Knowledge-Based
— SYSTEMS—

Knowledge-Based Systems 15 (2002) 13-25

www.elsevier.com/locate/knosys

Enhanced evolutionary algorithms for single and multiobjective
optimization in the job shop scheduling problem

S. Esquivel®®, S. Ferrero®, R. Gallard®, C. Salto®, H. Alfonso®, M. Schiitz

*Laboratorio de Investigacion y Desarrollo en Inteligencia Computacional (LIDIC), Universidad Nacional de San Luis, Ejército de los Andes 950, Local 106,
5700 San Luis, Argentina
bProyecto UNLPAM-09/F009, Departamento de Informdtica, Universidad Nacional de La Pampa, Calle 110 esq. 9, Local 14, 6360, General Pico, La Pampa,
Argentina
Center for Applied Systems Analysis (CASA), Informatik Centrum Dortmund (ICD), Joseph-von-Fraunhofer, Str 20, D-44227 Dortmund, Germany

Abstract

Over the past few years, a continually increasing number of research efforts have investigated the application of evolutionary computation
techniques for the solution of scheduling problems. Scheduling can pose extremely complex combinatorial optimization problems, which
belong to the NP-hard family. Last enhancements on evolutionary algorithms include new multirecombinative approaches. Multiple Cross-
overs Per Couple (MCPC) allows multiple crossovers on the couple selected for mating and Multiple Crossovers on Multiple Parents
(MCMP) do this but on a set of more than two parents. Techniques for preventing incest also help to avoid premature convergence. Issues on
representation and operators influence efficiency and efficacy of the algorithm. The present paper shows how enhanced evolutionary
approaches, can solve the Job Shop Scheduling Problem (JSSP) in single and multiobjective optimization. © 2002 Elsevier Science B.V.

All rights reserved.

Keywords: Evolutionary algorithms; Multiplicity of crosoovers and parents; Scheduling; Single and multiobjective optimization

1. Introduction

Due to its complexity [1] and reflecting the industrial
relevance of this application domain, a variety of evolution-
ary schedulers based on genetic algorithms have been
reported in the literature in the past [2—11]. In general, the
task of scheduling is the allocation of jobs over time when
limited resources are available, where a number of objec-
tives should be optimized, and several constraints must be
satisfied. A job is determined by a predefined set of opera-
tions, and the result of a scheduling algorithm is a schedule
that contains the start times and allocation of resources to
each operation [12]. Improvements in evolutionary algo-
rithms (EAs) have been recently found by using a multi-
plicity feature, which allows multiple recombination on a
couple of parents or on multiple parents [13—16]. The
method was successfully applied to multimodal optimiza-
tion problems. As a consequence of this approach, it was
detected that all individuals of the final population are much

* Corresponding author.

E-mail addresses: esquivel@unsl.edu (S. Esquivel), swf@unsl.edu
(S. Ferrero), rgallard@unsl.edu (R. Gallard), saltoc@ing.unlpam.edu.ar
(C. Salto), alfonsoh@ing.unlpam.edu.ar (H. Alfonso), schuetz@icd.de
(M. Schiitz).

more centered on the optimum. This is an important issue
when the application requires provision of multiple alterna-
tive near-optimal solutions confronting system dynamics as
in production planning.

The idea of incest prevention, was initially proposed by
Eshelman and Shaffer [17] and it showed its benefits to
avoid premature convergence. The method avoided mating
of pairs showing similarities based on the parents’
Hamming distance. Incest prevention was extended in an
earlier work by maintaining information about ancestors
within the chromosome and modifying the selection for
reproduction in order to prevent mating of individuals
belonging to the same ‘family’, for a predefined number
of generations. This novel approach was also tested on a
set of multimodal functions. Description of experiments
and analyses of improved results can be seen in Ref. [18].
Current trends in chromosome representation are problem-
dependent and genetic operators are closely related to repre-
sentation.

In scheduling the quality of a schedule is measured by
means of an objective function, which assigns a numerical
value to a schedule. In our case, for single objective opti-
mization the completion time of the last job abandoning the
system (makespan) is optimized. For multiobjective optimi-
zation, an aggregative approach with three objectives

0950-7051/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0950-7051(01)00117-4

14 S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25

(makespan, global earliness and weighted completion time)
was first considered, then a Pareto optimality problem with
two objectives (makespan, mean absolute deviation from a
common due date) was studied. Section 2 discusses multi-
recombination and incest prevention as means to enhance
EAs. Section 3 is related to single objective JSSP optimiza-
tion. Section 4 discusses aggregative and Pareto multiobjec-
tive JSSP optimizations. Section 5 discusses the
conclusions.

2. The mechanisms for improvements

In this section multirecombination and incest prevention,
as means to improve EAs, are discussed.

2.1. Multirecombination

In EAs the common approach is to operate once on each
mating pair after selection. Such procedure is known as the
Single Crossover Per Couple (SCPC) approach. But in
nature, when the mating process is carried out, crossover
is applied many times and the consequence is a multiple and
variable number of offspring.

Multiple Crossover Per Couple (MCPC) [13] is a novel
crossover method. It was applied to optimize classic testing
functions and some harder (non-linear, non-separable) func-
tions. For each mating pair MCPC allows a variable number
of children. It is possible to choose for insertion in the next
generation the best, a randomly selected or all of the gener-
ated offspring. In previous works, it was noticed that in
some cases MCPC found better results than those provided
by SCPC. Also a reduced running time resulted when the
number of crossovers per couple increased, and best quality
results were obtained allowing between 2 and 4 crossover
per couple. Moreover, seeking for exploitation of a greater
sample of the problem space, an extended multi-recombina-
tion can be applied to a set of more than two parents. In
Eiben’s multiparent (MP) approach [19,20], offspring crea-
tion is based on a larger sample from the search space and
consequently larger diversity is supplied. This can help to
avoid premature convergence. Eiben used, three Scanning
Crossover (SX) methods; Uniform Scanning Crossover
(USX), Occurrence Based Scanning (OBSX) and Fitness
Based Scanning (FBSX) generating a single offspring. In
USX, each gene in the child is provided from any of the
corresponding genes in the parents with equal probability.
OBSX selects that gene value which occurs more frequently
in a particular position of the parent’s chromosomes. FBSX
chooses the value to inherit being proportional to the fitness
value of the parents. On different function optimization
different versions of scanning crossover showed different
behavior. Following this idea and to improve performance,
Multiple Crossovers on Multiple Parents (MCMP) allows
multiple recombination of multiple parents under scanning
crossover (SX), expecting that exploitation and exploration
of the problem space be adequately balanced [16].

2.2. Extended incest prevention (EIP)

The extension of the concept of incest is strongly related
to the mating members of the same family. To prevent incest
EIP allows only recombination of individuals without
common ancestors. To build the new population in EIP,
individuals are randomly chosen from the previous one
according to the conventional fitness proportional selection,
but they are allowed to crossover if no common ancestors
are detected in earlier generations. In this way, exchange of
similar genetic material is reduced and population diversity
is maintained up to some convenient degree. Consequently,
each individual maintains information about their ancestors.
Persistent high population diversity has also a detrimental
effect: to slow down the search process. To make this point
clearer we have to note that by allowing crossover only on
some non-relative individuals, we modify the effect of the
selection mechanism on the population.

