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Abstract. Ant colony optimization (ACO) is a metaheurisitc which was
originally designed to solve combinatorial optimization problems. In re-
cent years, ACO has been extended to tackle continuous single-objective
optimization problems, being ACOR one of the most remarkable ap-
proaches of this sort. However, there exist just a few ACO-based algo-
rithms designed to solve continuous multi-objective optimization prob-
lems (MOPs) and none of them has been tested with many-objective
problems (i.e., multi-objective problems having four or more objectives).
In this paper, we propose a novel multi-objective ant colony optimizer
(called iMOACOR) for continuous search spaces, which is based on ACOR

and the R2 performance indicator. Our proposed approach is the first
specifically designed to tackle many-objective optimization problems.
Moreover, we present a comparative study of our proposal with respect
to NSGA-III, MOEA/D, MOACOR and SMS-EMOA using standard test
problems and performance indicators adopted in the specialized litera-
ture. Our preliminary results indicate that iMOACOR is very competitive
with respect to state-of-the-art multi-objective evolutionary algorithms
and is also able to outperform MOACOR.

1 Introduction

In artificial intelligence, the social behavior of animals and insects has been
a prominent source of inspiration for several metaheuristics which are part of
the broad concept of Swarm Intelligence. Ant Colony Optimization (ACO), was
originally proposed by Dorigo [1], and it is inspired by colonies of real ants that
deposit a chemical substance (called pheromone) on the ground with the aim of
tracing paths to a source of food. The ants tend to take, with a higher probability,
those paths where there is a larger amount of pheromone. In fact, after some
time, the shortest path is the one with the largest amount of pheromone [2]. Due
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to this property, ACO was originally applied to the solution of combinatorial
optimization problems (COPs).

Over the years, the ACO metaheuristic has been extended to continuous
search spaces, being the proposal of Bilchev & Parmee [3] the first of this sort.
According to [4], there are several ACO-based optimizers for continuous domains
although the ACO algorithm for continuous domains (ACOR) [5] is possibly the
most remarkable. In spite of the relatively large amount of ACO-based algorithms
currently available for continuous domains, there are just a few oriented to solve
multi-objective optimization problems (MOPs). In [4] only two proposals are
reported: the Population-based ACO Algorithm for Multi-Objective Function
Optimization (PACO-MOFO) [6] and the Multi-Objective Ant Colony Optimizer
(MOACOR) [7], both based on ACOR. Furthermore, in the specialized literature
no multi-objective ant colony optimizer (MOACO) had been reported so far as
being able to solve many-objective problems [8].

In this paper, we propose a novel indicator-based Multi-Objective Ant Colony
Optimizer based on ACOR, called iMOACOR. To the authors’ best knowledge,
this is the first MOACO algorithm that is able to tackle many-objective opti-
mization problems.

The remainder of this paper is organized as follows. Section 2 presents an
overview of the previous work on ACO in continuous optimization problems.
Section 3 briefly describes ACOR. The detailed description of our proposal is
presented in Section 4. Then, we provide our experimental results in Section 5.
Finally, Section 6 provides our conclusions and some possible paths for future
research.

2 Previous Related Work

The first ACO algorithm designed for continuous search spaces was proposed
by Bilchev & Parmee [3]. In this approach, each ant incrementally explores the
search space from a single nest, defined as a promising point, trying different
search directions at a radius not greater than R. At choosing a search direction,
each ant’s decision was biased by a trail quantity which was incremented if
and only if the direction resulted in an improvement of the objective function;
otherwise, the search direction was not taken into account. This process was
repeated until a termination condition was met.

Socha & Dorigo proposed the ACOR [5] algorithm whose fundamental idea is
the use of a continuous probability density function (PDF) instead of a discrete
one as in traditional ACOs. ACOR uses a constant-size archive as its pheromone
model where the best-so-far solutions are stored. For each dimension, a Gaussian-
kernel PDF is defined using the corresponding elements of every stored solu-
tion. An ant incrementally constructs a new solution via the sampling of each
Gaussian-kernel PDF. Once all ants have constructed a new solution, only the
best ones are kept in the archive and the same number are removed from it. A
detailed description of ACOR will be provided in the next section.
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The use of ACO in continuous MOPs has been scarcely explored [4]. We are
only aware of two approaches. The first of them is PACO-MOFO, which is based
on the Crowding Population-based ACO algorithm (CPACO) [9] and ACOR.
PACO-MOFO applies a replacement operator based on crowding distance in or-
der to maintain diversity and fitness sharing in furtherance of a uniform sampling
of the objective space. The second proposal is MOACOR [7], which is a direct
extension of ACOR. The concept of dominance depth of NSGA-II [10] is used in
this case to preserve at each iteration those solutions closer to the Pareto Front.
Moreover, if the number of solutions exceed the size of the archive, those with
a higher crowding distance value are removed in order to maintain constant the
size of the archive.

