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Abstract- When establishing the Pareto-optimal front,
effective multicriteria optimization involves simultaneous
parallel search for multiple members of a genetic
algorithm population.

In one of these approaches due to Eiben and Lis [2]
rather than conducting multiple independent single
objective searches, all the individuals in the population,
“speciated” by criterion, explore the problem space
expecting that the increased parallel processing of
schemata improves effectiveness to find more solutions in
the Pareto-optimal range.

The present paper investigates the problem of using a
genetic algorithm on a set of test functions which allows a
multisexual population, multiple parents and multiple
crossovers per mating, attempting to build a Pareto
optimal set of larger size. Also, while creating a new
population a selection process for replacement favours
those new created solutions that are inclined to appertain
to the Pareto front.

As a result, the performance of the method produce an
evenly distributed and larger set of efficient points.

Keywords: Genetic algorithms,
optimization, Pareto optimal solutions.

multiobjective

1 Introduction

In the case of multiobjective optimization it istredways
clear how to determine the “goodness” of a solytion
because every solution has a number of fithesesalne
per each objective. A particular solution can bedydor
some objectives and bad for other objectives.

Common existing methods for handling multiple gide
problems are classified as aggregative approachés a
usually combine the various objectives into a sngfility
function. In that way, a genetic algorithm perforassusual
finding the fittest individuals for that single aggated
function.

The simplest approach, of the aggregative famgya i
linear scalar combination which assigns weightsgtant
coefficients) to each criterion (attribute) accoglito the

Héctor A. Leiva
Proyecto UNSL-338403
Departamento de Informatica
Universidad Nacional de San Luis
5700 — San Luis, Argentina
aleiva@unsl.edu.ar

Raul H. Gallard
Proyecto UNSL-338403
Departamento de Informatica
Universidad Nacional de San Luis
5700 — San Luis, Argentina
rgallard@unsl.edu.ar

judgement of a human decision maker (DM). Bhanu and
Lee [1] and Vemuri and Cedefio [21], worked on it.

In order to avoid linear relationships among thieeda,
other researchers introduced nonlinear relatiossty
exponentiating critical attributes, by multiplyinkighly
related attributes or by setting thresholds (upret lower
values) for each criterion. This latter approackiolmes
handling of constraints and penalty or repair fiord.
Simpson et al [18], Savic and Walters [15] Krausel a
Nissen [11] and Stanley and Mudge [20] gave irtsigih
this sense.

Nevertheless, aggregative approaches are critiaised
being rather simplistic. Furthermore, a questiomams;
how to combine separate values of fitness intcaaaeable
single fitness value? Sometimes it is neither fobssnor
rational to combine different, most of the timesftiating,
criteria into a single one.

A better alternative to escape of this dilemmaoisise
the concept of Pareto optimality.

Vilfredo Pareto [14] in 1896 established that thexésts
a partial ordering in the searching space of aiohjkctive
problem. The Pareto criterion simply states thablation
is better than another one if it is so good inaditibutes,
and better in at least one of these attributes.

More formally, for arv-objective optimization problem
the search space can be seen as@imensional space and
therefore each solution is am-vector of attribute
components.

In a maximization problem given two solutions

x=(x1,x2,...,xn)and y=(y1,y2,...,yn), the Pareto
criterion says that, x dominates y iff
x; 2 y; Ui and Djsuchthabcj >y

This is the well-known covering relationship in a
vectorial space and defines the partial orderirgesdt by
Pareto. In the problem space some pairs of solutiat be
non-commesurate, in the sense that neither donsirtate
other. Some solutions will be dominated by othdutsans
and some other solutions will not be dominated by af
the solutions in the problem space. The latter,
nondominated set, corresponds to theeto front, also
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known as theacceptable set, the efficient points and the
Pareto optimal set.

Knowledge of the Pareto front is of utmost impoc&an
when search is applied before decision making. This
information provides the DM with the trade-offs to
establish interactions between different criterleence
simplifying the decision process to choose an aetd@
range of solutions for a multicriteria problem.

Evolutionary algorithms are suitably fitted to fattee
seeking of the Pareto front due to their implicéradlel
search.

