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ABSTRACT 
 
This paper presents an improved genetic algorithm ap-
proach, based on new ranking strategy, to conduct multi-
objective optimization of simulation modeling problems. 
This approach integrates a simulation model with stochas-
tic nondomination-based multiobjective optimization tech-
nique and genetic algorithms. New genetic operators are 
introduced to enhance the algorithm performance of find-
ing Pareto optimal solutions and its efficiency in terms of 
computational effort. An elitism operator is employed to 
ensure the propagation of the Pareto optimal set, and a dy-
namic expansion operator to increase the population size. 
An importation operator is adapted to explore some new 
regions of the search space. Moreover, new concepts of 
stochastic and significant dominance are introduced to im-
prove the definition of dominance in stochastic environ-
ments.  
 
1 INTRODUCTION 
 
Most real-world problems involve multiple conflicting 
objectives where improving one objective may deteriorate 
the performance in terms of one or more other objectives.  
Many heuristic search algorithms have been developed to 
solve multiobjective optimization problems including ge-
netic algorithm (GA), simulated annealing, and tabu 
search. GA is a population-based search algorithm inspired 
by Darwinian evolutionary theory, survival of the fittest. It 
has been proven that GA is an intelligent optimization al-
gorithm able to balance the tradeoff between exploration 
and exploitation. Other major advantages of GA for multi-
objective optimization of simulation models include the 
following (Srinivas and Deb 1994): 
 

• GA-based approaches are capable of finding a 
number of optimal solutions rather than a single 
solution (Deb 2001). 
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• GA-based approaches are capable of exploring the 
search space more thoroughly with the smaller 
number performance(s) evaluations than those 
based on local search, such as simulated anneal-
ing, and tabu search (April et al. 2003). 

• GA-based approaches are less dependent on the 
good selection of the starting points, and they 
don’t require neighborhood definition (April et al. 
2003). 

 
Traditional approaches for solving multiobjective op-

timization problems try to scalarize the multiple objectives 
into a single objective and change the problem formulation 
to a single objective optimization problem in which only a 
global optimal point is desired. However, there are some 
drawbacks to these traditional approaches which encourage 
the researchers and practitioners to use nondomination-
based techniques to find a set of Pareto optimal points 
rather than just a single global optimal point (Silva and 
Biscaia 2003, Coello et al. 2002, Deb 2001, Srinivas and 
Deb 1994). The major drawbacks of traditional methods 
and motivations for using nondomination-based techniques 
include: 

 
• The priority vector used in the scalarization proc-

ess influences the final solutions. 
• Alternative solutions will not be available to deci-

sions makers without at least changing some pa-
rameters such as priority vector.   

• Some optimal solutions may never be found if the 
objective function is not convex (real-life prob-
lems are seldom convex) 

• There are implications in the homogenization of 
different performance measures, such as cost, 
quality of products, and cycle times, to a common 
unit of measure. 
3
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• Traditional approaches may not work effectively 
if objectives are noisy or have discontinuous vari-
able space. 

 
The purpose of this research is to develop a GA-based 

stochastic multiobjective optimization methodology to find 
Pareto optimal solutions for simulation models in a compu-
tationally efficient manner.  
 
2 BACKGROUND 
 
Our extensive review of the literature has revealed that 
only few attempts have been made in the area of multiob-
jective simulation optimization, most likely because of the 
existing uncertainties and complexities involved in the 
nature of the problems.  

Mollaghasemi et al. (1991) proposed an approach in 
which they integrated the gradient search method and mul-
tiple attribute value function. Evans et al. (1991) reviewed 
some of the best-known multiobjective optimization tech-
niques categorized based on the three types of approaches: 
prior, progressive, and posterior articulation preferences 
that can be used for optimization of simulation models.  

Mollaghasemi and Evans (1994) introduced an inter-
active approach based on the previously known multiob-
jective optimization approach, called STEP method. 
Briefly stated, STEP method is a multiobjective program-
ming algorithm which attempts to minimize the maximum 
deviation of objectives from the ideal solution using rela-
tive weight of deviations. A job shop model was used for 
application of the proposed interactive algorithm with six 
decision variables, the number of machines at each of six 
job stations, and four objectives including average time in 
system for three different part types and average machine 
utilization for all machine groups.  