3 ACOR Overview

The pheromone model of ACOR [5] is represented by an archive T that stores the
k best-so-far solutions. For the ith dimension, a Gaussian-kernel PDF is defined
using the corresponding components of all stored solutions as follows:
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where i = 1, . . . , n and n is the number of decision variables. Each archive’s
solution j stores a vector of decision variables sj = (s1j , . . . , s

n
j ), an objective

value u(sj) and the weight ωj . The solutions are sorted by their quality, i.e.,
u(s1) ≤ u(s2) ≤ . . . ≤ u(sk), for a minimization problem.

Equation (1) depends on three vectors of parameters: µi is the vector of
means, σi is the vector of standard deviations, and ω is the vector of weights.
The vector of means µi is defined as follows:

µi = {µi
1, . . . , µ

i
k} = {si1, . . . , sik} (2)

The elements of σi have to be independently calculated for each Gaussian-kernel
using the following formula:
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where ξ > 0 is a parameter of the algorithm that controls the way the long term
memory is used, i.e., the speed of convergence. When ξ is large, the speed of
convergece is slower and in case its value is close to zero, the speed of convergence
is increased. Finally, each ωj ∈ ω is calculated as follows:

ωj =
1

qk
√
2π

· e−
(rank(sj )−1)2

2q2k2 (4)

where rank(·) returns the solution’s rank in T according to the established order
and q > 0 is a parameter that controls the diversification of the search. As q → 0,
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the best-ranked solutions are preferred to guide the search, and when it takes a
large value, the weights tend to be more uniform.

In order to generate a new solution, first, each ant ai ∈ A chooses, with
probability pj = ωj/

∑k

r=1
ωr, a guiding pheromone sj from T . Then, ai samples

gij(x), i = 1, . . . , n, with the purpose of creating a new solution.

4 Our Proposed Approach

The hypervolume (HV) [18] and the R2 indicator [11] are two recommended
unary performance indicators which simultaneously evaluate all the desired as-
pects of a Pareto Front approximation [11]. However, the R2 indicator requires
less computational effort and it produces a more uniform distribution than HV.
Given a Pareto Front approximation A, the unary version of the R2 indicator
[11] is defined as follows:

R2(A,U) =
1

|U |
∑

u∈U

min
a∈A

{u(a)} (5)

where U is a set of utility functions u : Rm → R that are a model of the decision
maker’s preference that maps each objective vector into a scalar value.

Motivated by the nice properties of the R2 indicator, Hernández & Coello
proposed in [13] a ranking algorithm based on it, called R2-ranking. This mech-
anism groups solutions which optimize a set of utility functions, and place them
on top, such that they get the first rank. Then, such points are removed and a
second rank is assigned in the same way and so on until there are no more points
left to be ranked. One of the advantages of this scheme is its good performance
on many-objective problems.

Concerning the choice of the utility function u in equation (5), we use the
achievement scalarizing function (ASF) [12] defined as:

uasf (v | r, λ) = max
i∈{1,...,m}

1

λi

|vi − ri| (6)

where r is a reference vector and λ is a convex weight vector, both of dimension
m. The set U = {λi | i = 1, . . . , N} (N = CH+m−1

m−1 , H is a parameter of
the algorithm) is computed using Simple-Lattice-Design (SLD). Moreover, we
normalize each objective function fi(x) (the R2-ranking algorithm requieres this
normalization) using the following formula:

f ′
i(x) =

fi(x)− zmin
i

zmax
i − zmin

i

, ∀i ∈ {1, . . . ,m} (7)

where zmin and zmax are statistical approximations to the ideal and nadir vec-
tors [12], respectively. These vectors are updated using a data structure called
RECORD, which was proposed by Hernández & Coello [13].

