

Minimal Sets of Quality Metrics 
 


A. Farhang-Mehr, and S. Azarm 
 


Department of Mechanical Engineering, University of Maryland 
College Park, Maryland 20742, U.S.A. 


{mehr@wam, azarm@eng}.umd.edu 
 


 
Abstract. Numerous quality assessment metrics have been developed by 
researchers to compare the performance of different multi-objective 
evolutionary algorithms. These metrics show different properties and address 
various aspects of solution set quality. In this paper, we propose a conceptual 
framework for selection of a handful of these metrics such that all desired 
aspects of quality are addressed with minimum or no redundancy. Indeed, we 
prove that such sets of metrics, referred to as  ‘minimal sets’, must be 
constructed based on a one-to-one correspondence with those aspects of 
quality that are desirable to a decision-maker.  


 
1 Introduction 
 
There are various multi-objective heuristic search techniques in the literature among 
which Multi-Objective Evolutionary Algorithms (MOEAs) have received significant 
attention [1][2][3][4]. These techniques usually generate a finite set of solutions to 
approximate the Pareto frontier of a multi-objective optimization problem. However, 
obtaining the ‘best possible’ set to represent the entire Pareto frontier is not always a 
trivial (or even an objectively-defined) task. Indeed, researchers have developed a 
myriad of techniques over the last few years to improve the quality of such solution 
sets in one way or another. Naturally, performance assessment and comparison study 
of such techniques have also gained much attention. One obvious way to compare 
MOEAs is to simply visualize the final sets of solutions and rely on intuitive 
judgments to decide on superiority of one technique to another.   However, as 
discussed by Van Valdhuizen and Lamont [2], intuitive and visual assessment is not 
a reliable tool for comparison of different multi-objective optimization techniques. 
Especially, for problems with more than three-dimensions, visual judgment is either 
impossible or quite misleading yet it is the prevailing tool used by the researchers in 
the field.  


More recently, there has been an emerging theme in the literature to quantitatively 
assess and compare the quality of non-dominated solution sets via quality (or 
performance) metrics. (A Non-Dominated Set, abbreviated as NDS, is defined as a 
set of mutually non-dominated solutions obtained from a MOEA to approximate the 
Pareto frontier.) These quality metrics generally assign an absolute or relative value 
(or a set of values) to a NDS to determine whether it is a ‘good’ representation of the 
actual Pareto frontier. For instance, Zitzler and Thiele [5] performed a comparative 
study of several multi-objective optimization methods using two metrics: “size of the 
dominated space” and “fraction of solutions dominated by the other set”. Van 
Veldhuizen [6] introduced several quality metrics, such as: ‘error ratio’, 
‘generational distance’, ‘maximum Pareto frontier error’ and ‘overall non-dominated 


 







vector generation ratio’ to assess different aspects of a solution set quality. Sayin [7] 
defined metrics for coverage, uniformity and cardinality to determine how ‘good’ a 
set of discrete solution points represents the true Pareto frontier. (For a recent review 
of the quality metrics and their shortcomings, see [8].)  


Having many different quality metrics in the literature poses a new question to 
researchers: which metric or host of metrics must be used for an exhaustive (but not 
redundant) comparison study of different MOEAs? In fact, many of these metrics are 
coupled in the sense that they address a common aspect of quality. For example, 
there are several metrics in the literature that are claimed to assess ‘diversity of 
solutions’ in one way or another, including: ‘spacing metric’ [9]; ‘overall non-
dominated vector generation’, ‘overall non-dominated vector generation ratio’ [6]; 
‘coverage’, ‘uniformity’, ‘cardinality’ [7]; ‘number of distinct choices’, ‘Pareto 
spread’, and ‘cluster’ [10]. In a similar fashion, researchers developed numerous 
metrics to assess the closeness of solution sets to the Pareto frontier (see [4], for 
examples of these metrics). Obviously, many of these overlapping metrics are 
correlated, introducing redundancy in the comparison study of MOEAs. On the other 
hand, selecting too few of these quality metrics does not guarantee an exhaustive 
comparison with respect to all aspects of quality. Indeed, a desirable collection of 
quality metrics must be minimal, in the sense that: 1) There is at least one metric for 
every aspect of the solution set quality to guarantee an exhaustive performance 
assessment; 2) There exists minimum (or no) correlation among quality metrics to 
avoid redundancies (see Section 4 for a formal definition). Due to the subjective 
nature of quality metrics, and quality of a set of solutions in general, the above-
mentioned properties may not be noticeable from the formulation of these metrics 
and require a more thorough investigation of the underlying concepts.  


