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Abstract - The practical use of multiobjective op-
timization tools in industry is still an open issue. A
strategy for reduction of objective function calls is
often essential, at a fixed degree of Pareto Optimal
Front (POF) approximation accuracy . To this aim
an extension of single-objective NN-based GRS meth-
ods to Pareto Optimal Front (POF) approximation is
proposed. Such an extension is not at all straightfor-
ward due to the complex relation between the POF
and Pareto Optimal Set (POS). As a consequence of
such a complexity, it is extremely difficult to identify
a multi-objective analogue of the single-objective cur-
rent optimum region; consequently the design domain
search space zooming strategy, which is the core of a
GRS method, is to be carefully reconsidered when
POF approximation is concerned.


Keywords— Evolutionary multiobjective optimiza-
tion, NN interpolation, response surface methods.


I. Introduction


DESPITE evolutionary multiobjective optimization
has now come to a full maturity, both in terms of


methodologies [1], [2] and algorithms development, [3],
[4], [5], [6] [7], [8], [9], the application of the wide va-
riety of available multiobjective optimization methods
to problems arising from industrial design (we refer to
electromagnetic devices shape design [10], [11], [12], [13],
[14], [15] and fuzzy controllers design), is still not fully
straightforward due to the computational cost of objec-
tive function evaluation (being often non-linear or cou-
pled FEM (Finite Element Method) in the first case and
a long time-domain full-system simulation in the second
case).
Three alternative (to available MOEAs) approaches


have been considered, being specifically devoted to the
reduction of objective function calls. They are useful
and meaningful when, on one hand, the number of ob-
jective function calls that can be afforded from the point
of view of an industrially practical computational cost
is much smaller than the threshold number required for
convergence of available powerful MOEAs, but on the
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Fig. 1. Different POF approximation with NSESA on DTZ3
with increasing NN training cost (shown in the square
box).


other hand the designer nevertheless wants the few af-
fordable solutions to be convergent towards the POF and
to be diverse each other. This means that solutions are
to be few but distributed all along the POF. The three
approaches can be summarized as follows:


• Build specific MOEAs for tiny populations.
• Adapt Generalised Response Surfaces Methods
(GRSM), a well established technique for single-
objective optimization, to POF approximation.


• Reconsider a particular preference function
method with hybrid global-evolutionary and
local-deterministic search in an innovative way.


Regarding the first approach, a non-dominated sorting
based MOEA for tiny population (NSESA) was devel-
oped and applied to several electromagnetic shape design
optimization problems [11], [12]. The third approach is
described in [16] . The paper is devoted to the second ap-
proach. Generalized Response Surfaces (GRS) methods
are a well established technique for single-objective op-
timization [17], [18] in case of time consuming objective
function evaluation. The essential idea of such method-
ologies is to consider, throughout the optimization, two
different objective functions; the first one is the true func-
tion which is to be evaluated in as few cases as possible,







Fig. 2. POF approximation error with NSESA on DTZ3
versus NN training cost.


due to its computational cost, the second one is the inter-
polation of the true objective function via some interpo-
lation technique (polynomial, multi-quadrics [17], [18],
Neural Network [19]) and it can be evaluated as many
time as is needed. A powerful stochastic global search
algorithm (GA, ES, SA, DE ) can be run on the inter-
polated function up to full convergence in order to be
sure of escaping local minima, with no limits in objective
function (the almost costless interpolated one) evalua-
tion number. Moreover an iterative strategy alternating
search of a new optimum and updating of the interpola-
tion quality in the current optimum region is performed.
The aim of single-objective GRS methods is on one hand
to increase convergence speed and on the other hand to
improve interpolation quality only in the area of current
optimum with a dramatic reduction in the interpolation
training set size. The extension of such a strategy to
POF approximation is considered in the paper.


II. NN training cost and POF approximation


accuracy


Before building a GRS-MOEA iterative strategy the
dependance of POF approximation error on the accuracy
of NN-interpolation of objective functions is considered.
This is an essential point that can give several insight and
guidelines for the iterative updating of NN training set in
the full iterative strategy [19]. Each objective function is
approximated by means of radial basis NN of increasing
cost, where the cost of a network is meant as the number
of elements in the training set (input/target couples). As
an example several POFs for problem DTZ3 (see [20] for
equations) corresponding to different NN training cost,
are shown in figure 1. The training set is always a regular
grid in the search space. Once the grid is built and the
NN is trained for both objective functions, an NSESA
[12] is run on the interpolated function and the POF is


Fig. 3. An analytical problem where a non-trivial zooming
strategy is necessary (see the appendix for equations);
left: objective domain, right: design domain; gray dots:
exhaustive sampling, ◦: POF, ∗: POS.


obtained. As can be seen from figure 1 the non con-
nected POF for DTZ3 requires a high training cost on
objectives NN-interpolation for a satisfactorily approxi-
mation. In order to give a quantitative expression of the
POF approximation error, the following formula can be
considered :


e =
1


m


m∑


j=1


min
i=1:n


‖pofi − fNN
j ‖2 (1)


where pof is the exact POF when the formula for the
exact POF is available or a reference numerical POF
when the analytical expression is not available, fNN is the
NSESA m individuals solution on NN-interpolated func-
tions. This error versus NN-interpolation cost is plotted
in figure 2; the stopping criterion for all runs with differ-
ent NN-interpolated functions was set to be the same (a
convergence based one). The log-scale decrease is essen-
tially divided into two parts, a faster one, for moderate
cost (<100 training nodes) nets and a slower one, for high
cost (>100 training nodes) nets.


