shown in Fig. 12. These results exhibit ap-


proximately a linear (cost)-log (MR0) relationship over


Table 5


Comparison of Pareto optimal 5% MR0 designs found by the NPGA for the two-, five-, and 15-well scenarios


Test


scenario


Number of active


wells


Total flow rate


ðm3=dÞ
Total capital cost


($)


Total pumping


cost ($)


Total treatment


cost ($)


Total


cost ($)


2 wells 1 81 10,800 1100 126,400 138,300


5 wells 2 76 17,000 1000 123,500 141,400


15 wells 6 173 34,000 2400 122,500 159,100


Fig. 10. Final Pareto offline results for two-well scenario found by the


NPGA, SGA and RS.


Fig. 9. NPGA results for the 15-well scenario: total pumping rates,


treatment costs, and total costs for final Pareto optimal designs.


M. Erickson et al. / Advances in Water Resources 25 (2002) 51–65 61







the entire range of MR0. This relationship is due to the


fact the number of wells required to achieve a given


value of MR0 increases linearly with a log change in


MR0. All three methods were capable of finding de-


signs that spanned the full range of mass remaining


values. However, the results show that the NPGA


found solutions that would achieve 25–250% better


performance than the RS, measured in terms of the


MR0 achieved for given values of cost. For example, a


$100,000 design generated by the NPGA achieved


20% mass remaining, whereas an RS design with a


cost of $100,000 achieved only 65% mass remaining.


In addition, the NPGA produced 352 Pareto optimal


solutions that span the entire range of tradeoffs, while


the RS failed to find any designs on the Pareto front.


Although the three SGA runs found designs that are


near optimal in cost with respect to the NPGA, the


total computational expense was 2713 objective func-


tion evaluations, as compared to 2000 for the NPGA.


The inability of the five- and 15-well cases to identify


designs with mass removals as low as the two-well case is


caused by the drawdown constraint. Recalling Eq. (1),


the drawdown constraint is enforced by setting a maxi-


mum extraction rate per well, which is equal to the total


maximum extraction rate divided by the number of


wells. Since the total maximum extraction rate is con-


stant, the total extraction is applied over a successively


broader area as the number of wells increases. The result


is that the efficiency of the remediation effort declines as


the number of wells increases.


4.2. NPGA parameter sensitivity


Population size and tournament size. In general, we


observed that there is an optimal population size that


gives the best tradeoff between finding designs that are


Pareto optimal and designs that span the tradeoff curve.


This observation is illustrated in Fig. 13 where popula-


tions of 100 and 150 designs covered a greater span of


the tradeoff curve than the population of 50 designs. The


results from the run with a population size of 50 indicate


that designs for larger values of MR0 ðMR0 > 40%Þ were
not found. Although the NPGA run with a population


of 150 found Pareto optimal designs that spanned the


possible range of MR0 values, it performed worst in


terms of the number of Pareto optimal designs found, as


shown in Table 6. This result is due to the fixed limit on


the number of objective functions. Under these cir-


cumstances, runs with smaller population sizes can


propagate through more generations, thus advancing


the Pareto front farther than runs with larger population


sizes. Thus, a population size of 100 seems a good bal-


ance of search breadth versus search duration. We have


also found that when the population size was at an


optimal value, the NPGA was less sensitive to selection


pressure, crossover rates, and decision variable pre-


cision.


Selection pressure also can be increased by enlarging


the tournament size. Fig. 14 shows a comparison of


results obtained with tournament sizes of 2, 4 and 10 for


Fig. 12. Final Pareto offline results for 15-well scenario found by the


NPGA, SGA and RS.


Fig. 13. Final Pareto offline results for 15-well scenario using NPGA:


population sizes of 50, 100, and 150 designs and a tournament size of 2


designs.


Fig. 11. Final Pareto offline results for five-well scenario found by the


NPGA, SGA and RS.


62 M. Erickson et al. / Advances in Water Resources 25 (2002) 51–65







a population size of 50. The increase in tournament size


to 10 improved the span of the tradeoff curve signifi-


cantly, although there was a corresponding decrease in


Pareto optimality for the highest cost designs.


Niching. In cases with low tournament size, we ob-


served that niching produces a greater span of the


tradeoff curve. As shown in Fig. 15(a), where the tour-


nament size is 2 and the population is 50, the entire


tradeoff curve is spanned for rshare > 0. Even without


explicit niching, the algorithm is able to maintain some


diversity on the Pareto optimal front. This performance


is most likely due to the Pareto domination ranking


tournaments, since individuals in more crowded areas


will tend to have more individuals dominating them.