In this paper, we assume that the decision-maker’s specific preferences are not 
known a priori, while the general aspects of interest are known. In other words, we 
would like to determine a minimal set of quality metrics that exhaustively addresses 
all desired aspects of quality without redundancy. Hansen and Jaszkiewicz [11] 
performed a similar study in which a family of outperformance relations was defined 
to compare Pareto-optimality of non-dominated solutions sets (see Section 2 for 
more on this). These relations account for pairs of NDSs where one solution set is 
objectively better (based only on the notion of dominance) than the other set and 
thus, they establish strict partial orders among NDSs. (A strict partial order in the 
set of all possible NDSs is defined as an irreflexive, antisymmetric, and transitive 
relation that compares some and not every given pair of NDSs. For details see almost 
any book on set theory, e.g. [12].) In other words, not all solution sets are 
comparable in this way, but at least one can verify the validity of a quality metric by 
examining its compatibility with these relations. Based on this idea, Zitzler et al. [13] 
proposed a theoretical framework to investigate the compatibility and completeness 
of different comparison methods and derived a set of theoretical restrictions for the 
existence of compatible and complete unary quality metrics. (A unary quality metric 
measures the absolute goodness of a NDS.) In fact, they prove that a finite 
combination of unary metrics that is compatible and complete at the same time does 
not exist in general. They also mention that this limitation does not apply to binary 
quality metrics (i.e., those that quantify only the relative goodness of two NDSs), 


 







wherein one can construct compatible and complete metrics with respect to any 
dominance relations.  


The focus of this paper is on binary quality metrics and their correspondence with 
outperformance relations. More specifically, the contributions of this paper are as 
follows. 


• While outperformance relations in the previous works address only one 
aspect of the quality, namely closeness to the Pareto frontier, in this paper, 
we propose the more general notion of Excellence Relations. These 
relations establish strict partial orders in the set of all NDSs with respect to 
different aspects of quality.  


• Unlike previous studies by Hansen and Jaszkiewicz [11] and Zitzler et al. 
[13] who considered several outperformance relations (e.g., weak/strong/ 
outperformance) to address the closeness of a NDS to the Pareto frontier; 
here we assume that a decision-maker provides a combination of excellence 
relations, each addressing a distinct aspect of quality (e.g., a dominance 
relation for closeness to the Pareto frontier, a coverage relation for the 
coverage of the Pareto frontier, and so on). Then we define minimal sets of 
binary quality metrics, and investigate their ability to address all of these 
excellence relations at the same time (e.g., whether a set of quality metrics 
can address both closeness and coverage of the Pareto frontier.)    


• We extend the definition of compatibility with outperformance relations 
[11][13] to excellence relations and show that: Given two uncorrelated 
binary quality metrics, they cannot be both compatible with the same 
excellence relation. 


• Finally, one may find several minimal combinations of quality metrics, 
however, all of them possess the following important property (referred to 
as Minimality Lemma in Section 4): if one assumes n excellence relations 
with certain properties, a minimal set of binary quality metrics contains n 
and only n metrics, each compatible with exactly one excellence relation, 
i.e., there is a one-to-one correspondence.  This property significantly 
narrows the search for minimal sets.  