When we deal with MOPs there is not a unique solution but a set of solutions
which represent the best possible trade-offs among the objectives. Due to this
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fact, ACOR’s pheromone model has to be slightly modified in order to store
the best solutions according to some criterion. A Pareto-based scheme is not a
good choice if we aim to solve many-objective problems. Thus, we propose to
use the R2-ranking algorithm because of its good performance in many-objective
problems.

Each record of the archive T stores the same information as in ACOR, al-
though in this case the objective value is treated as an objective vector F (si).
Additionally, it is added a field rank(si). Once the solutions in T have been
processed by the R2-ranking, the rank assigned to each solution sj is stored in
rank(sj). In order to create a new solution, we applied the standard process of
ACOR using equations (1) to (4).

The underlying idea of the pheromone update is to promote a competition
between the newly created solutions A and the pheromones in T . Let Ψ =
A ∪ T . The union set is ranked by the R2-ranking and is immediately sorted,
in increasing order, by the following criteria: (1) rank, (2) utility value, (3) L2-
norm. Finally, all pheromones in T are substituted by the first k solutions of
Ψ .

In Algorithm 1, we describe our proposed iMOACOR.
1 The algorithm only

requires three parameters: (1) the set on N = CH+m−1

m−1 weight vectors, (2)
the diversification parameter q, and (3) the convergence speed factor, ξ. The
population size (M) and the archive size (k) are equal to N due to the optimal
µ-distributions of the R2 indicator [11]. In lines 1 to 3, k random solutions
are generated to initialize T and the RECORD structure is created. At each
iteration, the R2-ranking is applied on T and afterwards every ant generates a
new solution. Then, in line 8, the RECORD is updated using the ants’ solutions
with the aim of producing new values of zmin and zmax. From lines 9 to 13, the
pheromone update is performed. This process is repeated until a termination
condition is fulfilled and then the solutions in T are returned in line 14.

5 Experimental Results

In order to assess the performance of our proposed approach, we used the Zitzler-
Deb-Thiele (ZDT) test suite, the Deb-Thiele-Laumanns-Zitzler (DTLZ) test
suite, and the Walking-Fish-Group (WFG) test suite. However, due to space
limitations, only the results for the ZDT and DTLZ test problems are included
here. Our proposed approach was compared with respect to: NSGA-III2 [15],
MOEA/D [14], SMS-EMOA [16] (using HypE to estimate the hypervolume val-

1 The source code of our approach is available at:
http://computacion.cs.cinvestav.mx/~jfalcon/iMOACOR/imoacor.html

2 We used the implementation available at:
http://web.ntnu.edu.tw/~tcchiang/publications/nsga3cpp/nsga3cpp.htm
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Algorithm 1 Main loop of iMOACOR.

Require: MOP, set of N = CH+m−1

m−1 convex weight vectors, q, ξ
Ensure: Pareto front approximation
1: Randomly initialize archive T
2: Initialize RECORD R

3: Initialize zmin and zmax

4: while termination condition is not fulfilled do

5: T ← R2ranking(T )
6: for all ant ∈ A do

7: generateSolution(ant, zmin, zmax)

8: Update reference points (zmin, zmax) using R

9: Ψ ← A∪ T

10: Ψ ′
← R2ranking(Ψ)

11: Remove all elements from T
12: Ψ ′

← sortReduction(Ψ ′)
13: Copy the first k elements from Ψ ′ to T

14: return T

ues [17]) and MOACOR
3 [7]. Results were compared using the hypervolume

(HV), inverted generational distance plus (IGD+4) [19] and spacing (S) [18].
Attending the original papers, the common parameter settings for NSGA-III,

MOEA/D and SMS-EMOA have been set as follows:Nc = 20, Pc = 1.0,Nm = 20
and Pm = 1/n. The neighborhood size of MOEA/D was set to 20. The number
of samples in the HypE algorithm was set to 10,000. Based on an experimental
study, the parameters (q, ξ) of iMOACOR and MOACOR were set as (0.1, 0.5)
for low and high dimensionality. In all cases, we performed a maximum number
of 50,000 function evaluations. We used N = 120 weight vectors, which implies
H = 119 and H = 14, for two and three dimensions, respectively.