Teleb and Azadivar (1994) introduced an interactive 
approach by modifying the simple search method assuming 
objective functions and stochastic constraints are normally 
distributed. Boyle and Shin (1996) suggested an interactive 
approach, Pairwise Comparison Stochastic Cutting Plane 
(PCSCP), combining features from multiobjective mathe-
matical programming and response surface methodology. 

Baesler and Sepulveda (2000) suggested a new ap-
proach for multiobjective simulation optimization by inte-
grating stochastic GA with goal programming method. 
This approach, unlike most previous approaches which 
disregard the stochastic nature of output responses, em-
ploys the variances of the responses in order to perform the 
search stochastically through the GA towards the solution 
with the minimum weighted deviations from the target 
levels. They used a statistical grouping procedure based on 
Tukey’s method to cluster the individuals in a population 
that there is statistical difference between individuals of 
two different groups, but not between individuals within a 
group. The same authors applied their proposed methodol-
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ogy to design a cancer treatment center facility (Baesler 
and Sepulveda 2001). The four decision variables of the 
underlying system include number of treatment chairs at 
ambulatory treatment center, number of blood nurses, labo-
ratory capacity, and pharmacy capacity. In this study, they 
considered four measures of system performance, includ-
ing minimization of patient’s waiting time and closing time 
and maximization of nurse utilization and chair utilization.  

Joines et al. (2002) introduced a GA-based multiobjec-
tive simulation optimization approach by modifying the 
second version of nondomination sorting genetic algorithm 
(NSGA-II), proposed by Deb and Goel (2002). They ap-
plied their enhanced methodology for a real-world supply 
chain optimization problem with two objectives, namely, 
gross margin return on investment and customer service 
level. Applying the methodology, they found Pareto opti-
mal solutions for different levels of customer service which 
provide a lot of information for the decision maker.  
 
3 METHODOLOGY 
 
This section presents the proposed methodology as a model-
ing framework for multiobjective simulation optimization 
problems.  The proposed approach integrates discrete event 
simulation techniques, stochastic nondomination-based mul-
tiobjective optimization technique, and genetic algorithms. 
In this methodology, real coded GA is implemented to avoid 
difficulties of binary representation and plenty of bit opera-
tions, particularly when dealing with continuous search 
space with large dimension (Herrera 1998). Each individual 
solution is represented by a vector x=(x1,x2,…,xn), in which a 
decision variable xi is represented by a real number within its 
lower limit ai and upper limit bi, i.e., xi∈ [ai,bi] and the di-
mension of the vector is equal to the number of decision 
variables of the problem under study.  

New operators are introduced to enhance algorithm 
performance of finding Pareto optimal solutions and its 
efficiency in terms of required computational effort. An 
elitism operator is implemented to ensure the propagation 
of the Pareto optimal set. An expansion operator, recently 
introduced by Shen and Daskin (2005), is employed to 
increase the population size of the GA up to the user-
specified maximum population size if the number of Pareto 
optimal solutions in the current generation exceeds half of 
its population size. An importation operator is adapted to 
explore some new regions of the search space. Moreover, 
the new concept of stochastic domination is introduced to 
improve the definition of domination in noisy and stochas-
tic environments.  

The steps of the proposed algorithm are as follows: 
 
1. Perform an initial experimentation in order to 

check the efficiency of using CRNs, estimate the 
initial population size, and possibly identify other 
parameter settings. 
4
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2. Create an initial population randomly or take 
user-specified individuals (or a combination of 
them). 

3. Evaluate objective functions of the individuals 
and register all of them in the corresponding file. 

4. Rank the population of individuals based on the 
new ranking strategy, and calculate their fitness 
values according to the new dummy fitness as-
signment. 

5. Register stochastically nondominated individuals 
in the Pareto set file and update the file by dis-
carding the dominated points. 

6. Update the population size and implement elitism 
operation. 

7. Employ importation operation to introduce a few 
new individuals randomly to the new population. 

8. Select the pairs of individuals as parents in the re-
production operation using 2-tournament selection 
scheme based on their assigned dummy fitness. 

9. Perform crossover and mutation operations to 
generate the offspring to fill in the remaining po-
sitions in the new population. 

10. If the stopping criterion is met, terminate the 
search; otherwise, return to step 3. 

11. Use the screening algorithm to reduce the ob-
tained large set of Pareto optimal solutions to a 
manageable size. 

 
Figure 1 depicts a flow diagram of this algorithm.  A 

detailed description of each operation and step is provided 
in the following sections. 