Although there are relatively fewer binary quality metrics in the literature as 
compared to unary metrics [13], the above property makes them very attractive for a 
comparison study of multiobjective optimization algorithms, mainly because one 
could select a minimal set of binary metrics to address all desired aspects of quality 
exhaustively and distinctly. (This is not possible in general with unary metrics, see 
[13].)  


 


2 Excellence Relations 
 
As mentioned in Section 1, Hansen and Jaszkiewicz [11] defined the outperformance 
relations to establish a strict partial order among NDSs, where some pairs of solution 
sets are objectively comparable in terms of Pareto optimality (or dominance). Here, 
the definition of a strong outperformance relation is given for the completeness of 


 







this paper. (In addition to the strong relation, Hansen and Jaszkiewicz [11] also 
defined weak and complete outperformance relations.) 


Definition 1. A non-dominated set A strongly outperforms a non-dominated set B, 
denoted by AROB, iff (i.e., if and only if) A ≠ B and (in the objective space) for each 
y∈B, there exists x∈A such that xf y. 


The notation ‘f ’ in xf y indicates that a point x is either equal to or dominates 
a point y with respect to all objectives. Fig. 1 demonstrates two non-dominated 
solution sets generated for a 2-objective maximization problem. According to 
Definition 1, we observe that:  AROB.  


 
Pareto Frontier


f1


f2 


NDS A
NDS B


 
Fig. 1. AROB: Set A strongly outperforms Set B. 


As mentioned before, not every two sets are comparable in this way. If we 
denote the set of all possible non-dominated sets by U, then the above relation 
constructs a strict partial order in U. Here we define the partially ordered domain of 
this comparison in UxU, shown by ΛRo, as the set of all 2-tuples of NDSs that are 
comparable via RO, i.e.,  


ΛRo = {(A,B)∈UxU | either AROB or BROA} 


This relation by itself does not provide a tool to compare any given pair of 
NDSs, however, it can be used to verify the validity of quality metrics. In fact, this 
relation is based only on the concept of dominance (or closeness to the Pareto 
frontier), and therefore, if a quality metric aims at comparing NDSs in terms of 
dominance, it must be compatible with this relation in the first place. (The formal 
definition of compatibility is given later in the paper.)  
 


We mentioned that the outperformance relation accounts for the Pareto 
optimality of solution sets. However, there are other aspects of quality that are 
especially important in the assessment of solution sets obtained from MOEAs, e.g., 
diversity of the solution sets, extent of the Pareto frontier that is covered by the 
solutions. Very similar to the outperformance relation, one can collect all 2-tuples of 
NDSs that are objectively comparable with respect to any aspect of quality and 


 







construct a strict partial order accordingly. This prompts for the definition of a more 
general concept, i.e., excellence relations, as proposed in this paper. 


Definition 2. An excellence relation, denoted by R, is defined as a strict partial order 
in U that relates all non-dominated sets that are objectively comparable with respect 
to a common aspect of quality. The partially ordered domain of R in UxU, denoted 
by ΛR, is defined as: ΛR = {(A,B)∈UxU | either ARB or BRA}.  


For example, an outperformance relation is an excellence relation with respect to 
dominance. As another example, in the following we define a new excellence 
relation (i.e., coverage relation) to address a different aspect of quality: coverage 
(i.e., the span of the solution set over the Pareto frontier).  In this example, it is 
assumed that all objective functions are positive. 


Definition 3. A non-dominated set, B, is strictly superior to another non-dominated 
set, A, in terms of coverage, denoted by BRCA, iff all solution points of Set A are 
contained in a convex cone generated by Set B, while there exists at least one 
solution in Set B that is not contained in a convex cone generated by Set A.  


Here the convex cone generated by a solution set A={a1, a2, …} is defined as all 
nonnegative linear combinations of ai’s, i.e., { }0;| ≥Σ= iii ww avv  [14]. The 
shaded area in Fig. 2(b) demonstrates the convex cone generated by Set B. This cone 
clearly contains all solution points of Set A. In contrast, the convex cone of Set A 
(Fig. 2(a)) does not include all solution points of Set B. Thus, according to Definition 
3, we have: BRCA. Finally, note that in this definition it is assumed that all objectives 
are to be maximized. Also, the nadir point (i.e., the lower bound of the Pareto 
frontier) is assumed to be located at the origin of the Cartesian objective space. If 
these assumptions do not hold for a given problem, one could always transform the 
objectives to meet these assumptions.  