According to Horn [10] taxonomy, cooperative
population searches (CPS) with criterion selection is one of
the first methods implemented by Schaffer [16],][17
Fourman [8] and then by Kursawe, [12], [13] andeoth
Goldberg [9] suggested another subclass of CP&dcall
Pareto ranking. Here anon-dominated sorting 10 rank the
population according to the Pareto optimality ciite was
introduced. Also niching and speciation on the fRaf®nt
were proposed. The Goldberg's original proposal of
nondominated sorting was effectively implemented by
Srinivas and Deb [19].

The central idea in CPS, is to make a parallellsing
criterion search, where all members of the poputatf an
evolutionary algorithm are involved in a cooperatsearch
to build the Pareto front. Many of these approaches
niching to obtain an evenly distributed set of tf@cient
points.

Eiben and Lis [2] recently introduced a variant
addressing the problem, called multisexual genetic
algorithm (MSGA), where basically,

e Each individual is provided with a sex (speciation)
intimately related with an optimizing criterion.

e Individuals are evaluated according to their
performance within their (sexual) subpopulations.

* A multiparent crossover requiring one parent per se

is used for recombination.

According to their report, this approach showedb&o
effective to build a set of nondominated solutioofs
reasonable size by merging thokeally' nondominated
solutions obtained through the evolutive process.

We continued working on these basic ideas modifying
some features of MSGA and adding some other
characteristics. In our proposal,
attempting to build the Pareto front is usingnaltiplicity
approach expressed in a multisexual population, where
multiple parents per sex are chosen for mating amck
selected undergo multiple crossovers. Moreovemftbe
various children generated after crossover thos¢ dhne
globally nondominated are favoured for insertion in the

! According to the literature we use the followiregras: locally
nondominated referring to those solutions that are nhondominated
in the current population andobally nondominated referring to
those solutions that were determined as nondonunate far, at
the current stage of the evolutionary process

next generation. This new approach will be caltedri-

sexual-parents-crossovers genetic algorithm (MSPC-GA).

2 Background

In this section a brief overview on MCPC and MSGA i
given.

Multiple crossover per couple (MCPC) is a newly
introduced [4] crossover method which in contragh whe
conventional single crossover per couple appro&ePC),
permits more than one crossover operation for esating
pair. MCPC was applied to optimize classic tesfingtions
and some harder (non-linear, non-separable) furcti®he
goodness of this approach prevailed under all tast
revealed that, when MCPC is applied with 2, 3 and 4
crossovers per couple, results as good as undet s be
expected with an additional benefit in processinget This
performance was obtained through the ability showgd
MCPC of exploiting the recombination of good, forye
found solutions. But on the other hand, those éxts
also showed that, in some cases, the method irectéiaes risk
of premature convergence due to a loss of genatizsity.

To overcome this problem further successful apfresevere
undertaken by combining MCPC with an alternative
selection methodfitness proportional couple selection [7],

by using self-adaptation of MCPC parameters [Shionding
MCPC to alternative selection mechanisms, [6].

As above explained MSGA assigns a sex, or gender, t
each individual. There are as many sexes as optiioiz
criteria exist. In this way each individual is sja¢ized and
tries to fulfil certain optimization criterion. Aimdividual is
represented as the corresponding genetic codeaphesx
marker, which initially can be randomly set. Consatly
the population is divided into subpopulations, eadk in
accordance with some optimization criterion and
individuals are evaluated correspondingly throudte t
appropriate fitness function.

Once individuals are evaluated they are sortedrdoup
to their fitness and the rank obtained is the bfsiguture
selection. Ranks are determined independently farhe
Sex.

Recombination is performed as follows: one indialdu
is chosen, as a parent, from each sex and therutiesrgo
uniform scanning crossover, Which generates a single

the whole process offspring. Each gene in the child is provided framy of

the corresponding genes in the parents with equal
probability. The sex of the child is inherited frothat
parent, which supplied the largest number of gelfiesore
than one parent supply to the offspring the sameinma
number of genes then the sex of the offspring sloanly
chosen from these parent’'s sexes. Mutation takasepl
only in the genetic code of the chromosome.

The set ofocally nondominated solutions is determined
in the current generation and then merged with the
previously found nondominated solutions. During gireg
those nondominated solutions that become dominated
discarded. After execution this updated set will the
output of the MSGA.