In the evolutionary process two important, closely
related, issues exist: population diversity and selective pres-
sure enforced by the mechanism. They are the sides of the
same coin: exploration of the searching space versus exploi-
tation of information gathered so far. Selection plays an
important role here because strong selective pressure can
lead to premature convergence and weak selective pressure
can make the search ineffective. In this work we addressed
the issue by fixing the number of generations to determine
the ancestry relationship between individuals.

2.3. Multiplicity and incest prevention (MCMPIP)

The following pseudo-code delineates a procedure to
prevent incest between members of the same or consecutive
generations (brother—sister and parent—offspring), when a
number of n, > 2 parents are used

procedure MCMPIP (multiple crossovers, multiple
parents, incest prevention)
begin
int mating_pool[number_of_parents]//array to store
selected parents
int children_pool[number_of_cross]//array to store
created offspring
for 1 to popsize
select indiv-1 C(t)//C(t) is the current population
mating_pool[1] = indiv-1
i=2
while (i = number_of_parents)
repeat
select indiv-i C(7)
until(is_not_relative(mating_pool, indiv-i))//control
of no common ancestry and
uniqueness of parents in the mating pool
matting_pool[i] = indiv-i
i=it+1
end while

S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25 15

recombine using MCMP and mutate individuals
from mating_pool to children_pool
select the best individual from children_pool build-
ing the new population C'(7)
end for
end procedure

3. Single objective optimization

In JSSP the main difficulty encountered is that of specify-
ing an appropriate representation of feasible schedules. The
ways of representation can be direct or indirect [21]. In
direct representation, the schedule produced is itself used
as a chromosome. A decoder procedure is not necessary but
specific genetic operators should be designed [22,23]. In
indirect representation a transition from chromosome repre-
sentation to a legal schedule has to be performed by a sche-
dule builder prior to evaluation [9,10,21,24].

In this work, two different representations are used which
belong to the indirect group. They are the decoders and
priority rule based representations.

3.1. Indirect representations: decoders and priority rule
based representations

Under this approach, the evolutionary algorithm performs
a blind reproduction of encoded solutions by applying the
conventional operators. The domain knowledge remains
separated within the evaluation procedure to determine the
fitness.

3.1.1. Job based representation and decoders

In JSSP, a job based representation, consists of a list of n
jobs and a schedule is built according to the sequence of
jobs. Here we deal with permutations, and if chromosomes
are encoded as permutations adequate genetic operators,
such as Partially Mapped Crossover (PMX) [25], Order
Crossover (OX) [26], and Cycle Crossover (CX) [27] should
be used. Nevertheless, another way to face a problem invol-
ving permutations is by the use of decoders. Here a chromo-
some is an n-vector where the ith component is an integer in
the range 1...(n — i + 1). The chromosome is interpreted as
a strategy to extract items from an ordered list L and build a
permutation. For example if L = (1,2, 3,4) then for deco-
ders (chromosomes) (1111) and (3121) the corresponding
permutations are (1234) and (3142), respectively.

A decoder is a mapping from the representation space
into a feasible part of the solution space, which includes
mappings between representations that evolve and represen-
tations that constitute the input for the evaluation function.
This simplifies implementation and produces feasible
offspring under different conventional crossover methods,
avoiding the use of penalties or repair actions.

3.1.2. Priority rule based representation

In Ref. [28] a priority-rule-based genetic algorithm is
proposed. Under this approach, a chromosome is encoded
as a sequence of dispatching rules for job assignment and a
schedule is built with a priority dispatching heuristic based
on the sequence of dispatching rules. EAs are used here to
evolve those chromosomes improving the sequences of
dispatching rules. Priority dispatching rules are frequently
applied heuristics for solving scheduling problems due to
their ease of implementation and low time complexity.
Giffler and Thompson’s algorithm can be considered as
the basis of priority rule based heuristics [1,29]. The main
problem is to determine an effective priority rule. The most
commonly priority rules used in practice are: Shortest
Processing Time, Longest Processing Time, Most Work
Remaining, Least Work Remaining, Most Operations
Remaining, Least Operations Remaining, Earliest Due
Date, First come first served and Random.

For an n jobs and m machines problem, under this repre-
sentation, a chromosome is a string of n X m entries (p,
Pas---Pum)-Bach entry represents one of the pre-specified
rules. The entry p;, indicates that a conflict in the ith iteration
of the Giffler and Thompson algorithm should be resolved
by using the priority rule p; (an operation from the conflict
set has to be selected by rule p;). Ties are broken at random.
Let

PS,; = a partial schedule containing ¢ scheduled opera-
tions.

S; = the set of schedulable operations at iteration ¢, corre-
sponding to PS;.

o; = the earliest time at which operation i € S, could be
started.

¢; = the earliest time at which operation i € S, could be
completed.

C, = the set of conflicting operations in iteration z.

The procedure to deduce schedule from a given chromo-
some (P, Ps-.-,Pum) 18 given below:

Procedure: builder (Deduce a schedule for Priority-
Rule-Based Encoding)

1. Let t = 1 and begin with PS, as the null partial schedule
and let S, include all operations with no predecessors.

2. Determine ¢, = min;cS,{¢;} and the machine m" on
which ¢, could be realized. If more than one such
machine exists, the tie is broken by a random choice.

3. Form a conflicting set C, which includes all operations
i € S, with o; < ¢, that require machine m". Select one
operation from C, by the priority rule p, and add this
operation to PS, as early as possible, thus creating a
new partial schedule PS,;;. If more than one operation
exists according to the priority rule p,, the tie is broken by
a random choice.

4. Update PS,., by removing the selected operation from S,
and adding the direct successor of the operation to S,.

16 S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25

La06 - Ebest
15
1 *
05 h\
0 —-—Bo—v—-—v—'4=¥l—v—-—v—é—l—v—:>-—v—

N AN B B DD N R G S B
Q’b@'b ,b’b\b‘ Q’b‘ q/b« ’bb‘ &@6@9)\6

[—#— MCMP-Dec —#— MCMP-PRB |

Fig. 1. Ebest values from both algorithms for the /a06 instance.

Increment ¢ by one.
5. Return to step 2 until a complete schedule is generated.

3.2. Experiments and results

We refer now to design of experiments and results for
single objective optimization in JSSP: minimizing the
makespan.

3.2.1. MCMP-Dec and MCMPIP-Dec

First, under decode representation, MCMP-Dec and
MCMPIP-Dec, were contrasted for a set of six Lawrence’s
instances [30] (n jobs X m machines), with known optimal
makespan. They were la06 (15X5), lal2 (20X)5), lal5
(20Xx5), lal6 (10x10), abz6 (10x10), and abz7
(20X 15). A total of, 72 different experiments were
designed. For each instance a series of fifteen runs was
performed. Experiments corresponded to different number
of crossovers and number of parents (n;, n,) combinations,
SX and multi-recombination methods. The evolutionary
algorithms used proportional selection for mating and elit-
ism to retain the best-valued individual. Parameter settings
were the same for both methods except population size. In
our experiments, it was fixed at 50 and 120 individuals for
MCMP-Dec and MCMPIP-Dec, respectively. All three
scanning crossover methods were implemented and for
insertion in the next generation the best child was chosen
(n3 = 1). Number of crossovers and parents were set to:
1=n =4 and 3 =n, =5, respectively. For mutation a
big-creep operator, replacing the gene value by another in
the permitted range was used. The maximum number of
generations was fixed at 500 and probabilities for crossover
and mutation were fixed at 0.8 and 0.01, respectively. These

La06 - Epop
40
30 \
0Ta & /A &, T,
o S 7 S 7 S

'b\'b\\tx\tx\&u\@\@@va\
Q@@@Q@@\Q@@\

|—0—MCPM-Dec —=— MCMP-PRB |

Fig. 2. Epop values from both algorithms for the /a06 instance.

values were determined as the best combination of probabil-
ities after many initial trials. The following relevant perfor-
mance variables were chosen:

Ebest = (Abs(opt_val — best value)/opt_val)100

It is the percentile error of the best found individual when
compared with the known, or estimated, optimum value
opt_val. It gives us a measure of how far are we from that
opt_val.