(a) 
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Fig. 2. Convex cones generated by: (a) NDS A; and (b) NDS B. 
According to Definition 3:  BRCA. 


 







As expected, the excellence relation for this example establishes a strict partial order 
in U, i.e., objectively compares a pair of NDSs in terms of coverage.  


Note that the first step in a comparison study of NDSs is to determine different 
aspects of quality that are of interest to the decision maker (e.g., Pareto optimality, 
coverage, diversity, and so on). Then, we collect all pairs of NDSs that are 
objectively comparable with respect to any of these quality aspects. These 
collections establish strict partial orders in U that we referred to as excellence 
relations. However, not all solution sets are comparable using these relations, and 
one must formulate quality metrics that enable an exhaustive comparison of all non-
dominated solution sets. Each binary quality metric constructs a total order that 
quantitatively compares all NDSs pairs in U. (A total order in the set of all possible 
NDSs is defined as an irreflexive, antisymmetric, and transitive relation that 
compares all pairs of NDSs in the set U.) The correspondence of these quality 
metrics (i.e., total order) with excellence relations (i.e., partial orders) is the subject 
of the next section. We prove two key theorems that will be used later in Section 4 to 
investigate the properties of a minimal set of quality metrics.  


 
3 Compatibility, Concordance, and Correlation 
 
As briefly explained in Section 1, a binary quality metric compares the quality of two 
NDSs and returns a relative value, while a unary metric computes an absolute value 
for quality. The focus of this paper is only on binary metrics, i.e., if A and B are two 
NDSs, then Q(A,B) returns a scalar that  reflects how much better set A is when 
compared to set B. (The arguments of this paper also applies to other metrics that can 
be transformed into the above binary format.) Moreover, Q is assumed to be 
symmetric and homogeneous, meaning that: ),(),( BAQABQ −= . Note that a 
symmetric metric as defined by Knowles and Corne [4] is: Q ),(' BAQC),(' AB −= .  
This latter format can be easily transformed into a homogenous symmetric metric by 
assuming: . (See also [13] for a discussion on the 
properties of such metrics.)  Without loss of generality, it is assumed that Q(A,B) > 0 
iff A is strictly better than B. A binary quality metric (hereafter, ‘metric’ implies 
‘binary metric’ unless otherwise stated) as defined above constructs a total order in U 
and compares any two non-dominated sets on a quantitative basis.   


),('2/),( BAQCBAQ −=


Now, assume a symmetric and homogeneous quality metric, Q, that compares any 
two given NDSs in terms of a certain aspect of quality. If R is an excellence relation 
that addresses the same aspect of quality, it is natural to expect Q to be compatible 
with R, as defined formally in the following. (This is very similar to the definition of 
compatibility with outperformance relation given in [11] and [13]; tailored for 
symmetric metrics, and generalized for excellence relations.)  


Definition 4. A symmetric homogeneous binary metric, Q, is compatible with an 
excellence relation, R, iff: for any given pair of non-dominated sets A and B such that 
ARB, we also have Q(A,B) > 0, which implies set A has a better quality than set B. 
(The compatibility of metric Q with relation R is denoted as Q ~R in this paper.) 


 







Knowles [8] studied the compatibility of several unary and binary quality 
metrics with respect to an outperformance relation. The same study can be carried 
out to determine the compatibility of those metrics with respect to any other 
excellence relations, such as the coverage relation, RC. Obviously, if a metric is not 
intended to compare two NDSs in terms of a certain aspect of quality (e.g., a 
diversity assessment metric is not intended to account for closeness to the Pareto 
frontier) it does not need to be compatible with that excellence relation. In fact, we 
will prove that each quality metric in a minimal set must be compatible with one and 
only one excellence relation. Nevertheless, this compatibility is dependant on the 
definition of the excellence relation itself. Before formally defining minimal sets of 
quality metrics and their correspondence with excellence relations, in the following 
we introduce the notion of concordance among excellence relations. 
 
