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$EVWUDFW�� :KHQ� HVWDEOLVKLQJ� WKH� 3DUHWR�RSWLPDO� IURQW�

HIIHFWLYH�PXOWLFULWHULD�RSWLPL]DWLRQ� LQYROYHV�VLPXOWDQHRXV

SDUDOOHO� VHDUFK� IRU� PXOWLSOH� PHPEHUV� RI� D� JHQHWLF

DOJRULWKP�SRSXODWLRQ�

,Q� RQH� RI� WKHVH� DSSURDFKHV� GXH� WR� (LEHQ� DQG� /LV� >�@

UDWKHU� WKDQ� FRQGXFWLQJ� PXOWLSOH� LQGHSHQGHQW� VLQJOH

REMHFWLYH� VHDUFKHV�� DOO� WKH� LQGLYLGXDOV� LQ� WKH� SRSXODWLRQ�

³VSHFLDWHG´� E\� FULWHULRQ�� H[SORUH� WKH� SUREOHP� VSDFH

H[SHFWLQJ� WKDW� WKH� LQFUHDVHG� SDUDOOHO� SURFHVVLQJ� RI

VFKHPDWD�LPSURYHV�HIIHFWLYHQHVV�WR�ILQG�PRUH�VROXWLRQV�LQ

WKH�3DUHWR�RSWLPDO�UDQJH�

7KH�SUHVHQW�SDSHU�LQYHVWLJDWHV�WKH�SUREOHP�RI�XVLQJ�D

JHQHWLF�DOJRULWKP�RQ�D�VHW�RI�WHVW�IXQFWLRQV�ZKLFK�DOORZV�D

PXOWLVH[XDO� SRSXODWLRQ�� PXOWLSOH� SDUHQWV� DQG� PXOWLSOH

FURVVRYHUV� SHU� PDWLQJ�� DWWHPSWLQJ� WR� EXLOG� D� 3DUHWR

RSWLPDO� VHW� RI� ODUJHU� VL]H�� $OVR�� ZKLOH� FUHDWLQJ� D� QHZ

SRSXODWLRQ� D� VHOHFWLRQ� SURFHVV� IRU� UHSODFHPHQW� IDYRXUV

WKRVH�QHZ�FUHDWHG�VROXWLRQV�WKDW�DUH�LQFOLQHG�WR�DSSHUWDLQ

WR�WKH�3DUHWR�IURQW�

$V�D�UHVXOW��WKH�SHUIRUPDQFH�RI�WKH�PHWKRG�SURGXFH�DQ

HYHQO\�GLVWULEXWHG�DQG�ODUJHU�VHW�RI�HIILFLHQW�SRLQWV�

.H\ZRUGV� Genetic algorithms, multiobjective
optimization, Pareto optimal solutions.

��,QWURGXFWLRQ

In the case of multiobjective optimization it is not always
clear how to determine the “goodness” of a solution,
because every solution has a number of fitness values, one
per each objective. A particular solution can be good for
some objectives and bad for other objectives.

Common existing methods for handling multiple criteria
problems are classified as aggregative approaches and
usually combine the various objectives into a single utility
function. In that way, a genetic algorithm performs as usual
finding the fittest individuals for that single aggregated
function.

The simplest approach, of the aggregative family, is a
linear scalar combination which assigns weights (constant
coefficients) to each criterion (attribute) according to the

judgement of a human decision maker (DM). Bhanu and
Lee [1] and Vemuri and Cedeño [21], worked on it.

In order to avoid linear relationships among the criteria,
other researchers introduced nonlinear relationships by
exponentiating critical attributes, by multiplying highly
related attributes or by setting thresholds (upper and lower
values) for each criterion. This latter approach involves
handling of constraints and penalty or repair functions.
Simpson et al [18], Savic and Walters [15] Krause and
Nissen  [11] and Stanley and Mudge [20] gave insights in
this sense.

Nevertheless, aggregative approaches are criticised of
being rather simplistic. Furthermore, a question remains;
how to combine separate values of fitness into a reasonable
single fitness value? Sometimes it is neither possible nor
rational to combine different, most of the times conflicting,
criteria into a single one.

A better alternative to escape of this dilemma is to use
the concept of Pareto optimality.

Vilfredo Pareto [14] in 1896 established that there exists
a partial ordering in the searching space of a multiobjective
problem. The Pareto criterion simply states that a solution
is better than another one if it is so good in all attributes,
and better in at least one of these attributes.

More formally, for an Q-objective optimization problem
the search space can be seen as an Q-dimensional space and
therefore each solution is an Q-vector of attribute
components.

In a maximization problem given two solutions

),...,2,1( Q[[[[ = and ),...,2,1( Q\\\\ = , the Pareto

criterion says that, [ dominates \� iff

M\M[MLL\L[   such that     and       >∃∀≥ .