Epop = (Abs(opt_val — pop mean fitness)/opt_val)100

It is the percentile error of the population mean fitness
when compared with opt_val. It tells us how far the mean
fitness is from that opt_val.

We discuss here results regarding the algorithms behavior
on demonstrative instance /a06 only for both MCMP-Dec
and MCMPIP-Dec under USX, FBSX and OBSX.

For this instance, both MCMP-Dec and MCMPIP-Dec
find the optimum under any SX method in 70% of the
experiments performed. The optimum is not reach in the
case in which a single crossover (SCPC) is applied and
better results are, in general, attained when the number n,;
of crossovers is increased, independently of the number #n,
of parents used for mating.

Ebest values range from 0 to 1.08, while the average best
performance is for MCMP-Dec with FBSX followed by
MCMIP-Dec with the same SX crossover method. Epop
values range from 1.48 to 28.31 and minimum values
ranging from 1.48 to 3.84 are found with n; = 4 and n, =
5. This means that the whole population is more concen-
trated around the best-found individual. A general overview
indicated a loss of performance on both methods for more
complex instances. In particular, for abz6 Ebest values
range from 11.03 to 11.98, and Epop values range from
14.63 to 47.99. This fact shows that as long as the complex-
ity of the searching space augments it is more difficult for
both methods to find near-optimal schedules. This is parti-
cularly true when the number of machines is incremented
(lal6, abz6 and abz7). This effect can be expected because
the coding space (job permutations) corresponds to only a
part of the whole solution space and it is the price to be paid
for straightforward providing feasible offspring. Neverthe-
less, the performance is better than using simple genetic
algorithms (SCPC) and can be improved by alternative
representations.

3.2.2. MCMP-Dec and MCMP-PRB

After these results, a new set of experiments included a
comparison of multiple crossovers on multiple parents and
SCPC. As MCMPIP-Dec showed to be too costly when
compared against MCMP-Dec without providing sensible
extra benefits the next experiments considered only decode
(MCMP-Dec) and priority rule based representation
(MCMP-PRB). All algorithms were contrasted for the
same set of selected instances of the JSSP. A total of 60
different experiments corresponding to different (n;, n,)

S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25 17

La06 - Gbest

400

300
200 1
100 1
0 L e e e e B

DA TN AT FEA AR TR
&P @ 0P 0PN o NP 6?0 0P

||:| MCMP-Dec ® MCMP-PRB

Fig. 3. Gbest values from both algorithms for the /a06 instance.

combinations, USX and multi-recombination methods were
designed. For each instance a series of ten runs was
performed. The evolutionary algorithms used proportional
selection for mating and elitism to retain the best valued
individual. The population size was fixed at 50 individuals.
The parameter settings and performance variables were the
same as in the previous described experiment. Additionally
Gbest (the generation where the best solution was found)
was recorded. Figs. 1-6 summarize results on demonstra-
tive instances /a06 and abz6. The notation specifies in the
horizontal edge the number of crossovers and parents, for
example (1,3) references to the combination of 1 crossover
on 3 parents. Fig. 1 shows that all possible combinations
(ny,ny) under MCMP-PRB reach the optimum. This situa-
tion is present in only some combinations of MCMP-Dec,
but even so errors are very small (the greater reaches 1%).

Analyzing Epop (Fig. 2), we can see that there is a rela-
tion between the number of crossover applied and the qual-
ity of obtained solutions. That is, lower population errors are
obtained when the number of crossover is incremented.
When n; = 1 (SCPC), high peaks are observed in both algo-
rithm (29.15% in MCMP-Dec and 17.38% in MCMP-PBR).
In MCMP-Dec, Epop varies in a range from 6 to 29.15%
while for MCMP-PRB it ranges from 0.084 to 17.38%. In
both algorithms, the final population turns out to be more
and more closer to the optimum as long as », is incremented.
This is clearly indicated by the waveform of Fig. 2.

Regarding Gbest, (see Fig. 3) MCMP-PRB founds the
optimum in a lower number of generations (10—105) than
MCMP-Dec (157-326).

In MCMP-PRB, the maximum generation number to find
the best value over all instances does not exceed the mini-
mum achieved by MCMP-Dec.

Fig. 4 shows that the optimum is not found by the

Abz6 - Ebest

15
w0 /.\ }\
0

\ \) \ \ A
Q\@%\@% o ,\/b}q/b)@b‘\b‘(\fa Q<o ,56\\6

{ S S S s s s s— — — a— a—

|—0—MCMP-Dec —=— MCMP-PRB |

Fig. 4. Ebest values from both algorithms for the abz6 instance.

algorithms but while MCMP-Dec remains in a local opti-
mum for all (n;, ny) combinations (with Ebest equal to
11.03%) MCPC-PBR Ebest values are much lower (ranging
from 1.06 to 7.21%). Best values are found for n;between 2
and 4.

Again in Fig. 5 the same systematic behavior is observed.
Epop diminishes as long as n,is incremented. Larger Epop
changes are produced when n; varies from one to two. From
n; = 2, the Epop values start to be more stable. For exam-
ple, in MCMP-PRB and three parents, Epop values range
from 28.69 (SCPC) to 4.07% (MCMP). As it happened with
Ebest values, MCMP-PRB presents a remarkable better
behavior than MCMP-Dec providing better Epop values.

In Fig. 6 it is shown that MCMP-Dec needs less number
of generation to find the best individual than MCMP-PRB.
According to results of Fig. 4, this fact clearly show prema-
ture convergence and search stagnation.

In this section dedicated to single objective optimization
a first approach with multirecombination combined with
incest prevention (MCMPIP-Dec) was undertook for differ-
ent scanning crossover methods under a decoder representa-
tion and contrasted against MCMP-Dec. As a general
conclusion, we observe that results indicated that incest
prevention is too expensive in processing time without
providing noticeable extra benefits in the quality of results.
Consequently, further work concentrated on hybrid
approach including multiplicity of crossovers and parents
(MCMP) coupled with a more problem specific representa-
tion (PRB). The same testing set was used and after a series
of trials, the analysis of results suggests that MCMP-PBR
reaches the optimum for any (n;, n,) combination for la06,
la0l, lal2 and lal5 instances. When instance complexity
increases it became harder for both algorithms to find the
optimum and this problem is stronger under MCMP-Dec
where a tendency to stagnate the search is detected. Both
algorithms find near optimal solutions in less than 3 min
running time in standard workstations. In general, MCMP-
PBR performs better than MCMP-Dec (in harder instances
as abz6, the method has higher ability to scape local
optima).