Definition 5. Two excellence relations R and R' are concordant iff for each 


 such that ARB, we also have AR'B.   RRBA ′Λ∩Λ∈),(


Put another way, R and R' are concordant iff there do not exist two non-
dominated sets A and B such that: ARB and BR'A. Concordance basically implies that 
the two excellence relations cannot work against each other. If two excellence 
relations are referring to different aspects of quality (e.g., diversity and Pareto 
optimality), there are always examples of NDSs that are better with respect to one 
aspect of quality and worse with respect to another, and therefore, those relations are 
not concordant (or are non-concordant). In contrast, if being better in terms of one 
relation always implies better with respect to another, then it implies that the two 
relations have essentially the same nature (i.e., refer to the same aspect or notion of 
quality) and thus are concordant. The two excellence relations of Section 2, i.e., RC 
and RO, are non-concordant because set A in Figures 1 and 2 is better than set B in 
terms of the outperformance relation (AROB), but worse in terms of coverage (BRCA). 
Moreover, from the above definition two relations R and R', such that , are 
always concordant. Therefore, the family of outperformance relations defined by 
Hansen and Jaszkiewicz [11] are concordant because: complete outperfromance is a 
subset of strong outperformance, which in turn is a subset of weak outperformance. 
Therefore, although these relations are different, they are concordant according to 
Definition 5.  


RR ′⊂


Concordance is a very strong assumption in the sense that if (A,B)∈UxU is 
comparable via two given concordant excellence relations, the outcome of the 
comparison from the first relation is always the same as that of the second one. On 
the other hand, non-concordance is a weak assumption in the sense that: two 
excellence relations are non-concordant even if there exists only one pair of non-
dominated solution sets, (A,B), such that A is better than B with respect to one 
relation and worse with respect to another. Finally, the following theorem 
demonstrates an important property of non-concordant relations. 


Theorem 1. There does not exist a symmetric and homogeneous quality metric that 
is compatible with two (or more) non-concordant excellence relations.  


 







Proof. For the sake of contradiction, suppose there exists a quality metric, Q, which 
is compatible with two non-concordant excellence relations, namely R and R'. Since 
R and R' are non-concordant, there exists a pair of non-dominated sets, namely 
A,B∈U, (A B), such that ARB and BR'A. But since Q is compatible with R, from 
ARB we conclude . Similarly, Q is compatible with R' and from BR'A we 
have Q , which is a contradiction because 


≠


)A
0),( >BAQ


0,( >B ),(),( BAQBAQ −= .  


In fact, this theorem is somewhat intuitive from the definition of concordance 
and compatibility: a metric cannot simultaneously be compatible with two excellence 
relations that work against each other. For example a symmetric and homogeneous 
coverage metric, which is compatible with RC, is necessarily incompatible with RO 
(i.e., recall that RO and RC are non-concordant according to Definition 5 and Figures 
1 and 2). The above theorem indicates that there must be at least one separate metric 
in a minimal set to individually address each aspect of quality, e.g., at least one 
metric compatible with diversity, another one compatible with Pareto optimality, and 
so on. Moreover, in the following we show that any two given metrics that address 
the same aspect of quality are necessarily correlated.  


Theorem 2. If two symmetric homogeneous metrics are both compatible with an 
excellence relation, R, they are positively correlated within ΛR.   