For the scalability test, we employed DTLZ2 from four to nine objectives. All
parameter values remained the same except for Nc = 30, as suggested in [15].
The maximum number of function evaluations remained the same as before. The
experimental configurations (m,N(H)) are as follows: (4, 120(7)), (5, 126(5)),
(6, 126(4)), (7, 84(3)), (8, 120(3)), (9, 165(3)) and (10, 220(3)).

5.1 Discussion of results

This section compares iMOACOR with three state-of-the-art MOEAs and a
MOACO that was designed for continuous MOPs. The comparison is performed
in terms of convergence and diversity of the solutions obtained. We perform 30
independent runs of each of the 5 algorithms on all the test instances adopted.
Tables 1 and 2 show the average HV, IGD+ and S values, as well as the standard

3 The source code was provided by its author, Abel Garćıa Nájera.
4 For each problem, the reference set is constructed joining the results from all algo-
rithms and then applying the k-means clustering algorithm in order to reduce its
cardinality to k.
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deviations (shown in parentheses) obtained by all the algorithms compared. The
two best values among the algorithms are emphasized in gray scale, where the
darker tone corresponds to the best value. A sharp symbol (#) is placed when
a result is statistically different from iMOACOR’s result based on a single-tail
Wilcoxon test (WT) using a significance level of 95%.

Table 1 shows that NSGA-III yields the best HV results in three of four of
the ZDT test problems and that iMOACOR is the best in one of them. However,
iMOACOR obtained the second best HV value in the problems where NSGA-
III wins. Moreover, iMOACOR outperformed MOEA/D, SMS-EMOA (HypE)
and MOACOR in all the ZDT problems and the differences are statistically
significant. With respect to IGD+, iMOACOR obtained the second place in 50%
of the problems and outperformed MOACOR and SMS-EMOA(HypE) in 75%
of the problems (the differences were statistically significant).

Table 1. Comparison of iMOACOR with respect to SMS-EMOA, MOEA/D, NSGA-III
and MOACOR in the ZDT test problems with two objectives. The symbol # is placed
when the difference with respect to iMOACOR’s result is statistically significant, based
on Wilcoxon’s test. The two best values are shown in gray scale, where the darker
tone corresponds to the best value. NC stands for a not computable result due to an
algorithm’s error.

Problem Algorithm HV IGD+ S

ZDT1

iMOACOR 120.650592(0.002695) 0.006982(0.000262) 0.022642(0.000638)
MOACOR 120.647992(0.001834)# 0.004849(0.000213) 0.005066(0.000462)

SMS-EMOA 115.056548(0.204942)# 0.110323(0.006696)# 0.002271(0.002064)
MOEA/D 120.556524(0.029634)# 0.002429(0.000194) 0.004075(0.000219)
NSGA-III 120.662065(0.000361) 0.001986(0.000024) 0.008623(0.000175)

ZDT2

iMOACOR 120.319499(0.002065) 0.004579(0.000105) 0.022031(0.000424)
MOACOR NC NC NC

SMS-EMOA 111.557974(0.298732)# 0.155868(0.009460)# 0.002802(0.000375)
MOEA/D 120.303458(0.009442)# 0.002511(0.000320) 0.003736(0.000130)
NSGA-III 120.328489(0.000541) 0.001919(0.000008) 0.003460(0.000067)

ZDT3

iMOACOR 128.746630(0.006519) 0.002151(0.000116) 0.017216(0.000907)
MOACOR 128.718532(0.008340)# 0.003121(0.000213)# 0.005641(0.000496)

SMS-EMOA 125.892282(1.903359)# 0.032616(0.025295)# 0.028416(0.019151)#
MOEA/D 128.214272(0.946685)# 0.005800(0.006714)# 0.014828(0.001110)
NSGA-III 128.774980(0.000181) 0.001413(0.000068) 0.011243(0.000922)

ZDT6

iMOACOR 117.381093(0.023285) 0.013011(0.001239) 0.023835(0.001014)
MOACOR NC NC NC

SMS-EMOA 113.246727(1.377160)# 0.217514(0.070758)# 0.008383(0.016202)
MOEA/D 116.763019(0.071014)# 0.050276(0.005115)# 0.003248(0.000604)
NSGA-III 116.418956(0.002804)# 0.003126(0.000080) 0.001221(0.000018)