3 Brief description of MSPC-GA

Basically the new approach:

1)  uses proportional selection.

2)  selects multiple parents per sex.

3) uses an extension ofwultiple crossovers per
couple (MCPC), calledmultiple crossovers per
mating (MCPMA).

4) for insertion in the next population, gives

preference to those offspring, which are classified
so far, aglobally nondominated.

Some discussion is necessary to clarify the difieggzawith
MSGA approach. First, rather than ranking selection
proportional selection is used to favour best penéy
individuals under each criterion. Second, rathemtlone
parent per sex an equal number of multiple pareatssex
are selected to provide genetic diversity. Thiether than
one crossover operation on the parent's set maltipl
crossovers are applied in an attempt to increagkigation
of good solutions previously found.

As above indicated, in the experiments reportedhis
paper MCPMA is used. Here multiple crossovers bogved
now between multiple parents. Finally, rather tizserting
the single child generated by uniform scanning smoeer
another selection process is applied to selecetbéspring
which resulted globally nondominated.

Using themultiparent approach of Eiben [3] mitigates the
possible loss of diversity generated by MCPC ancextoa
adjustments seems to be necessary. Consequenthjtatiqn
and exploration of the problem space are suitatlgrized.

The last point above mentioned 4), implies to namt
the updated set of solutions found so far as bébgnip the
Pareto front. Let us call R.,...,. This set is updated at the
end of each generation cycle.

To build the new population, each time the new
offspring are created by application of MCPMA, wsply
the following procedure:

While the new population is created

do

Selectn; parents from each sex,

Apply MCPMA with uniform scanning crossover
to obtainn, offspring and mutate,

By consultingP..,,..., determine the subsét,,,,, of
these new offspring that are globally
nondominated,

If Oupna # @ then insertO,,,; into the new

population
else inseru,/2 offspring randomly
chosen into the new
population
od

The numbern; of parents and the number, of
crossovers are parameters of the GA.
Essentially the proposed MSPC-GA,

« Augments implicit parallel search by encouraging
crossbreeding among “species”.

* Increases exploration and attempts to avoid prematu
convergence through multiparent recombination.

 Increases exploitation of good solutions previosly
found through multiple crossovers per mating.

» Favours for insertion in the next generation those
solutions which are, at the present stage, globally
nondominated. If no one is found then genetic
diversity is favoured by a random selection.

Consequently, it is expected a contribution of the

method to speed the search and to find a largesizet
when seeking the Pareto optimal set.

4 Experiments

To evaluate the performance of the MSPC-GA, some
problems reported in the works of Eiben-Lis and eBfeh
were used for experiments. These problems and the
corresponding MSPC-GA parameters are listed bellow.

In Problems 1 and 2, where Eiben and Lis reporedild

on parameters, our experiments replicated the same
parameters setting to contrast results.

Problem I: Eiben-Lis Testl (Srinivas and Deb [18])
Minimize f;(xq,x5) and f,(xq,x,)where
1
Rl = (f +x3)°

1
2 2.4
fo(x1.x5) = (v — 05) +(x505)7) 4
Population size: 30
Crossover rate : 0.8
Mutation rate 0.01

Chromosome length: 32

Problem 2: Eiben-Lis Test 2 (Schaffer F3 [16])
Minimize f; (x) and £, (x) where

if x<1
if 1<x<3
if 3<x<4
if 4<x

- X
=l 2
1= 4-x

-4+x

o) = (x-5)2
with -5<x<10

Population size:
Crossover rate : 0.3
Mutation rate 0.001
Chromosome length: 16

100



Problem 3: Schaffer function F2 [16].
Minimize f,,(x) and f,,(x) where

2
fzfx) =X
2

Soo(x) =(x-2)

with —-6<x<6
Population size : 100
Crossover rate 0.85
Mutation rate 0.01

Chromosome length: 14

5 Results

Experiments were undertaken for diverse values,aind

n, on each function. In these preliminary tests whien
crossovers were allowed, parents per sex were also
selected 4, - n,). In general, good results were achieved for
values ofn; andn, between 2 and 4. In this section we
report results obtained assigning values of 2, @ 4rfor
both,n; andn, .