Proof. Assume two symmetric and homogeneous metrics, Q and Q', are both 
compatible with R. Then the covariance of Q and Q' within ΛR can be written as: 


Cov [Q(A,B), Q'(A,B)]= <Q(A,B)Q'(A,B)> − <Q(A,B)> <Q'(A,B)>   ; RBA Λ∈),(  


where the expected value of Q within ΛR, i.e., <Q(A,B)>, is zero, because Q is 
symmetric, and therefore, for each RBA Λ∈),( , we also have RAB Λ∈),( , and 
Q(A,B)= -Q(B,A). Similarly: <Q'(A,B)> = 0. On the other hand, Q and Q' are both 
compatible with R, and therefore, for each RBA Λ∈),( , Q(A,B) and Q'(A,B) have the 
same sign (both negative or both positive). Thus, <Q(A,B)Q'(A,B)> is strictly 
positive, and the theorem follows.  


Note that being ‘positively correlated’ is a necessary and not sufficient condition 
for ‘compatibility with the same relation’, i.e., two metrics that are not compatible 
with the same relation are not guaranteed to be uncorrelated. In the following 
section, we take advantage of the above theorems to investigate the properties of 
minimal sets of quality metrics.  


 
4 Minimal Sets of Quality Metrics 
 
In the following, we formally state the minimality conditions for a set of quality 
metrics.  


 







Definition 6. A set of quality metrics, namely Γ, is said to be minimal with respect to 
a given set of non-concordant excellence relations, Φ, iff:  


1- Each quality metric, Q∈Γ, is compatible with at least one excellence 
relation in Φ. Formally, ΦΓ ∈∃∈∀ R:Q  such that Q~R.  


2- For each excellence relation in Φ, there is at least one compatible quality 
metric in Γ. Formally, ΓΦ ∈∃∈∀ QR :  such that Q~R. 


3- There is minimum (or no) correlation among quality metrics of Γ within the 
partially ordered domain of excellence relations.   


The first property rejects unnecessary metrics that are not compatible with any 
of the excellence relations. The second property guarantees that Γ is exhaustive, in 
the sense that it addresses all aspects of quality that are of any interest to the 
decision-maker (i.e., expressed via excellence relations in Φ). The last property 
eliminates or minimizes the redundancy within the set, i.e., the selected quality 
metrics should have minimum or no correlation. From this definition and Theorems 
1 and 2 we observe the following.  


Minimality Lemma. Given a set of n non-concordant excellence relations, Φ, a 
corresponding minimal set of symmetric and homogeneous metrics, Γ, contains n 
and only n quality metrics. (Also, there is a one-to-one correspondence between Γ 
and Φ.) 


Proof. From Theorem 1, a metric in Γ cannot be compatible with more than one 
excellence relations in Φ (because the excellence relations in Φ are non-concordant). 
Therefore, following the first property of Definition 6, each metric is compatible 
with exactly one excellence relation. Also, Theorem 2 indicates that two uncorrelated 
metrics cannot be compatible with the same excellence relation (because otherwise 
they would be positively correlated according to Theorem 2). Therefore, following 
the second property in Definition 6, there is a one-to-one correspondence between Γ 
and Φ.   


Minimality Lemma suggests a recipe with a set of steps to be followed for the 
selection of a minimal set of quality metrics, as given next.  


Step 1. The general aspects of performance that are of interest to the decision-maker 
are determined or presumed (e.g., closeness to the Pareto frontier, coverage, 
diversity, etc.)   


Step 2. For a given aspect of quality, a strict partial order is established in U.  In 
other words, an excellence relation is constructed that accounts for of all pairs of 
NDSs that are objectively comparable with respect to that given aspect of 
performance. For instance, outperformance relation addresses the closeness to the 


 







Pareto frontier; coverage relation of Definition 3 addresses coverage of the set, and 
so on. If the aspects of quality are defined properly in Step 1, these excellence 
relations are non-concordant (because if they are indeed referring to different aspects 
of quality, there exists a non-dominated sets that is better than another set with 
respect to one excellence relation and worse with respect to another). These non-
concordant excellence relations constitute Φ.  