Table 2 shows the HV, IGD+ and S values in the DTLZ test problems with
3 objectives. MOACOR obtained the best HV results in 40% of the problems.
iMOACOR and NSGA-III performed similarly in HV with only one best value
and in 40% of the problems it ranked second. Moreover, iMOACOR outperformed
NSGA-III, MOEA/D and MOACOR in 40% of the problems and outperformed
SMS-EMOA(HypE) in a statistically significant way, in all problems. On the
other hand, both MOACOR and MOEA/D outperformed, in terms of IGD+,
the rest of the algorithms in 40% of the problems in a statistically significant
way. Finally, it is worth emphasizing that iMOACOR obtained the best results
in DTLZ6 for every indicator and outperformed the other MOEAs in a statisti-
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cally significant way. However, iMOACOR could not outperform MOACOR in a
statistically significant way.

It is worth indicating that, although SMS-EMOA(HypE) obtained the best
S values and iMOACOR the worst, we observed that the solutions obtained by
SMS-EMOA(HypE) are not well spread and they tend to concentrate on a small
region of objective function space. This is not reflected in the S values, because
the solutions are all generated in the same small region. In contrast, iMOACOR

provides a better coverage along the Pareto front, but presents a non-uniform
distribution in some cases, which is the explanation for its poor values.

Regarding our scalability test, in Table 3 we provide the HV and IGD+
values in DTLZ2 having from four to nine objectives. Clearly, MOEA/D and
NSGA-III present better HV and IGD+ results than iMOACOR. However, the
maximum observed difference, in relation to HV, is of order 10−1, which is not
very significant. iMOACOR outperforms SMS-EMOA (HypE) in 100% of the
cases.

Table 2. Comparison of iMOACOR with respect to SMS-EMOA, MOEA/D, NSGA-III
and MOACOR in the DTLZ test suite with three objectives. The symbol # is placed
when the difference with respect to iMOACOR’s result is statistically significant, based
on Wilcoxon’s test. The two best values are shown in gray scale, where a darker tone
corresponds to the best value.

Problem Algorithm HV IGD+ S

DTLZ2

iMOACOR 7.420386(0.000218) 0.020631(0.000148) 0.051706(0.000954)
MOACOR 7.396275(0.005367)# 0.027855(0.001570)# 0.049300(0.004648)

SMS-EMOA 4.096654(0.078739)# 0.327737(0.006341)# 0.015061(0.004850)
MOEA/D 7.421695(0.000110) 0.019927(0.000004) 0.048915(0.000023)
NSGA-III 7.421721(0.000480) 0.020182(0.000256) 0.048387(0.000899)

DTLZ4

iMOACOR 7.419849(0.000499) 0.031649(0.000353) 0.059475(0.003305)
MOACOR 7.397087(0.004471) 0.037138(0.001348) 0.047430(0.004064)

SMS-EMOA 4.540085(0.510681)# 0.244637(0.072285)# 0.020506(0.023548)
MOEA/D 7.421583(0.000095) 0.029946(0.000007) 0.048923(0.000022)
NSGA-III 7.219506(0.405047) 0.066563(0.073020) 0.040964(0.015405)

DTLZ5

iMOACOR 59.838732(0.006907) 0.002099(0.000280) 0.004906(0.003023)
MOACOR 59.868424(0.001271)# 0.001168(0.000229)# 0.007250(0.000658)#

SMS-EMOA 50.323056(0.664565)# 0.001539(0.000362) 0.006650(0.003698)
MOEA/D 59.734700(0.001057)# 0.004707(0.000008)# 0.220014(0.005494)#
NSGA-III 59.831769(0.008471)# 0.001708(0.000447) 0.011428(0.001740)#

DTLZ6

iMOACOR 1318.921707(0.019110) 0.006341(0.000682) 0.007476(0.003907)
MOACOR 1315.603646(18.281311) 0.067062(0.338421) 0.028337(0.103803)

SMS-EMOA 1179.647918(18.251463)# 0.260869(0.044008)# 0.012619(0.001664)#
MOEA/D 1317.080995(0.438458)# 0.117785(0.030957)# 0.241082(0.002048)#
NSGA-III 1317.572393(0.378312)# 0.081541(0.023995)# 0.060883(0.039139)#