4. Multiobjective optimization

Multiobjective optimization, also known as vector-valued
criteria or multicriteria optimization, have long been used in
many application areas where a problem involves multiple
objectives, often conflicting, to be met or optimized. Sche-
duling problems is one of such application areas whose
importance lays on its economical impact and its complex-
ity. In multiobjective optimization Fonseca and Flemming
[31] classified as plain aggregative approaches those meth-
ods where a single objective function resulting as a numer-
ical combination of objectives values is to be optimized.
Here decisions on multicriteria [32] are made before search-
ing. The unique objective function obtained by aggregation

18 S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25

Abz6 - Epop

50
40 % v
gg‘R»\ /'\w\
10 i.‘ \.\"\L
0 LI E— T T -—v—-

DR AP RIS AR AN
(\/@@\"‘QQ’@\"‘QQ’C’\

—e— MCMP-Dec —8— MCMP-PRB |

Fig. 5. Epop values from both algorithms for the abz6 instance.

of multiple objectives is used to establish a total order in the
solutions’ space. This measure provides then a basis for
selection of individuals. In this way, an evolutionary algo-
rithm performs as usual finding the fittest individuals for
that single aggregated function. Bhanu and Lee [33] and
Vemuri and Cedefio [34], worked on this linear combination
approach. Other approaches attempt to build the Pareto
front, also known as the acceptable set, the efficient points
and the Pareto optimal set. Vilfredo Pareto [35] established
that there exists a partial ordering in the searching space of a
multiobjective problem. The Pareto criterion simply states
that a solution is better than another one if it is so good in all
attributes, and better in at least one of these attributes. For
instance, in a maximization problem given two solutions
x = (x1,%,...,%x,) and y = (y1,¥3,...,¥,), the Pareto criter-
ion says that, x dominates y iff x; = y; V i and 3 j such that
X = Yy

Knowledge of the Pareto front is of utmost importance
when search is applied before decision making. This infor-
mation provides to the judgement of a human decision
maker with the trade-offs to establish interactions between
different criteria, hence simplifying the decision process to
choose an acceptable range of solutions for a multicriteria
problem. Implemented first by Schaffer [36,37], Fourman
[38] and then by Kursawe, [39,40] and others, cooperative
population searches (CPS) with criterion selection [41] was
used to build the Pareto front in selected multicriteria
problems. The central idea in CPS is to make a parallel
single criterion search, where all members of the population
of an evolutionary algorithm are involved in a cooperative
search to build the Pareto front.

Next sections discuss details of MSE, an aggregative
multi-stage evolutive approach to optimize an aggregation

Abz6 - Gbest
400
300 T
200 T
100 T
0
DN D B B DI IR IR

\/Q/@\‘*QQ/C’\"‘Q@@\‘*

0 MCMP-Dec ® MCMP-PRB

Fig. 6. Gbest values from both algorithms for the abz6 instance.

of three objectives and a CPS-MCPC, a multirecombinated
cooperative population search method to determine the
Pareto frontier.

4.1. MSE: the multistage evolutive approach

In nature, individuals do not evolve in isolation. Instead,
there is an interaction among populations (species) that
evolve under diverse environmental conditions. This prin-
ciple, so-called co-evolution [42], can be applied to solve
multicriteria optimization for the JSSP using a plain aggre-
gative approach. The idea is to create one sub-population for
each criterion and evolve them until convergence. At this
point, another evolutionary process begins actuating on the
whole population whose objective is an aggregation of the
partial objectives. This evolution step continues until reach-
ing convergence. After that, the whole population is subdi-
vided into sub-populations and the original process is started
again. A final stop criterion is defined to terminate the entire
process. As a result, it is expected that at the end of the
multistage evolutionary process we fulfill two different
purposes: to optimize the aggregated objective and obtain
a set of good performers, which are near-optimal solutions
on their corresponding partial objectives.

4.1.1. The multicriteria problem
Given an instance of the JSSP, of n jobs and m machines
we considered three performance parameters to minimize:

MS = max{C,,...,C,}, where C;is the completion time of
job i. It is the makespan and it is equivalent to the comple-
tion time of the last job to leave the system.

GE = max{0, — GL} it is the global earliness, where
GL = MS — Gd, is the global lateness and Gd is the
global due date.

WCT = YL, w;C;, where w; is the weight associated to
the completion time of job i. It is the weighted completion
time.

Our multistage approach considered the 3-criteria
problem optimizing three objective functions, fi, f, and f;,
corresponding to MS, GE and WCT, respectively, and the
aggregation f = af; + Bf>, + Vf3.

An individual in any population is an integer vector repre-
senting a priority list. Consequently, a population evolves
by creating new individuals (priority lists) optimizing some
of the above-mentioned objective functions (criteria). There
exist two different evolutionary processes:

1. Independent evolution. Here three populations evolve
independently, each one optimizing one of the above-
mentioned criteria. This process is performed until each
population reaches convergence.

2. Unified evolution. After convergence of independent
populations, all of them are merged into a single popula-
tion and the evolutionary process optimizes now the
aggregation f. That means that the independent evolved

S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25 19

MS Population (n/3),
f1 evaluated

Unified Population (n),
f evaluated

7%

GE Population (n/3),
12 evaluated

v

A

WCT Population (n/3),
f3 evaluated

—

Unified Evolution

Independent Evolution
—> Merging three populations into one

&—— Distributing, after ranking ,the n/3 best individuals

Begin Multistage Evolutionary process

1. Initialize 3 distinct populations
of size S (one for each objective)
2. Evolve independently each population
until the termination criterion 6, holds.
3. Merge the independently evolved population
into a single unified population of size 3S.
4. Evolve the unified population until the
termination criterion 6 holds.
5. If the termination criterion 6, holds
then stop
else rank individuals according to:
f1 and create a new population with the
best one third of the unified population.
f2 and create a new population with the
best one third of the unified population.
3 and create a new population with the
best one third of the unified population.
go to step 2.

End of Multistage Evolutionary process.

Fig. 7. Independent and unified evolution in the multistage evolutionary process.

individuals are now submitted to a new environment.
This stage involves interactions between individuals of
diverse evolving populations under new environmental
conditions.

Both processes are repeated until the termination criterion
for the unified population holds. The whole multistage
evolutionary process can be delineated as shown in Fig. 7.

Two termination criteria were used: 6, to control inde-
pendent evolution and each stage of the multistage evolu-
tionary processes and 6, to control the whole multistage
process. We decided to stop these processes when after 10
consecutive generations the difference between the corre-
sponding mean population fitness values remained less than
0.001.

4.1.2. Experiments and results
The multistage evolutionary approach (MSE) was

Table 1
Best values of f for big instances

Instance SGA MSE
MS GE WCT f MS GE WCT f

1a26 1705 0 20021 1047.5 1691 14 19874 1047.6
1a27 1720 9 21119 10659 1727 2 20313 1062.3
1a28 1698 4 20150 1046.5 1692 10 20119 1046.7
1a29 1591 8 18823 9829 1595 4 18568 981.7
1a30 1879 18 20516 1158.6 1870 27 20412 1158.6
Aver. 1060.3 1059.4

contrasted against a conventional evolutionary approach
(SGA). MSE evolved the aggregation f and individual
criteria MS, GE and WCT while SGA evolved only the
aggregation f. In both cases simple but non-canonical
genetic algorithms, with ranking selection for mating,
were used. Parameter settings were the same for both meth-
ods except population size. In our experiments with MSE,
randomised initial populations of size fixed at 50 and 20
individuals for small and big instances, respectively, were
used to optimize each criterion. Population sizes for SGA
were augmented three times for each instance type (150 and
60). A permutation of integers represented an individual
(chromosome). Elitism, ordered crossover and interchange
mutation were used. The number of generations was
bounded by the corresponding termination criterion and
probabilities for crossover and mutation were both fixed to
0.1. These values were determined as the best combination
of probabilities after many initial trials. Ten instances of two
types, small and big [30], with known optimal makespan
were used. Small instances were of 10 jobs and 5 machines,
identified as laX with X = 00,...,05, while big instances
were of 20 jobs and 10 machines identified as laY with ¥ =
26, ...,30. As optimal values of makespan were known for
each instance of the test suite benchmark, the global due
date to determine GE was fixed at a value 40% greater than
the corresponding optimal makespan. Coefficients «, 3, and
v for the aggregation f, were set to convenient values;
0.4728, 0.5293 and 0.0170, respectively. For both the meth-
ods, the mean and best values were established. For small
instances, both algorithms found the same best solution in