In Problem 1 after 100 generations 441 non-dominated
solutions, were found almost evenly distributed the
Pareto front, withz; = n, = 3. They are shown in Figure 1.
When n; = n, = 4, 263 nondominated solutions were
obtained.
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Fig. 1 — The Pareto front for Problem 1, with 3
parents per sex and 3 crossovers.

In Problem 2 after 600 generations 597 and 585 non-
dominated solutions, were found almost evenly itisted

on the Pareto front for; and n, set both to 2 and 3,
respectively. They are shown in Figures 2 and 3
respectively.

Figures 4 and 5 show the solutions found as output
MSPC-GA in the variable and criteria domain for tileon
2.

In Problem 3 after 200 generations 583 and 580 non-
dominated solutions, were found evenly distribubedthe
Pareto front fom; andn, set both to 3 and 4, respectively.
They are shown in Figures 6 and 7 respectively.
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Fig. 2 — The Pareto front for Problem 2, with 2
parents per sex and 2 crossovers.
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Fig. 3 — The Pareto front for Problem 2, with 3

parents per sex and 3 crossovers.
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Fig. 4 — Variable and criteria domain for
Problem 2, with 2 parents per sex
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Fig. 5— Variable and criteria domain for
Problem 2, with 3 parents per sex
and 3 crossovers
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Fig. 6 — The Pareto front for Problem 3, with 3
parents per sex and 3 crossovers.
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Fig. 7 — The Pareto front for Problem 3, with 4
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parents per sex and 4 crossovers.
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Fig. 8 — Variable and criteria domain for

Problem 3, with 3 parents per sex
and 3 crossovers.
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Fig. 9 — Variable and criteria domain for

Problem 3, with 4 parents per sex
and 4 crossovers.
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Figures 8 and 9 show the solutions found as output
MSPC-GA in the variable and criteria domain for Ifemn
3.

As can be observed in the above figures, a laiigeras
the Pareto optimal set can be obtained with an stirmeen
distribution of the nondominated points.

Table 1 sumarizes results when contrasting MSCP-GA
and MSGA.

Problem Problem 1 Problem 2
Method | MSGA MSPC-GA MSGA MSPC-GA
B3) | 44 (2,2) (3,3)
#nond 129 441 263 494 597 58
#gen. 197 100 100 631 60( 60

Table 1 — Results under MSGA and MSPC-GA

For the same problems and using the same parameters
setting MSPC-GA, provides in a fewer number of
generations, a Pareto front larger than the prelyou
reported for MSGA. This results holds for all thalues
chosen form; andn,.

It also can be observed that simultaneous incresnaint
n; andn, do not benefit the performance. Optimalandn;,
combination is yet an open question.

6 Conclusions

The present paper describes a new approach to face
multicriteria problems where emphasis is put in lypg
multiplicity to some of the techniques used in aolationary
algorithm.

The idea of using multiple sexes to subdivide the
population in subpopulations of cooperative indits
according to the multiobjectives of the problemfoeces
crossbreeding by restricting mating to individuad$
different sex. This approach showed its benefitsthia
Eiben and Lis cited work.

The present proposal extends this idea by allowiory
multiple parents per sex and multiple crossoversaging in
order to balance the explorative and exploitatiff®res,
which are present in any evolutionary algorithmreRts
selection rewards for reproduction those best pado
individuals. Moreover, offspring selection for rapbment
favours those new created individuals that aregtorreside
in the Pareto front. If no one fulfiling that catidn exits
then a random selection is done to maintain gedatésity

A set of preliminary experiments was carried out by
simply assigning as many parents per sex as crassave
allowed during mating.

When a comparison with other techniques was pe@ssibl
current results outperform previous findings witimikar
parameters setting on the same problem set. Théaruof
efficient points is larger and their distribution at least
satisfactory.



It worth to remark that no fitness sharing for mchwas
necessary to apply in order to obtain a well-delied Pareto
front. Distance comparisons between all members aor [g]
sample) of the population at each fitness sharalgutation
do not need to be computed. Consequently a lesser
computational effort is expected because compaisme
restricted to determine dominance. 9]

These results are promising and encourage us tp deL
forward investigation by varying adaptively MSP@&G
parameters, essentially the trade-offs betweemuineber of
multiple parents and crossovers to establish thilgiedand
possible limitations of this approach.
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