This is the well-known covering relationship in a
vectorial space and defines the partial ordering stated by
Pareto. In the problem space some pairs of solutions will be
non-commesurate, in the sense that neither dominates the
other. Some solutions will be dominated by other solutions
and some other solutions will not be dominated by any of
the solutions in the problem space. The latter,
nondominated set, corresponds to the 3DUHWR IURQW, also



known as the DFFHSWDEOH� VHW, the HIILFLHQW� SRLQWV and the
3DUHWR�RSWLPDO�VHW.

Knowledge of the Pareto front is of utmost importance
when search is applied before decision making. This
information provides the DM with the trade-offs to
establish interactions between different criteria, hence
simplifying the decision process to choose an acceptable
range of solutions for a multicriteria problem.

Evolutionary algorithms are suitably fitted to face the
seeking of the Pareto front due to their implicit parallel
search.

According to Horn [10] taxonomy, FRRSHUDWLYH
SRSXODWLRQ�VHDUFKHV��&36��ZLWK�FULWHULRQ�VHOHFWLRQ is one of
the first methods implemented by Schaffer [16], [17],
Fourman [8] and then by Kursawe, [12], [13] and others.
Goldberg [9] suggested another subclass of CPS called
3DUHWR�UDQNLQJ. Here a QRQ�GRPLQDWHG�VRUWLQJ to rank the
population according to the Pareto optimality criterion was
introduced. Also niching and speciation on the Pareto front
were proposed. The Goldberg’s original proposal of
nondominated sorting was effectively implemented by
Srinivas and Deb [19].

The central idea in CPS, is to make a parallel single
criterion search, where all members of the population of an
evolutionary algorithm are involved in a cooperative search
to build the Pareto front. Many of these approaches use
niching to obtain an evenly distributed set of the HIILFLHQW

SRLQWV.
Eiben and Lis [2] recently introduced a variant

addressing the problem, called multisexual genetic
algorithm (MSGA), where basically,

•  Each individual is provided with a sex (speciation)
intimately related with an optimizing criterion.

•  Individuals are evaluated according to their
performance within their (sexual) subpopulations.

•  A multiparent crossover requiring one parent per sex
is used for recombination.

According to their report, this approach showed to be
effective to build a set of nondominated solutions of
reasonable size by merging those ORFDOO\

1
� nondominated

solutions obtained through the evolutive process.
We continued working on these basic ideas modifying

some features of MSGA and adding some other
characteristics. In our proposal, the whole process
attempting to build the Pareto front is using a PXOWLSOLFLW\

DSSURDFK expressed in a multisexual population, where
multiple parents per sex are chosen for mating and once
selected undergo multiple crossovers. Moreover, from the
various children generated after crossover those that are
JOREDOO\ nondominated are favoured for insertion in the

                                                          
1 According to the literature we use the following terms: ORFDOO\
QRQGRPLQDWHG referring to those solutions that are nondominated
in the current population and JOREDOO\�QRQGRPLQDWHG referring to
those solutions that were determined as nondominated, so far, at
the current stage of the evolutionary process.

next generation. This new approach will be called PXOWL�

VH[XDO�SDUHQWV�FURVVRYHUV�JHQHWLF�DOJRULWKP (MSPC-GA).

��%DFNJURXQG

In this section a brief overview on MCPC and MSGA is
given.

0XOWLSOH� FURVVRYHU� SHU� FRXSOH (MCPC) is a newly
introduced [4] crossover method which in contrast with the
conventional single crossover per couple approach (SCPC),
permits more than one crossover operation for each mating
pair. MCPC was applied to optimize classic testing functions
and some harder (non-linear, non-separable) functions. The
goodness of this approach prevailed under all tests and
revealed that, when MCPC is applied with 2, 3 and 4
crossovers per couple, results as good as under SCPC can be
expected with an additional benefit in processing time. This
performance was obtained through the ability showed by
MCPC of exploiting the recombination of good, formerly
found solutions. But on the other hand, those experiments
also showed that, in some cases, the method increased the risk
of premature convergence due to a loss of genetic diversity.
To overcome this problem further successful approaches were
undertaken by combining MCPC with an alternative
selection method; ILWQHVV�SURSRUWLRQDO�FRXSOH�VHOHFWLRQ [7],
by using self-adaptation of MCPC parameters [5], or binding
MCPC to alternative selection mechanisms, [6].

As above explained MSGA assigns a sex, or gender, to
each individual. There are as many sexes as optimization
criteria exist. In this way each individual is specialized and
tries to fulfil certain optimization criterion. An individual is
represented as the corresponding genetic code plus a sex
marker, which initially can be randomly set. Consequently
the population is divided into subpopulations, each one in
accordance with some optimization criterion and
individuals are evaluated correspondingly through the
appropriate fitness function.