Step 3. Suppose Φ consists of n excellence relations. To construct a minimal set, we 
select one and only one quality metric, compatible with each excellence relation in 
Φ (recall Minimality Lemma). Note that since Theorem 2 provides only a necessary 
condition for being uncorrelated, establishing a one-to-one compatibility 
correspondence does not guarantee a minimal set. However, it rules out many of 
non-minimal collections of metrics and significantly narrows the search for 
minimum correlations. The result is a set of size n of performance assessment 
metrics, i.e., Γ.  


Γ constructs exactly n total orders in U, and can be used to compare any two 
given NDSs in terms of the quality aspects expressed in Step 1, and formulated as 
excellence relations (i.e., strict partial orders) in Step 2. It exhaustively and distinctly 
covers all desired aspects of quality, without unnecessary correlation among metrics. 
According to the Minimality Lemma, collections of more than n metrics are 
necessarily correlated, while less than n metrics cannot distinctly address all desired 
aspects of quality.  


As an example, if the decision-maker desires only two aspects of quality: 1) 
Pareto optimality, and 2) Coverage, Φ consists of exactly two relations: Φ = {RO, 
RC} (recall that these two relations are non-concordant). A minimal set of size two of 
quality metrics should then be selected from the pool of existing metrics, Γ={Q1, 
Q2}, such that Q1~RO, and Q2~RC. No other combination can address both of these 
quality aspects without redundancy. According to the Minimality Lemma, the same 
argument holds for any number of non-concordant excellence relations in Φ. Finally, 
the above guideline is only an abstraction of the notion of quality metrics and their 
desired properties, and therefore, it does not define or formulate new metrics by 
itself. 


5 Practicality of the Minimality Lemma 


Although the theoretical framework in this paper provides an approach for an 
objective selection of minimal sets of binary quality metrics, its real-world 
application may be hindered by several factors:  
 


• A decision-maker may not be able to state his/her idea of ‘quality of a 
solution set’ explicitly in the form of excellence relations.  


 
• Even if the decision-maker is able to state a set of excellence relations, Φ, 


as a basis for quality assessment, it is not always possible to find a 


 







corresponding set of minimal binary and symmetric quality metrics, Γ, 
such that each metric in Γ is compatible with an excellence relation in Φ.  


 
For example consider a case where Φ consists of the two non-concordant 


excellence relations of Section 2, i.e., Φ = {RO, RC}. Table 1 shows the compatibility 
of several quality metrics in the literature with these relations.  
 


Table 1. Compatibility of quality metrics with Φ = {RO, RC}.  
(‘Y’ indicates compatibility) 


 
 Strong Outperformance 


Relation (RO) 
Coverage Relation 
(RC, Definition 3) 


C  metric [4] Y N 
Inferiority Index (InfI) [15] Y N 


k-th Objective Pareto Spread (OSk) [10] N N 
Entropy [16] N N 


 
(See [8] for a comprehensive compatibility analysis of common quality metrics with 
outperformance relations.) Note that Wu and Azarm’s k-th Objective Pareto Spread 
(OSk) is a unary metric [10]. So, in this paper, we revise this metric, i.e., compute the 
difference in the value of OSk between two given NDSs to create a binary metric: 
OSk(A,B)=OSk(A)-OSk(B), which constructs a cardinal total order in U. Table 1 shows 
that only a  portion of the examined metrics are compatible with RO, while we were 
not able to find any quality metric in the literature to be compatible with Rc. Indeed, 
as shown by Knowles [8], a relatively small portion of the existing quality metrics is 
compatible with one of the outperformance relations introduced by Hansen and 
Jaszkiewicz [11].  Does this mean that we cannot obtain a set of quality metrics to 
address these two aspects of quality simultaneously? Zitzler et al. [13] show that this 
is in fact impossible in general with a finite number of unary quality metrics. As 
shown in this paper, however, this is in theory possible for the case of binary quality 
metrics, although it may not be practical because such metrics may not actually exist 
in the literature. In a case like this, one may go back to the initial set of the 
excellence relations, Φ, and try to compromise these relations such that a 
corresponding minimal set of quality metrics can be found. Alternatively, one may 
try to create new metrics to match the compatibility criterion with a given excellence 
relation. In the following, for example, we propose a new binary quality metric to 
quantify the difference between the spans of two non-dominated sets as a measure of 
extent of coverage. Later we show that this metric is compatible with Rc.  
 