 
3.1 Initial Experimentation 
 
The first step of the proposed methodology is to perform 
an initial experimentation to check the efficiency of using 
CRNs, estimate the initial population size and possibly 
identify other parameter settings. This initial experimenta-
tion helps the experimenter to check the applicability of the 
variance reduction technique as well as identify the appro-
priate parameter settings in order to enhance the perform-
ance of the algorithm and reduce the computational effort.  

Employing CRNs is useful in reducing the variance 
when a positive correlation is induced among the design 
alternatives by putting them under similar experimental 
conditions.  However, there are situations where using 
CRNs might induce a negative correlation among the de-
sign alternatives which can result in increased variance. 
The effectiveness of CRNs can be tested by running the 
simulation model with n replications for two different al-
ternatives and checking whether or not the variance of their 
difference is less than the sum of their individual variances. 

Goldberg et al. (1992) has found that when dealing 
with noisy and uncertain objective functions, a larger 
population size should be considered. This avoids prema-
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ture convergence in a noisy and stochastic environment. 
Miller (1997) found that under certain assumptions there is 
a good approximation to estimate population size depend-
ing on the noise level. 

  
3.2 Initialization 

 
After estimating the initial population size, the initial popu-
lation can be created by random sampling of each decision 
variable within its range of variation. The user can also 
include some promising solutions if he or she has prior 
knowledge about the problem under study. Another ap-
proach is to take initial solutions from either the boundary 
of the search space or scan the search space with equal 
intervals as a grid. An initial population can be generated 
by combination of the methods described above. 

The evaluation of solutions in terms of the objective 
functions is accomplished by running the simulation model 
for a sufficient number of replications using a commercial 
simulation software package (for example, Arena Rock-
well software). In this way, the simulation software esti-
mates expected performance measures and their corre-
sponding half-widths (or variances) for all solutions in the 
current population. The solutions with their corresponding 
objective functions values are all registered in a database to 
reduce computational time in subsequent generations. 
 
3.3 Dominance in Simulation Context 

 
In deterministic context, most multiobjective optimization 
applications are converging towards using the nondomina-
tion-based approaches because of the aforementioned prob-
lems in classical multiobjective methods. Let’s assume that 
fi(A) and fi(B) are the values of objective function i 
(i=1,…,n) for two points A and B. Suppose that we want to 
minimize each objective function. It is defined that point A 
strictly dominates (is better than) point B if fi(A) is less 
than fi(B) for each i (i=1,…,n). Figure 2 illustrates the con-
cept of strict dominance graphically for a manufacturing 
system with two performance measures in which we want 
to minimize both average monthly cost and average cycle 
time for a specific product. As it is shown in Figure 2, de-
sign A strictly dominates all designs in the shaded region. 

The strict dominance definition must be modified for 
stochastic environments in which the objective functions 
don’t take certain values and they are described with the 
expected values and variances. This uncertainty is typically 
resulting from randomness effect involved in the simula-
tion modeling. Given the fact that in stochastic simulation 
models, we deal with noisy and random objective functions 
that are approximately normally distributed, we use differ-
ent definitions to compare two points in the population.  In 
such an environment, let’s assume that (A)if , 2

Aσ  and 

(B)if , 2σ B  are the expected values and variances of ob-



Eskandari, Rabelo, and Mollaghasemi 

 
jective function i (i=1,…,n) for two points A and B, re-
spectively. 

Definition 1    Point A stochastically dominates (is 
better than) point B if (A)if  is less than (B)if  for each i 
(i=1,…,n). 

In this case, because of the uncertainty involved in the 
objective function values, we are not sure whether or not 
Point A deterministically (or strictly) dominates (is better 
than) point B. As a result, we modify the strict dominance 
definition to stochastic dominance by taking the expected 
values of objective functions rather than certain values in 
83
deterministic context. However, in the stochastic environ-
ment we might be interested in knowing whether or not 
there is significant difference between the two points in our 
analysis. 

Definition 2    Point A significantly dominates (is bet-
ter than) point B with a confidence level of (1-α)% if prob-

ability of 
1

( ( ) ( ))
n

i i
i

P f A f B
=

<∏ α−≥1 , where α is signifi-

cance level ( 10 ≤≤ α ). 
 