Once individuals are evaluated they are sorted according
to their fitness and the rank obtained is the basis for future
selection. Ranks are determined independently for each
sex.

Recombination is performed as follows: one individual
is chosen, as a parent, from each sex and then they undergo
XQLIRUP� VFDQQLQJ� FURVVRYHU, which generates a single
offspring. Each gene in the child is provided from any of
the corresponding genes in the parents with equal
probability. The sex of the child is inherited from that
parent, which supplied the largest number of genes. If more
than one parent supply to the offspring the same maximal
number of genes then the sex of the offspring is randomly
chosen from these parent’s sexes. Mutation takes place
only in the genetic code of the chromosome.

The set of ORFDOO\ nondominated solutions is determined
in the current generation and then merged with the
previously found nondominated solutions. During merging
those nondominated solutions that become dominated are
discarded. After execution this updated set will be the
output of the MSGA.



��%ULHI�GHVFULSWLRQ�RI�063&�*$

Basically the new approach:
1) uses proportional selection.
2) selects multiple parents per sex.
3) uses an extension of PXOWLSOH� FURVVRYHUV� SHU

FRXSOH (MCPC), called PXOWLSOH� FURVVRYHUV� SHU
PDWLQJ�(MCPMA).

4) for insertion in the next population, gives
preference to those offspring, which are classified
so far, as JOREDOO\ nondominated.

Some discussion is necessary to clarify the difference with
MSGA approach. First, rather than ranking selection,
proportional selection is used to favour best performer
individuals under each criterion. Second, rather than one
parent per sex an equal number of multiple parents per sex
are selected to provide genetic diversity. Third, rather than
one crossover operation on the parent’s set multiple
crossovers are applied in an attempt to increase exploitation
of good solutions previously found.

As above indicated, in the experiments reported in this
paper MCPMA is used. Here multiple crossovers are allowed
now between multiple parents. Finally, rather than inserting
the single child generated by uniform scanning crossover
another selection process is applied to select those offspring
which resulted globally nondominated.

Using the PXOWLSDUHQW�DSSURDFK of Eiben [3] mitigates the
possible loss of diversity generated by MCPC and no extra
adjustments seems to be necessary. Consequently exploitation
and exploration of the problem space are suitably balanced.

The last point above mentioned 4), implies to maintain
the updated set of solutions found so far as belonging to the
Pareto front. Let us call it 3FXUUHQW. This set is updated at the
end of each generation cycle.

To build the new population, each time the new
offspring are created by application of MCPMA, we apply
the following procedure:

While the new population is created
  do

Select Q� parents from each sex,
Apply MCPMA with uniform scanning crossover

to obtain Q� offspring and mutate,
By consulting 3FXUUHQW determine the subset 2QRQG of

these new offspring that are globally
nondominated,

If 2QRQG� ≠� Φ� then insert 2QRQG  into the new
population

else insert Q�/2 offspring randomly
chosen into the new
population

  od

The number Q� of parents and the number Q� of
crossovers are parameters of the GA.

Essentially the proposed MSPC-GA,

•  Augments implicit parallel search by encouraging
crossbreeding among “species”.

•  Increases exploration and attempts to avoid premature
convergence through multiparent recombination.

•  Increases exploitation of good solutions previosly
found through multiple crossovers per mating.

•  Favours for insertion in the next generation those
solutions which are, at the present stage, globally
nondominated. If no one is found then genetic
diversity is favoured by a random selection.

Consequently, it is expected a contribution of the
method to speed the search and to find a larger set size
when seeking the Pareto optimal set.

��([SHULPHQWV

To evaluate the performance of the MSPC-GA, some
problems reported in the works of Eiben-Lis and Schaffer
were used for experiments. These problems and the
corresponding MSPC-GA parameters are listed bellow.
In Problems 1 and 2, where Eiben and Lis reported details
on parameters, our experiments replicated the same
parameters setting to contrast results.

Problem I: Eiben-Lis Test1 (Srinivas and Deb [18])

Minimize )2,1(1 [[I  and )2,1(2 [[I where

102,15with     

4
1

)2)5.02(2)5.01(()2,1(2

8
1

)2
2

2
1()2,1(1

≤≤−

+−=

+=

[[

[[[[I

[[[[I

Population size: 30
Crossover rate : 0.8
Mutation rate   : 0.01
Chromosome length: 32

Problem 2: Eiben-Lis Test 2 (Schaffer F3 [16])

Minimize )(1 [I and )(2 [I  where
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Population size: 100
Crossover rate : 0.3
Mutation rate   : 0.001
Chromosome length: 16



Problem 3: Schaffer function F2 [16].