20 S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25

Table 2
Best MS values for small instances

Instance SGA MSE Benchmark optimum

MS Ebest MS Ebest

la01 933 40.09 666 0.00 666
1a02 870 32.82 688 5.04 655
1a03 794 33.00 623 4.36 597
1a04 771 31.69 611 3.56 590
1a05 814 37.27 593 0.00 593
Aver. 34.98 2.59

each of the 10 runs, corresponding to a particular instance.
This fact shows no difference in the ability of the searching
process of the contrasted methods in small instances.

For big instances (Table 1) MSE behaves slightly better
in two instances (la27 and la29) and in overall performance.
The ability of MSE when optimizing one of the criteria is
shown in Table 2 for the case of the makespan (the only
criteria for which optimal values are known).

MSE finds better MS values than those found by SGA.
Moreover in two small instances (a0l and [a05) the opti-
mum was reached. For big instances, even if the error
increase always remained far lower than that of SGA.
This is a natural consequence of the multistage approach.
Besides optimizing the aggregative function f by means of
the unified evolution, MSE preserves the best individual
under each criterion by means of independent evolution.

4.2. CPS-MCPC: The multirecombinated cooperative
population search method

To test the potentials of the novel method for building the
Pareto front, regular and non-regular objectives functions
were chosen: the makespan and the mean absolute deviation
of job completion times from a common due date (an earli-
ness/tardiness related problem). Consequently, under the
typical set of constraints for the JSSP and given a due
date d, common to all jobs, our multiobjective optimization
problem can be formulated as follows:

Minimize fi(o) and f,(0’) where sought solutions o are
feasible schedules and

fi(o) = max | <=, {max,<;<, {Cy } }

l n
Sfolo) = . Z IC; — d|
Jj=1

o O,
J (24 | 12
3, 13 [28
» @) 13

Fig. 8. An instance for a JSSP with three machines and two jobs. Elements
are two-tuples of the form (machine, duration).

where Cj is the completion time of job i in machine k, and
C; stands for the completion time of the last operation of job
j. When minimizing function f;, schedules tend to be shor-
tened, usually implying high utilization of machines. When
minimizing function f; earliness and tardiness are penalized
at the same rate for all jobs and schedules are built so that d
is in the middle of the job completion times, which usually
derives in lower inventory costs.

The set of experiments conducted, used three basic repre-
sentation schemes and contrasted the results of the proposed
approach against conventional methods of recombination

4.2.1. Representations and operators

It is a well-known problem in evolutionary computation
the limitations a particular representation (encoding) of
solutions imposes on the genetic operators to be used.
This issue is mainly addressed to the creation of valid
offspring avoiding the use of penalties or repair algorithms.
In following the representations used to evaluate the multi-
recombinative approach, the corresponding operators are
explained.

4.2.1.1. Priority list representation (PLR). Under this
representation associated with the instance matrix is a job
priority list, which is used by the schedule builder at the
building stage of a schedule to solve conflicts between jobs
requiring the same resource. At each step, subjected to
precedence and non-overlapping constraints, resources are
allocated to those job operations, which are not in conflict.
When conflicts on a requested resource arise, the allocation
is done following the priority list. By using different priority
lists different schedules can be built. As a priority list is a
permutation of jobs, a chromosome is represented as a
permutation of integer job identifiers.

4.2.1.2. Job-based representation (JBR). Here also a
chromosome consists of a list of n jobs. Following the
sequence in the list, all operations of the first job are
scheduled, then all the operations of the second job are
considered, and so on, until all jobs are scheduled. Each
operation of the job being scheduled is allocated in the
best available processing time for the machine the
operation requires.

4.2.1.3. Operation-based representation (OBR). Here a
schedule is encoded in the chromosome as a sequence of
operations. Due to the existence of precedence constraints
among operations of a particular job, the assignment of
natural numbers to identify operations and the use of a
permutation representation can lead to unfeasible
schedules. To avoid this problem Gen, Tsujimura and
Kubota [43] proposed a representation where each
operation is identified by the job number to whom it
belongs and the order of occurrence in the sequence. For
an n-jobs m-machines problem a chromosome consists of
n X m genes, where each gene has a job identifier as the

S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25 21

[321213] [321213] [321213]
N
machine 21 1 2 2 1

Fig. 9. Job operations and corresponding machines for the matrix instance
of Fig 10.

allele value and values are repeated exactly m times in the
chromosome.

For the JSSP corresponding to the instance matrix of Fig.
8 and a given chromosome [3 2 1 2 1 3], allele values 1, 2
and 3 stand for jobs Jy, J, and J3, respectively. Because each
job has two operations, these values appear twice in the
chromosome. The first occurrence of a ‘I’ refers to the
first operation of job J;, which should be allocated to
machine 2, and the second occurrence refers to the second
operation of job J;, which should be allocated to machine 1
(see Fig. 9).The same interpretation is given to other gene
values.

4.2.1.4. Genetic operators. As PLR and JBR deal with
permutations, our experiments used order crossover (OX)
and exchange mutation for both representations. In the case
of OBR we propose a modified order crossover (MOX).
Here, to build a valid offspring a sub-sequence of one
parent is inserted in the same position in the offspring and
the rest of allele values are copied from the second parent in
the order they are appearing controlling the number of allele
repetitions. For example, consider a JSSP with n = m = 3.
Given two parents select from the first parent a sub-
sequence including genes from the fourth to the seventh
position:

parent1 [322112313] parent2 [123213312]

Once the selected sub-sequence from the first parent was
inserted in the offspring the remaining genes are extracted
from the second parent, beginning from the position next to
the last one in the sub-sequence, in the order they appear. The
process for creating an offspring is delineated below.

[123213312]

Boldfaced genes in parent2 are the ones to be inserted in
the offspring.

[x xx 112 3xx] Sub-sequence from parent 1 is inserted.
[xxx 11231 2] The number of 1’s is completed.
[2xx112312] The first ‘1’ of parent 2 is skipped and
the number of 2’s is completed.

[23x 11231 2] Another ‘3’ is inserted.

[233 11231 2] The number of 3’s is completed.
offspring [233 11231 2]

For mutation, a modified exchange mutation was imple-
mented in order to ensure that the exchange effectively
changes the allele values.

4.2.2. Building the pareto front

For multiobjective optimization, initial experiments with
CPS-MCPC were implemented executing exactly n; cross-
overs, providing 2 n children per couple (2 = n; = 4). Basi-
cally this novel approach:

1. Maintains a single population of solutions which are
separately ranked by each criterion.

2. Uses ranking selection to select one parent per criterion.

3. Uses multiple crossovers per couple (MCPC), and the
corresponding crossover and mutation operators to
generate multiple offspring.