 
Figure 1: Flow Diagram of Methodology for Multiobjective Simulation Optimization 
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Figure 2: Illustration of Strict Dominance 
 
Theorem 1    If x and y are independent normal ran-

dom variables with means xμ  and yμ  ( xμ < yμ ), and vari-

ances 2
xσ  and 2

yσ , the probability of P(x<y)=  

2 2
1 ( )y x

x y

Q
μ μ

σ σ

−
= −

+
, where the Gaussian error integral 

21( ) 1 ( )
2

t

x
Q x x e dt

π
∞ −= − Φ = ∫ . 

Proof    If x and y are independent normal random 
variables with means μx and μy and variances 2

xσ  and 2
yσ , 

the probability of y is greater than x is calculated as P(x < 
y) = P(0 < y – x). Assuming μx < μy , the change of vari-
able t = y – x results in P(x < y) = P(0 < t), where t is a 
normal random variable with mean tμ = yμ – xμ  and vari-

ance 2 2 2
t x yσ σ σ= +  as shown in Figure 3. 

Now, the probability of P(x < y) = P(0 < t) is calcu-
lated as 

 

2 2 2 2

( )0(0 ) ( ) ( ) 1 ( )y x y xt

t x y x y

P t Q Q Q
μ μ μ μμ

σ σ σ σ σ

− − −−< = = = −
+ +

,  (1) 

 
since Q(–x)=1–Q(–x).             

The integral described for Q(x) does not have a closed-
form expression, but an excellent closed-form approxima-
tion is suggested by Borjesson and Sundberg (1979) to 
estimate Q(x) with an acceptable error. 

The next section describes how this calculated prob-
ability can be employed to improve the concepts of the 
stochastic and significant dominance in the simulation con-
text. 

 

Point A strictly dominates all 
points in the shaded region 

f2 

Minimize 

M
in

im
iz

e 

A 

B 

f1 
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Figure 3: Plot of Normal Random Variable t 

 
tion. Firstly, all stochastically nondominated individuals of 
the population are identified as the first category and as-
signed the dummy fitness value Fi of zero, which implies 
that there is no individual in the current population that is 
stochastically better than these identified individuals with 
respect to all objectives. The remaining individuals are 
stochastically dominated points which are compared to the 
nondominated points. Each stochastically dominated point 
in question is compared with the closest nondominated 
point to it (Figure 4). In this case, each stochastically 
dominated individual is assigned the dummy fitness equal 
to the product of superior probabilities between the domi-
nated point in question B and the closest nondominated 
point A, that is, 

1

( ( ) ( ))
n

i i
i

P f A f B
=

<∏ . This method of calcu-

lating the dummy fitness value has two advantages. First, 
given that the dominated points will eventually move to-
wards the tradeoff curve, the dummy fitness assignments 
for the dominated points are calculated by comparing their 
position to their nearest point located in the tradeoff curve. 
Secondly, the dummy fitness assignment considers supe-
rior probability for stochastic environment giving more 
chance to be reproduced to the dominated point with 
higher variance, but with the same distance from the non-
dominated point. 

 
Figure 4: Illustration of Dummy Fitness Assignment for 
a Dominated Point 
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3.6 Crossover and Mutation 

 
The pairs of selected parents in the reproduction process 
are submitted to the crossover and mutation operators to 
produce two offspring for the new population. The cross-
over operator exchanges the information between two par-
ents with a pre-specified probability of occurrence pc. A 
blended crossover operator (BLX-α), introduced by 
Eshelman et al. (1993), is performed in this algorithm. This 
operator starts by choosing randomly a number from the 
interval [xi−α(yi− xi), yi+α(yi− xi)] where xi, yi are the ith 
parameter values of the parent solutions and xi < yi. To en-
sure the balance between exploitation and exploration of 
the search space, α=0.5 is selected. This operator is de-
picted in Figure 5, where ai and bi are lower and upper 
bounds of the decision variable, respectively. 
 