Definition 7. Binary coverage metric, denoted by Qc(A,B), is defined as:  
 
Qc(A,B)= inf {(b1.b2)/(||b1|| ||b2||) s.t. b1,b2∈B}- inf {(a1.a2)/(||a1|| ||a2||) s.t. a1,a2∈A}  
 
where A and B are the convex cones generated by solution sets A and B. The term: 
inf {(a1.a2)/(||a1|| ||a2||) s.t. a1,a2∈A} measures the cosine of the largest possible 
angle between two vectors in the convex cone generated by the solution set A. This 
for example corresponds to cos(α) in Fig. 2, and Qc(A,B)= cos(β) - cos(α) < 0. We 


 







use this as a measure of maximum span of the solution sets on the Pareto frontier. Qc 
is compatible with Rc because: if BRcA, we have A ⊂ B, and therefore, the second 
term in the above equation is greater than the first term. Therefore, Qc(A,B)<0. 
Similarly, if ARcB we obtain Qc(A,B)>0, and compatibility follows.  
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From Table 1, Definition 7, and minimality lemma we observe that Γ = {InfI; Qc} is 
a candidate minimal set of binary quality metrics with respect to  Φ = {RO, RC}.  
 


Other than defining new compatible metrics, one could also modify the 
definition of excellence relations in Φ to make the existing quality metrics 
compatible. If the decision-maker modifies the definition of the coverage excellence 
relation (Definition 3) for example, Γ may or may not remain minimal. In the 
following, for example, we introduce a modified definition for coverage excellence 
relation that makes Wu and Azarm’s OSk metric compatible.  
 
Definition 8 (Modified Coverage Relation; Compare to Definition 3). In a 
normalized multi-objective maximization, a non-dominated set B={b1, b2, …}  is 
strictly superior to another non-dominated set A={a1, a2, …}  in terms of a modified 
coverage, denoted by , iff:  max  is strictly greater than 


 for all k’s (where b  refers to the k-th objective value of the i-th 
solution in B).  
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OSk is compatible with CR′ , and therefore, a combination of this quality metric 
and Inferiority Index (InfI) [15], i.e., Γ' = {InfI, OSk}, is a candidate minimal set with 
respect to Φ' = {RO, }. In contrast, Γ = {InfI, QCR′ c} which is minimal with respect 
to Φ = {RO, RC}, is not minimal with respect to Φ', because Qc is not compatible 
with  (See Definition 7 for QCR′ C). Note that the process of defining and redefining 
Φ becomes increasingly difficult as more excellence relations are included. 
Nonetheless, it provides a formal platform and an objective starting point for 
selection of binary quality metrics.  
 
 
6 Concluding Remarks 
 
In this paper, we presented a theoretical framework for selection of minimal sets of 
quality metrics that can be used for a comparison study of different MOEAs. These 
metrics exhaustively account for all desired aspects of quality in non-dominated 
solution sets (obtained by MOEAs) without redundancy. In this framework, once the 
decision-maker’s desired aspects of performance are determined, it is necessary to 
find all pairs of non-dominated sets that are objectively comparable. This in turn 
constructs partial orders in the set of all possible non-dominated sets, referred to as 
excellence relations in this paper. We proved that there is a one-to-one compatibility 
correspondence between these excellence relations (partial orders) and a minimal set 
of quality metrics (total orders), i.e., for each excellence relation there is one and 


 







only one compatible quality metric in a minimal set. This important result (referred 
to as Minimality Lemma) helps the decision-maker select a minimal set among the 
existing quality metrics in the literature, and thus, enables a quantitative and 
objective comparison of the solution sets obtained from different MOEAs.  
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