Minimize )(21 [I and )(22 [I  where

66with    
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Population size  : 100
Crossover rate   : 0.85
Mutation rate     : 0.01
Chromosome length: 14

��5HVXOWV

Experiments were undertaken for diverse values of Q� and
Q� on each function. In these preliminary tests when L

crossovers were allowed, L� parents per sex were also
selected (Q� = Q�). In general, good results were achieved for
values of Q� and Q�� between 2 and 4. In this section we
report results obtained assigning values of 2, 3 and 4 for
both, Q� and Q� .
In 3UREOHP� � after 100 generations 441 non-dominated
solutions, were found almost evenly distributed on the
Pareto front, with Q� = Q� = 3. They are shown in Figure 1.
When� Q� = Q� = 4, 263 nondominated solutions were
obtained.

In 3UREOHP� �� after 600 generations 597 and 585 non-
dominated solutions, were found almost evenly distributed
on the Pareto front for Q� and Q� set both to 2 and 3,
respectively. They are shown in Figures 2 and 3
respectively.

Figures 4 and 5 show the solutions found as output of
MSPC-GA in the variable and criteria domain for Problem
2.

In 3UREOHP� �� after 200 generations 583 and 580 non-
dominated solutions, were found evenly distributed on the
Pareto front for Q� and Q� set both to 3 and 4, respectively.
They are shown in Figures 6 and 7 respectively.

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8

f 2 (x1, x2)

Fig. 1 – The Pareto front for Problem 1, with 3
parents per sex and 3 crossovers.
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Fig. 2 – The Pareto front for Problem 2, with 2
              parents per sex and 2 crossovers.
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Fig. 3 – The Pareto front for Problem 2, with 3
              parents per sex and 3 crossovers.
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Fig. 4 – Variable and criteria domain for
              Problem 2, with 2 parents per sex
              and 2 crossovers
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Fig. 5– Variable and criteria domain for
              Problem 2, with 3 parents per sex
              and 3 crossovers



Figures 8 and 9 show the solutions found as output of
MSPC-GA in the variable and criteria domain for Problem
3.

As can be observed in the above figures, a larger size of
the Pareto optimal set can be obtained with an almost even
distribution of the nondominated points.

Table 1 sumarizes results when contrasting MSCP-GA
and MSGA.

Problem Problem 1 Problem 2
MSPC-GA MSPC-GAMethod MSGA

(3,3) (4,4)
MSGA

(2,2) (3,3)

#nond 129 441 263 494 597 585
#gen. 197 100 100 631 600 600

For the same problems and using the same parameters
setting MSPC-GA, provides in a fewer number of
generations, a Pareto front larger than the previously
reported for MSGA. This results holds for all the values
chosen for Q� and Q�.

It also can be observed that simultaneous increments of
Q� and Q� do not benefit the performance. Optimal Q� and Q�

combination is yet an open question.

��&RQFOXVLRQV

The present paper describes a new approach to face
multicriteria problems where emphasis is put in applying
multiplicity to some of the techniques used in an evolutionary
algorithm.

The idea of using multiple sexes to subdivide the
population in subpopulations of cooperative individuals
according to the multiobjectives of the problem, enforces
crossbreeding by restricting mating to individuals of
different sex. This approach showed its benefits in the
Eiben and Lis cited work.

The present proposal extends this idea by allowing now
multiple parents per sex and multiple crossovers per mating in
order to balance the explorative and exploitative efforts,
which are present in any evolutionary algorithm. Parents
selection rewards for reproduction those best performer
individuals. Moreover, offspring selection for replacement
favours those new created individuals that are prone to reside
in the Pareto front. If no one fulfilling that condition exits
then a random selection is done to maintain genetic diversity

A set of preliminary experiments was carried out by
simply assigning as many parents per sex as crossovers are
allowed during mating.

When a comparison with other techniques was possible,
current results outperform previous findings with similar
parameters setting on the same problem set. The number of
efficient points is larger and their distribution is at least
satisfactory.
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Fig. 6 – The Pareto front for Problem 3, with 3
              parents per sex and 3 crossovers.
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Fig. 7 – The Pareto front for Problem 3, with 4
              parents per sex and 4 crossovers.
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Fig. 8 – Variable and criteria domain for
              Problem 3, with 3 parents per sex
              and 3 crossovers.
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Fig. 9 – Variable and criteria domain for
              Problem 3, with 4 parents per sex
              and 4 crossovers.

Table 1 – Results under MSGA and MSPC-GA



It worth to remark that no fitness sharing for niching was
necessary to apply in order to obtain a well-delineated Pareto
front. Distance comparisons between all members (or a
sample) of the population at each fitness sharing calculation
do not need to be computed. Consequently a lesser
computational effort is expected because comparisons are
restricted to determine dominance.

These results are promising and encourage us to deep
forward  investigation by varying adaptively MSPC-GA
parameters, essentially the trade-offs between the number of
multiple parents and crossovers to establish the abilities and
possible limitations of this approach.
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