When the tournament size is increased to 10, the ef-


fect of niching on the span of the tradeoff curve is almost


(a) (b)


(c)


Fig. 15. Final Pareto offline results for 15-well scenario using NPGA: niche radii of 0, 0.5, and 1.0 with: (a) a population of 50 designs and a


tournament size of 2, (b) a population of 50 designs and a tournament size of 10, and (c) a population of 100 designs and a tournament size of 2.


Fig. 14. Final Pareto offline results for 15-well scenario using NPGA:


tournament sizes of 2, 4 and 10 and a population of 50.


Table 6


Performance results for NPGA Pareto optimal solutions for three population sizes


Population size Number of


generations


Number of objective function


evaluations allowed


% of population that is


Pareto optimal


50 89 2000 95


100 26 2000 50


150 15 2000 30
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negligible, as shown in Fig. 15(b). This result is due to


the high selection pressure induced by large tournament


sizes, creating populations that are more consistently


diverse over the evolutionary process. The results in


Fig. 15(b) also indicate that the increase in tournament


size produces better results in terms of Pareto optimality


for the cases where niching is applied. When the popu-


lation size is increased from 50 to 100 (compare Fig.


15(a) and (c)), the cases with niching perform better in


terms of Pareto optimality. It is likely that with the


smaller population (50), there is limited diversity within


a single generation, such that the addition of niching


improves the search by maintaining greater diversity.


Conversely, for the larger population size (100), there is


sufficient diversity, and so niching does not help. From


our limited results, there appears to be no optimal set-


ting of rshare, other than rshare > 0. Indeed, the choice of


niche radius seems itself to be a problem with two


conflicting objectives: spanning the tradeoff curve versus


Pareto optimality.


5. Conclusions


In summary, the NPGA has been applied to a


groundwater quality management problem consisting of


active remediation by pump-and-treat. The sensitivity of


the algorithm to the parameters that control the be-


havior of the algorithm was assessed, namely population


size, tournament size, and niche radius. A population of


100 designs gave the best performance in terms of dis-


tribution of designs along the tradeoff curve. For the


two- and five-well cases, smaller populations (50 de-


signs) lacked sufficient diversity to adequately explore


the range of tradeoff curves. While larger population


sizes (150 designs) offered more diversity, a larger frac-


tion of the generated designs was inferior, for all of the


cases. When the population size is at an optimal value,


the NPGA is less sensitive to selection pressure, values


of crossover and mutation probabilities, and decision


variable precision.


There is an optimal degree of selection pressure, with


respect to the span of the tradeoff curve and the number


of Pareto optimal points. Increasing the selection


pressure via the tournament size produced solutions


with a more complete span of the tradeoff curve. How-


ever, too much selection pressure resulted in more in-


ferior solutions. Increasing the amount of selection


pressure via increasing the tournament size (from 2 to


10) produced solutions that spanned wider tradeoff


curves, but were inferior in some portions of the curve.


Niching appears to increase the span of the tradeoff


curve for various population sizes and selective pres-


sures (i.e., tournament sizes), but its effect on Pareto


optimality is unclear. It appears that the results are in-


sensitive to the value of the parameter that controls ni-


ching ðrshareÞ, as long as some niching is allowed.


A series of test problems was conducted where the


NPGA was compared to two other methods, SGA and


RS. As the problems increased in complexity, by con-


sidering additional decision variables, the NPGA was


more effective and efficient than either the SGA or the


RS in finding more Pareto optimal designs that span the


entire tradeoff curve. When applied to a 15-well


scenario, the niched Pareto genetic algorithm outper-


formed the SGA by finding 352 Pareto optimal designs


with 30% less effort than the three single-objective runs.


The NPGA produced solutions that were 25–250%


better performance than the RS, measured in terms of


the mass remaining for a given cost.


The NPGA can be an effective method for producing


tradeoff curves for subsurface remediation problems.


Tradeoff curves such as those presented here may give


decision makers the capability of making better in-


formed decisions. The NPGA can accommodate addi-


tional objective functions, such as maximizing reliability


or minimizing remediation time. The algorithm is flexi-


ble with respect to the number and types of decision


variables that can be considered. For example, future


studies may include extraction rates as a function of


location and time. Further tests of the applicability of


this approach should consider realistic, contaminated


sites, especially those with a significant degree of heter-


ogeneity.
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