4. After each mating, for insertion in the next population,
selects those offspring, which are classified so far, as
globally non-dominated. If none fulfilling this condition
exists then n; (half) of the newly generated offspring are
inserted, selecting first those that are non-dominated
within the new offspring subset and completing the n,
insertions by random selection if necessary.

The last point above mentioned, implies to maintain the
updated set of solutions found so far as belonging to the
Pareto front. Let us call it P, This set is updated at
the end of each generation cycle. To build the new popula-
tion, each time the new offspring are created by application
of MCPC, we apply the following procedure:

While the new population is created

do

By using ranking selection select one parent per criterion,

Apply MCPC with the corresponding crossover to obtain

the set O of 2 n; offspring and mutate,

By consulting P,,,.,; determine the subset O,,,; of O that

are globally nondominated,

If Opong # P then insert O,yq into the new population
else insert n; offspring selecting first those that are non-
dominated in O.

Complete n; insertions by random selection if neces-
sary.

od

The number n; of crossovers is a parameter of the EA.
Essentially the proposed CPS-MCPC,

e Augments implicit parallel search by encouraging cross-
breeding among ‘species’.

¢ Increases exploitation of good solutions previously found
through multiple crossovers per couple.

e Favors for insertion in the next generation, those solu-
tions which are at the present stage, non-dominated
(globally, at P.,,,..; level, or locally, at O subset level).

22 S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25

la04
400

c

% 350 4 Y ‘s

— *

E 300 A . . “ma,,

o 250 A B 3 e, L2

2 | . 0,

2 200 =a * e

é 150 A \ LY N

c 100 A

8 504

= 0 S mme o=

600 700 800 900 1000

Makespan

¢ PLR a JBR = OBR

Fig. 10. Representation approaches: comparative performance for building
the Pareto front under CPS-MCPC.

If none is found then genetic diversity is favoured by
random selection.

Consequently, it is expected a contribution of the method
to speed the search and to find a larger set size when seeking
the Pareto optimal set.

4.2.3. Experiments

To evaluate the performance of the CPS-MCPC, the same
instances indicated in section 4.1.2 were used. After many
initial trials the best parameter settings, were determined as
follows. Number of crossover per couple was set at n; = 4.
Probabilities for crossover and mutation were fixed at 0.7
and 0.05, respectively. Population size fixed at 100 and 20
individuals, and maximum number of generations fixed at
1000 and 5000 for small and big instances, respectively. To
establish the raw potential of the method we use neither
insertion of ‘seeds’ (good individuals provided by other
conventional heuristics) within the initial randomized popu-
lation nor any hybrid approach during the evolutionary
process. Elitism was used to retain the best individual
found so far under each criterion. The common due date d
to determine f5(o) values was fixed at a value 40% greater
than the corresponding optimal makespan. Section 4.2.4
shows comparative results of the proposed CPS-MCPC and

la02 - PLR
< 450 -
S .m
fa0{ %
S -
o 350 A []
5 b
o
@ 300 4 L
g ta
£ 250 1 g,
= 200 . . . ,
650 750 850 950 1050
Makespan

¢ CPS-SCPC ® CPS-MCPC

Fig. 11. Pareto fronts built under CPS-MCPC and CPS-SCPC with priority
list representation, instance 1a02.

la02 - JBR
é 450 - .
'g 400 -
S
o 350 - o e
% [N}
% 300 A .'.’.
c 250 A L]
g . [] [] []
= 200 T T T :
650 750 850 950 1050
Makespan

+ CPS-SCPC s CPS-MCPC

Fig. 12. Pareto fronts built under CPS-MCPC and CPS-SCPC with job-
based representation, instance 1a02.

the conventional CPS method, applying a single crossover per
couple, which from now on will be called CPS-SCPC.

4.2.4. Results

All the above mentioned Lawrence’s instances were
tested for each representation and corresponding genetic
operators under CPS-MCPC and CPS-SCPC. In general,
from the representation point of view OBR outperformed
both other coding techniques, and PLR was better than JBR.
This behavior shown in Fig. 10 for instance la04, was
expected because OBR is a more problem-specific represen-
tation while PLR and JBR coding spaces correspond to only
a part of the whole solution space. For the discussion of the
compared performance of both the CPS methods, we will
show only results for la02 and la30 as demonstrative
instances for each type, because the remaining instances
reveal similar findings

Figs. 11-13 show the Pareto fronts built under both
recombination methods with the three chosen representa-
tions for small instance [a02. In Fig. 11 with PLR, 48
non-dominated solutions were found under both recombina-
tion schemes. Also the quality of solutions is similar. In Fig.
12 with JBR, 15 and 19 non-dominated points were found
under CPS-SCPC and CPS-MCPC, respectively. The

la02 - OBR
§ 400 -
B v
3 300 - 1
s .
5 200 -y
[%2] &
Qo
S 100 - \\“
c
g -
= o0 : : : : ,

650 750 850 950 1050 1150

Makespan

+ CPS-SCPC = CPS-MCPC ‘

Fig. 13. Pareto fronts built under CPS-MCPC and CPS-SCPC with opera-
tion-based representation, instance 1a02.

S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25 23

1a30 - PLR

850 -
go0 { "“ha

750 A []

700 - e,
650 - S,

600 -

550

500 b]

450 !"\'.,__ 3

400 , , ; ,

1350 1550 1750 1950 2150

Makespan

Mean absolute deviation

¢ CPS-SCPC = CPS-MCPC

Fig. 14. Pareto fronts built under CPS-MCPC and CPS-SCPC with priority
list representation, instance la30.

multirecombination approach shows better quality of results
than the conventional single crossover approach. Finally in
Fig. 13 with OBR, 34 and 91 non-dominated points were
found under CPS-SCPC and CPS-MCPC, respectively. A
better Pareto front is achieved here also under CPS-MCPC.

Figs. 14—-16 show the Pareto fronts obtained for big
instances. All of them clearly show better set of efficient
points under CPS-MCPC for any representation. These
figures show 23 and 58, 19 and 38, and 25 and 44 non-
dominated solutions found under CPS-SCPC and CPS-
MCPC, respectively, for the corresponding coding techni-
ques.

Other important evidence arises when observing at the
final population attained by either recombination method.
Fig. 17, shows a total of 321 points, where 125 of them are
non-dominated and belong to the final P, sets of the
corresponding recombination methods. Under CPS-SCPC
the final population shows a higher diversity than under
CPS-MCPC. Average individuals in both populations have

1a30 - JBR
< 750 -
3 700 {m
3 650 - s
g 600 - .
= (] %00,
= 550 -1 LI
2 s
S 500 - ‘H’
S 450 - . 'lt
e 400 A "sme a,
350 : : T ,
1600 1700 1800 1900 2000
Makespan

« CPS-SCPC = CPS-MCPC

Fig. 15. Pareto fronts built under CPS-MCPC and CPS-SCPC with job-
based representation, instance 1a30.

the following objective values

(f 1(acps scpe)s f2(Teps scpe)) = (1073,138)

(f_l(UCPS-MCPC)’f_Z(UCPS-MCPC)) =(922,194)

This means that the final population under CPS-MCPC is
nearer of a compromise (mean) solution.