DTLZ7

iMOACOR 1.481848(0.128161) 0.208907(0.064111) 0.110911(0.042411)
MOACOR 1.955759(0.012511) 0.033899(0.002521) 0.066972(0.006164)

SMS-EMOA 1.481553(0.151019) 0.192244(0.050467) 0.046280(0.016713)
MOEA/D 1.827781(0.211815) 0.096353(0.150199) 0.166670(0.034483)#
NSGA-III 1.937277(0.011787) 0.037603(0.001834) 0.058137(0.004748)

6 Conclusions and Future Work

In this paper, we have proposed a new ACO-based multi-objective optimizer
for continuous search spaces, called iMOACOR. Our approach uses ACOR as
its search engine and employs a ranking algorithm based on the R2 indicator
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Table 3. Comparison of iMOACOR with respect to three MOEAs in DTLZ2 with
four to nine objectives. The symbol # is placed when the difference with respect to
iMOACOR’s result is statistically significant, based on Wilcoxon’s test. The two best
values are shown in gray scale, where the darker tone corresponds to the best value.

Problem Algorithm HV IGD+

DTLZ2 4D

iMOACOR 15.560885(0.000752) 0.050234(0.004783)
SMS-EMOA 10.249730(0.677489)# 0.291283(0.009656)#
MOEA/D 15.567068(0.000241) 0.037633(0.000019)
NSGA-III 15.566456(0.000668) 0.038679(0.000926)

DTLZ2 5D

iMOACOR 31.650513(0.001900) 0.079425(0.004944)
SMS-EMOA 21.358261(0.676573)# 0.363571(0.006165)#
MOEA/D 31.667626(0.000250) 0.057564(0.000070)
NSGA-III 31.665300(0.000589) 0.059863(0.000627)

DTLZ2 6D

iMOACOR 63.714682(0.002503) 0.091338(0.008945)
SMS-EMOA 47.221717(1.575810)# 0.395902(0.009846)#
MOEA/D 63.738154(0.000667) 0.048382(0.000030)
NSGA-III 63.737999(0.001056) 0.051075(0.000791)

DTLZ2 7D

iMOACOR 127.695926(0.008977) 0.147653(0.008183)
SMS-EMOA 82.448331(3.777842)# 0.501245(0.006396)#
MOEA/D 127.747411(0.001454) 0.088905(0.000024)
NSGA-III 127.749053(0.001358) 0.092568(0.001253)

DTLZ2 8D

iMOACOR 255.731810(0.060472) 0.166126(0.010043)
SMS-EMOA 184.360111(8.860506)# 0.530043(0.005534)#
MOEA/D 255.819317(0.001518) 0.093164(0.000159)
NSGA-III 255.815238(0.001521) 0.099347(0.001020)

DTLZ2 9D

iMOACOR 511.711415(0.161806) 0.177908(0.009877)
SMS-EMOA 414.480972(10.937714)# 0.548778(0.006587)#
MOEA/D 511.866089(0.003034) 0.087360(0.000135)
NSGA-III 511.870831(0.001247) 0.092867(0.001409)

in order to define which solutions are better than the others. This allows our
approach to tackle many-objective problems.

Our experimental results indicate that iMOACOR had a competitive perfor-
mance with respect to NSGA-III and MOEA/D and that is able to outperform
SMS-EMOA (HypE) andMOACOR in most of the test problems adopted. There-
fore, we consider that iMOACOR is a good starting point for having a highly
competitive multi-objective optimizer based on ACO. However, one aspect that
must be emphasized is the difficulty that iMOACOR has on multi-frontal prob-
lems such as ZDT4, DTLZ1 and DTLZ3. Our proposed approach has difficulties
to maintain diversity in these problems and more work in this direction is still
required.

It is worth noticing that the solutions produced by iMOACOR are similar to
those generated by NSGA-III and MOEA/D in terms of distribution and it also
achieves a competitive performance in terms of convergence. Furthermore, our
proposed approach requires much less computational effort than SMS-EMOA.

As part of our future work, we are interested in studying different diver-
sity mechanisms that allow us to maintain the biological metaphor of the ACO
algorithm. Additionally, the pheromone structure still has a lot of room for im-
provement. Finally, we also aim to improve the performance of our approach in
many-objective problems.
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