          
Figure 5: Blend Crossover Operator 

 
After the crossover operation, the newly obtained so-

lutions are exposed to mutation operation with a pre-
specified probability of occurrence pm. The non-uniform 
mutation operator, introduced by Michalewicz (1992), is 
employed. The new value of the parameter after mutation 
at generation t is given as  

 

 ' ( , ) 0
( , ) 1

i i i
i

i i i

x t b x if
x

x t x a if
τ
τ

+ Δ − =⎧
= ⎨ − Δ − =⎩

 (2) 

 
with τ being a random number which may have a value of 
zero or one, and 

 max
(1 )

( , ) 1
t

gt y y r
β− ⎞⎛Δ = −⎜ ⎟⎝ ⎠

 (3) 

 
where r is a random number from the interval [0,1], gmax is 
the maximum number of generations, and β is a parameter 
chosen by the user, which determines the degree of de-
pendency on the number of iterations. The interested 
reader is referred to the comprehensive paper written by 
Herrera (1998) for information on different variants of 
crossover and mutation operators for the RCGA. 
 

exploitation 

exploration 

xi yi ai bi

xi−α(yi− xi) yi+α(yi− xi) 
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3.7 New Population Generation 
 
In order to enhance the algorithm performance and reduce 
the required computational time, a few genetic operators 
have been introduced to conduct the search process in the 
right direction.  These genetic operators include elitism, 
expansion, importation, and crowded tournament selection. 
An elitism operator is implemented to ensure the propaga-
tion of the Pareto optimal individuals (best solutions) to the 
next generation. This is accomplished by copying all sto-
chastically nondominated individuals in the current genera-
tion to the next generation. Because the number of nondo-
minated solutions might become quite large, an expansion 
operator, recently introduced by Shen and Daskin (2005), 
is employed to increase the population size up to the user-
specified maximum population size. In this case, if the 
number of Pareto optimal points in the current generation 
exceeds half of the current population size, the new popu-
lation size is updated as twice the number of the nondomi-
nated individuals in order to create sufficient room for gen-
erating new individuals in the new population. If the up-
dated population size exceeds the maximum population 
size, the crowded tournament selection operator (discussed 
in the next section) is activated to take the proportion of 
the nondominated individuals based on their diversity 
along the tradeoff curve. In this case, only half of the 
maximum population size is filled by nondominated indi-
viduals using the crowded tournament selection operator. 
In order to fill in the remaining room in the new genera-
tion, 80% of the remaining room is occupied by the off-
spring created via crossover and mutation operators and the 
other 20% are filled in by randomly generated new indi-
viduals using an importation operator (Shen and Daskin 
2005). An importation operator is adapted to explore some 
new regions of the search space if they have possibly not 
been sampled yet. 
 
3.8 Crowding Distance  

 
In order to take the right proportion of nondominated solu-
tions in the sense of maintaining a good spread of indi-
viduals along the tradeoff curve, a crowded tournament 
selection operator, originally introduced by Deb (2002) in 
NSGA-II, is employed. This new approach does not have 
the problems of using the sharing function method includ-
ing appropriate selection of sharing parameter σshare and 
the large computational complexity. Briefly explained, 
crowding distance estimates the density of the individuals 
surrounding a particular individual in the population. It is 
done by calculating the average distance of two points in 
either side of the point in question along each of the objec-
tives. This measure, called the crowding distance, is used 
as an estimate of the perimeter of the cuboids formed by 
using the nearest neighbors as the vertices. Figure 6 shows 
how the crowding distance of an individual p is calculated 
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as the average side length of the cuboid. After all nondo-
minated points in the population are assigned distance 
crowding values, individuals can be compared against one 
another. The distance tournament selection operator is per-
formed to select the right subset of the nondominated set to 
copy to the next population. The interested reader is re-
ferred to Deb (2001) and Deb et al. (2002) for additional 
information. 
 
3.9 Stopping Criterion 

 
There are different approaches used to stop the sequence of 
successive population generations depending on the form 
of the response surface, the quality of desired optimal solu-
tion, and the assigned computational time. In this method-
ology, a stopping criterion is adopted based on the conver-
gence speed towards Pareto optimal curve. If in the pre-
specified number of consecutive generations, no consider-
able improvement is found in the quality of the Pareto op-
timal curve, the algorithm is stopped. Alternatively, in the 
case of the assigned certain amount of computational time, 
the algorithm could be stopped after a specific number of 
generations.  In this case, the Pareto optimal solutions 
found at the end of the search are used in the final step of 
the optimization process (screening Pareto set by cluster-
ing). It is important to note that a careful monitoring of the 
algorithm evolution is crucial to ensure that a sufficient 
number of generations is assigned for the successive con-
vergence. The results obtained from the initial experimen-
tation could provide good insight about the complexity of 
the underlying problem. 
 