In this section dedicated to multiobjective optimization
aggregative and Pareto optimality approaches were under-
taken. In both the approaches, the enhanced evolutionary
algorithms showed a better behavior than that observed
for the conventional evolutionary algorithms. For the aggre-
gative approach a multistage evolutionary algorithm (MSE)
showed a slightly better overall performance than SGA and
near optimal solutions, under each individual criterion, were
also provided.

To build a Pareto front a multi-recombinated algorithm
(CPS-MCPC), was contrasted against a single-recombi-
nated algorithm (CPS-SCPC). Both methods were run
under three distinct representations (PLR, JBR, and OBR).
A novel MOX operator for crossover was designed to gener-
ate valid offspring for a problem specific representation
(OBR). As results of these experiments we can conclude
that, independently of the coding technique adopted, in
most cases CPS-MCPC gives an indication of building
better Pareto fronts.

5. Conclusions

Evolutionary algorithms have been proved as efficient
tools to face scheduling problems. The effectiveness of
evolutionary computation depends on the representation
used for the problem solutions, the operators used and the
configuration of the evolutionary algorithm. These ideas are
not new and have been recognized for some time.

This contribution shows the application of enhanced
evolutionary algorithms to the Job Shop Scheduling
Problem in single and multiobjective optimization.
Enhancements are primarily related to multirecombination
(MCPC and MCMP). Also, the extended incest prevention
to avoid premature convergence was implemented and the
modified ordered crossover (MOX) was introduced to
generate feasible offspring when operation-based represen-
tation (OBR) is used.

In single objective optimization a first approach with
multirecombination combined with incest prevention was
undertook for different scanning crossover methods under
a decoder representation. Results indicated that USX
performs similarly to other more complex methods (FBSX
and OBSX) and that incest prevention is too expensive in
processing time without providing noticeable extra benefits
in the quality of results. Consequently, further work concen-
trated on a hybrid approach including multiplicity of cross-
overs and parents (MCMP) coupled with a more problem
specific representation (PRB) that triggers a priority

24 S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25

1a30 - OBR

400 -
350 4 .
300 " =
250 L "I
200 - =i
150 4 .}‘
100 1 'G,_.
50 4 -."s am

0 , . . ,

1700 1800 1900 2000 2100

Mean absolute deviation

Makespan

* CPS-SCPC ® CPS-MCPC

Fig. 16. Pareto fronts built under CPS-MCPC and CPS-SCPC with opera-
tion-based representation, instance la30.

dispatching rule when conflicts are to be resolved. The same
testing set was used and after a series of trials the analysis of
results suggests that:

MCMP-PBR reaches the optimum for any (n;, n,) combi-
nation for la06, la0l, lal2 and lal5 instances. When
instance complexity increases it became harder for both
algorithms to find the optimum and this problem is stronger
under MCMP-Dec where a tendency to stagnate the search
is detected. Both algorithms find near optimal solutions in
less than 3 minutes running time in standard workstations.
In general, MCMP-PBR performs better than MCMP-Dec.

In multiobjective optimization aggregative and Pareto
optimality approaches were undertaken. For the aggregative
approach, a multistage evolutionary algorithm (MSE) was
implemented. Independent and unified evolution, were
introduced to obtain partial optimization of three distinct
criteria, f;, /> and f;, and the aggregation criterion f at the
same time. Results of these preliminary experiments with
MSE show some enhancements when compared with the
conventional evolutionary approach (SGA). In general, the
overall performance is slightly better in big instances and
the near optimal solutions, under each individual criterion,
are also provided. This later additional feature can be of

1a02 - OBR

400
350 A
300 -
250 A
200 A
150 4
100 -
50
0 T T T T T T)

650 750 850 950 1050 1150 1250 1350

Makespan

Mean absolute deviation

* Pareto front CPS-SCPC @ Pareto front CPS-MCPC
+ Final pop. CPS-SCPC = Final pop. CPS-MCPC

Fig. 17. Pareto fronts and final populations obtained under CPS-MCPC and
CPS-SCPC with operation-based representation

utmost importance in the decision making process for multi-
objective optimization.

To build a Pareto front a multi-recombinated cooperative
population search method (CPS-MCPC), was implemented
and contrasted against a single-recombinated cooperative
population search method (CPS-SCPC). Both methods
were run under, three well-known representations (PLR,
JBR, and OBR). A novel MOX operator for crossover was
designed to generate valid offspring for a problem specific
representation (OBR). As results of these experiments we
can conclude that, independently of the coding technique
adopted, in most cases CPS-MCPC gives an indication of
building better Pareto fronts. This was shown by the
achievement of improved, and more densely and evenly
distributed fronts. Moreover, the final population obtained
under the novel approach is grouped around compromise
solutions. The latter fact shows that the alternative solutions
provided by multirecombination, attempt to balance the
damage caused on the conflicting objectives when one of
them is arbitrarily chosen for improvement.

These preliminary results are promising and encourage us
to deep forward investigation in single and multiobjective
scheduling problems by using multirecombination with
better representations for the JSSP. An open remaining
question is the optimal setting of the numbers n;and n, of
crossovers and parents, which could be self-adapted. Other
variants of multiplicity of parents and crossovers are under
study to establish the abilities and possible limitations of
this approach.

Acknowledgements

We acknowledge the cooperation of the project group for
providing new ideas and constructive criticisms. Also to the
Universidad Nacional de San Luis, the Universidad Nacio-
nal de La Pampa, the Center for Applied System Analysis
and the ANPCYT from which we receive continuous
support within the bilateral research aggreement.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freemann, San Francisco, 1979.

[2] R. Bruns, Direct chromosome representation and advanced genetic
operators for production scheduling, Forrest ICGA93, 1993, pp. 352—
359.

[3] F.F. Easton, N. Mansour, A distributed genetic algorithm for
employee staffing and scheduling problems, Forrest ICGA93, 1993,
pp. 360-367.

[4] H.-L. Fang, P. Ross, D. Corne, A promising genetic algorithm

approach to job-shop scheduling, rescheduling, and open-shop sche-

duling problems, in: S. Forrest (Ed.), Forrest ICGA93, Proceedings of

the Fifth International Conference on Genetic Algorithms, Morgan

Kaufmann, San Mateo, 1993, pp. 375-382.

P. Husbands, F. Mill, S. Warrington, Genetic algorithms, production

plan optimisation, and scheduling, Schwefel and Maenner PPSN91,

1991, pp. 80-84.

[5

—

S. Esquivel et al. / Knowledge-Based Systems 15 (2002) 13-25 25

[6] S.Lawrence, Resource constrained project scheduling: an experimen-
tal investigation of heuristic scheduling techniques-(supplement),
Graduate School of Industrial Administration, Carnegie—Mellon
University, Pittsburgh, 1984.

[7] 1. Lee, R. Sikora, M.J. Shaw, Joint lot sizing and sequencing with
genetic algorithms for scheduling: evolving the chromosome struc-
ture, Forrest ICGA93, 1993, pp. 383-389.

[8] M. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 3, Springer, Berlin, 1996.
[9] R. Nakano, T. Yamada, Conventional genetic algorithms for job shop

problems, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of the
Fourth International Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, 1991, pp. 474-479.

[10] G. Syswerda, Schedule optimization using genetic algorithms, in: L.
Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Rein-
hold, New York, 1991, pp. 332-349 Chapter 21.

[11] T. Yamada, R. Nakano, A genetic algorithm applicable to large-scale

job-shop problems, in: R. Maenner, B. Manderick (Eds.), Parallel

Problem Solving from Nature 2, Elsevier, Amsterdam, 1992, pp.