 
Figure 6: Illustration of Crowding Distance Calculation 

 
3.10 Screening Pareto Set by Clustering 

 
Since in most nondomination-based multiobjective prob-
lems the size of the Pareto optimal set becomes extremely 
large, some tools should be employed to prune it to man-
ageable size for the decision maker. The literature review 
on cluster analysis reveals that there are several methods 
proposed for this purpose. For example, Morse (1980) pro-
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vided a comprehensive review of different clustering meth-
ods including two general forms of direct and hierarchical 
clustering. The basic idea is to portray the nondominated 
set by a representative subset which reflects the character-
istics of the main set without destroying any attributes of 
the obtained curve. In general, cluster analysis partitions a 
collection of N elements into P groups of relatively homo-
geneous elements, where P < N, selecting a representative 
individual for each of the P clusters. 

In this methodology, an average linkage hierarchical 
clustering, introduced independently by several authors, is 
adopted to screen out the probably large Pareto optimal set 
obtained at the end of the search process. The mechanism 
is simple and the two clusters with minimum average dis-
tance are combined together into a larger cluster. This 
process continues until the desired number of clusters is 
gained. Then, the nearest solution to the centroid of each 
cluster is selected and the remainders are removed. 
 
4   FUTURE WORK 
 
Since this is an ongoing research effort, there are many 
aspects that have to be examined. First of all, in order to 
verify and validate the proposed algorithm, its performance 
and efficiency should be checked by applying it to a few 
test bed problems with different attributes and properties, 
including number and types of decision variables, decision 
variables’ domains, number of objectives, discontinuity, 
multimodality, and noise level. Test bed problems could 
include a job shop model, introduced by Mollaghasemi and 
Evans (1994), with six integer decision variables and four 
objectives, and/or a flexible manufacturing system and a 
numerical example used by Teleb and Azadivar (1994). 
Then, the proposed algorithm should be benchmarked with 
a few state-of-the-art algorithms to prove its advantages 
and usefulness. These algorithms could be some of the 
methods found in the open literature of multiobjective 
simulation optimization (for example, see Avello et al. 
2004, Baesler and Sepulveda 2000) or multiobjective evo-
lutionary algorithms (see Deb 2001, Coello et al. 2002). 

Since parameter settings of the genetic algorithms will 
strongly affect its performance and efficiency, appropriate 
selection of the algorithm parameters is highly desired. 
Although a good estimation of population size is given, 
appropriate options of other algorithm parameters includ-
ing crossover and mutation rates and number of replica-
tions should be well investigated and helpfully suggested. 
It is worth mentioning that appropriate selection of these 
parameters strongly depends on the nature of the problem 
under study. 

The algorithm is going to be applied to the real-world 
simulation problem of modeling the Space Shuttle flight 
hardware processes. The interested reader is referred to 
Mollaghasemi et al. (2000) and Cates et al. (2002) for addi-
tional information.  This complicated problem consists of 



Eskandari, Rabelo, and Mollaghasemi 

 
more than 20 decision variables and two objectives of 
maximization of flight rate and safety. 

Finally, user friendly software should be developed for 
the proposed algorithm so that many researchers and prac-
titioners could take advantage of that. It is advisable that 
the developed software be compatible and capable of being 
integrated with most common commercial simulation soft-
ware packages. 
 
5   CONCLUSIONS 

 
This paper presents an enhanced genetic algorithm ap-
proach for dealing with multiobjective simulation optimi-
zation problems. This approach integrates a simulation 
model with a stochastic nondomination-based multiobjec-
tive optimization method and genetic algorithms. New 
genetic operators have been introduced to enhance the al-
gorithm performance in finding Pareto optimal solutions 
and its efficiency in terms of required computational effort 
as well as its robustness against noise. New concepts of 
stochastic and significant dominance employed in noisy 
environments could provide a more precise measure for 
better discrimination among competing design alternatives 
and handling uncertainty in simulation context.  

Future research will focus on many aspects of this on-
going research. These include verification of the proposed 
algorithm by applying the approach to well-known test bed 
problems with different properties, and benchmarks with 
some of the state-of-the-art algorithms.   
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