281-290.

R. Bruns, Scheduling, in: Th Béck, D.B. Fogel, Z. Michalewicz

(Eds.), Handbook of Evolutionary Computation, Oxford University

Press, Institute of Physics, New York, Bristol, 1997 Chapter F1.5.

[13] S. Esquivel, A. Leiva, R. Gallard, Multiple crossover per couple in
genetic algorithms, Proceedings of the Fourth IEEE International
Conference on Evolutionary Computation (ICEC’97), Indianapolis,
USA, April 1997, pp. 103-106.

[14] S. Esquivel, A. Leiva, R. Gallard, Couple fitness based selection with
multiple crossover per couple in genetic algorithms, in: E. Alpaydin
(Ed.), Proceedings of the International Symposium on Engineering of
Intelligent Systems (EIS’98), La Laguna, Tenerife, Spain, vol. 1,
ICSC Academic Press, Canada, 1998, pp. 235-241.

[15] S.Esquivel, H. Leiva, R. Gallard, Multiplicity in genetic algorithms to
face multicriteria optimization, Presentation in the 1999 Congress on
Evolutionary Computation (IEEE). Washington DC, 2001 (in press).

[16] S.Esquivel, H. Leiva, R. Gallard, Multiple crossovers between multi-
ple parents to improve search in evolutionary algorithms, Presentation
in the 1999 Congress on Evolutionary Computation (IEEE), Washing-
ton DC, 2001 (in press).

[17] L.J. Eshelman, J.D. Schaffer, Preventing premature convergence in
genetic algorithms by preventing incest, Proceedings of the Fourth
International Conference on Genetic Algorithms, Morgan Kauffman,
San Mateo, California, 1991, pp. 115-122.

[18] H.Ifonso, P. Cesan, N. Fernandez, G. Minetti, C. Salto, L. Velazco, R.
Gallard, Improving evolutionary algorithms performance by extend-
ing incest prevention, Proceedings del 4 to Congreso Argentino de
Ciencias de la Computaciéon (CACiC’98), Abstracts del Congreso,
Universidad Nacional del Comahue, October 1998, pp. 323-334.

[19] A.E. Eiben, C.H.M. van Kemenade, J.N. Kok, Orgy in the computer:
multi-parent reproduction in genetic algorithms, in: F. Moran, A.
Moreno, J.J. Merelo, P. Chacon (Eds.), Proceedings of the Third
European Conference on Artificial Life, number 929 in LNAI,
Springer, Berlin, 1995, pp. 934-945.

[20] A.E. Eiben, Th. Béck, An empirical investigation of multi-parent
recombination operators in evolution strategies, Evolutionary
Comput. 5 (3) (1997) 347-365.

[21] S. Bagchi, S. Uckum, Y. Miyabe, K. Kawamura, Exploring problem-
specific recombination operators for job shop scheduling, Proceedings
of the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, San Diego, 1991.

[22] J.J. Kanet, V. Sridharan, PROGENITOR: a Genetic Algorithm for
Production Scheduling, Witschafstsinformaatik, 1991.

[23] P. Husbands, F. Mill, Simulated co-evolution as the mechanism for
emergent planning and scheduling, Proceedings of The Fourth Inter-

(12

national Conference on Genetic Algorithms, Morgan Kaufmann, San
Diego, 1991.

[24] L. Davis, Job shop scheduling with genetic algorithms, Proceedings of
the First International Conference on Genetic Algorithms, Lawrence
Erlbaum, Hillsdale, 1985, pp. 136—140.

[25] D.E. Goldberg, R. Lingle, Alleles, loci and the TSP, Proceedings of
the First International Conference on Genetic Algorithms, Lawrence
Erlbaum, New Jersey, 1985.

[26] L. Davis, Applying adaptive algorithms to domains, Proceedings of
the International Joint Conference on Artificial Intelligence 1985, pp.
162-164.

[27] 1.M. Oliver, D.J. Smith, J.R.C. Holland, A study of permutation cross-
over operators on the travelling salesman problem, Proceedings of the
Second International Conference on Genetic Algorithms, Lawrence
Erlbaum, New Jersey, 1987, pp. 224-230.

[28] U. Dorndorf, E. Pesch, Evolution based learning in a job shop sche-
duling environment, Comput. Oper. Res. 22 (1995) 25-40.

[29] C. Salto, H. Alfonso, R. Gallard, Multiplicity and incest prevention in
evolutionary algorithms to deal with the job shop problem, Proceed-
ings of the Second ICSC Symposium on Engineering of Intelligent
Systems, University of Paisley, Scotland, 2000, pp. 451-457.

[30] S. Lawrence, Resource constrained project schedulingan experimen-
tal investigation of heuristic scheduling techniques (Supplement),
Graduate School of Industrial Administration, Carnegie—Mellon
University, Pittsburgh, Pennsylvania, 1984.

[31] C.M. Fonseca, P.J. Fleming, Genetic algorithms for multiobjective
optimization: formulation, discussion and generalization, Proceedings
of the Fifth International Conference on Genetic Algorithms, Morgan
Kaufmann, Urbana-Champaign, IL, 1993, pp. 416-423.

[32] G. Leitmann, A. Marzollo, Multicriteria Decision Making-CISM No
211, Springer, Wien, NY, 1975.

[33] B. Bhanu, S. Lee, Genetic Learning for Adaptive Image Segmenta-
tion, Kluwer Academic Publishers, Boston, MA, 1994.

[34] R. Vemuri, W. Cedefio, A new genetic algorithm for multiobjective
optimization in water resource management, Proceedings of the First
IEEE International Conference on Evolutionary Computation
(ICEC’94), Orlando, USA, 1994, pp. 495-500.

[35] V. Pareto, Cours d’Economie Politique, Rouge, Lausanne, Switzer-
land, 1896.

[36] J.D. Schaffer, Some experiments in machine learning using vector
evaluated genetic algorithms, Doctoral dissertation, Department of
Electrical Engineering, Vanderbilt University, 1984.

[37] J.D. Schaffer, Multiple objective optimization with vector evaluated
genetic algorithms, in: J.J. Grefenstette (Ed.), Proceedings of the First
International Conference on Genetic Algorithms 1985, pp. 93—100.

[38] M.P. Fourman, Compaction of symbolic layout using genetic algo-
rithm, in: J.J. Grefenstette (Ed.), Proceedings of the First International
Conference on Genetic Algorithms 1985, pp. 141-153.

[39] F. Kursawe, Evolutionststrategien fiir die vectoroptimierung, diplo-
marbeit, Universitat Dortmund, 1990.

[40] F. Kursawe, A Variant of Evolution Strategies for Vector Optimiza-
tion, Parallel Problem solving from Nature, Lectune notes in Compu-
ter Science, 496, Springer, Berlin, 1991, pp. 193-197.

[41] J. Horn, Handbook of Evolutionary Computation, Multicriterion
Decision Making, Oxford University Press, Oxford, 1997 F1.9:1-
9:15.

[42] J. Paredis, Coevolutionary Constraint Satisfaction, Proceedings of the
3rd Annual Conference on Parallel Problem Solving from Nature,
Springer, New York, 1994, pp. 46-55.

[43] M. Gen, Y. Tsujimura, E. Kubota, Solving job-shop scheduling
problem using genetic algorithms, Proceedings of the 16th Interna-
tional Conference on Computers and Industrial Engineering, Ashi-
kaga, Japan, 1994.