III. Iterative GRS-MOEA


The general structure of a GRS method for multiob-
jective optimization is essentially similar to the single-
objective counterpart (see the introduction). Three dif-
ferent kind of objective functions (for each criteria) are







Fig. 4. Principle flowchart of the proposed NN-based GRS-
MOEA; the use of three different objective function for
each criterion is outlined together with the contribution
of each block to the cost c.


considered: the true one, the interpolated one and an
auxiliary one, which is used for the addition of a point in
the most unexplored area of the search space. As will be
shown, both problems - conflicting by their nature - of so-
lution accuracy (in terms of both Pareto-convergence and
diversity) and of avoiding local fronts traps, are fully con-
sidered; the main steps of the proposed NN-based GRS-
MOEA are here described in some details:


Step 1– If the design domain is an n-dimensional
box, build an initial training set [X] as an n-
dimensional regular pn points grid, where p is
the number of points in each edge of the n-
dimensional rectangular search space. If on the
other hand the design domain search space is


Fig. 5. Example of the addition of an information point ◦


to the NN-interpolation node set • as a minimum point
of the additional objective function Fadd (equivalue lines
are shown).


bounded by complex non-linear constraints, a de-
sign of experiments strategy for the choice of the
first interpolating node set [X] is to be used; the
contribution of this step to the cost is NI .


– Evaluate the true objective functions for all points
on the set in order to build the first training values
array [F ].


Step 2 Build the first NN interpolation FNN (0) using
all training nodes and values of step 1.


Step 3– Start an iterative procedure, t being the iter-
ation counter. If 〈t, ka〉=0 (ka being a parameter
to be defined ≈ 2-10 ) add a node x∗ ( information
point) in the interpolation nodes set [X] in the
most unexplored area of the whole search space,
and compute the true objectives values F (x∗) for
that point. The contribution of this block to the
cost is 1. The addition of information points in-
creases the probability of jumping out of eventual
local fronts and requires (in the proposed imple-
mentation) an optimization itself (see further de-
tails below).


– If on the other hand 〈t, ka〉 �=0 run a MOEA
on the current NN-interpolated functions FNN (t)
and obtain a current solution set [XP ] for the in-
terpolated functions;


– extract non-dominated solutions and obtain the set
[Xd


P ],
– select some solutions discarding those that are too


close in design space and obtain [Xdc
P ];


– compute true objective functions F ([Xdc
P ]) on


[Xdc
P ]; the contribution of this block to the cost







Fig. 6. Behavior of the proposed GRS-MOEA strategy on
problem 4 in the objective domain; black ∗: current POF,
gray dot: search space sampling.


is NDC
P (t).


– update the search space in the design domain (see
further details below)


Step 4 If the termination criterion is satisfied stop
the search, otherwise add [Xdc


P ] and F ([Xdc
P ]) to the


training set and values and build an updated NN-
interpolated functions FNN (t + 1); after that go to
the next iteration .


The flowchart of the described methodology is shown in
figure 5. The true objective function evaluation number
(cost of the algorithm) up to iteration t̃ can be evaluated
as follows:


c(t̃) = NI +


t̃−1∑


t = 1
〈t, ka〉 �= 0


[size(Xdc
p (t))] +


t̃ − 1


ka


(2)


We point out here that, in order not to loose compu-
tational efforts, all points where the true objective func-
tions are computed, are added to the NN training set;
c(t) is thus also the current NN training cost at iteration
t. At each iteration a new NN interpolation is built on
the current training set. This is why in figure 1 and 2 the
NN training cost is considered. On the other hand, as can
be seen easily from the flowchart, the pseudo-cost (num-
ber of NN-interpolated function evaluation) is extremely
hight but it is supposed to be negligible with respect to
the cost (the case of very time consuming true objective
function evaluation is always considered). Moreover, the
cost (not the pseudo-cost) does not depend on the num-
ber of desired solutions on the POF and on the popu-


Fig. 7. Behavior of the proposed GRS-MOEA strategy on
problem 4 in the design domain, .


lation size (and in general on the search power) of the
MOEA in step 3. The updating of the search space in
design domain is non-trivial with respect to the single-
objective counterpart. The current POS region may be
essentially connected or disconnected; in the first case an
n-dimensional box, centered on the center of weights of
the current POS can be considered. In the second case
the sum of different boxes centered on centers of weight
of all parts of the POS is to be used. As an example,
a test problem (see the appendix for equations) where
this second strategy is to be used, is shown in figure 3
in both design domain and objective domain. The POS
is a set of disconnected regions while the POF is non-
convex but connected. Some results on this test problem
are shown in next section. The choice of a point in the
most unexplored area of the search space, to be added to
interpolation set, is performed via an optimization pro-
cedure. Given a certain set of NNN interpolation nodes
X the following auxiliary objective function, based on
distances, can be built:


Fadd(X) =


√
N∑


i=1


(dav − di)2 − min
i=1:N


di


dav


; (3)


where di is the Euclidean distance between X and the
i-th interpolation node and dav is the average distance.
An example of a particularly symmetrical case is shown
in figure 5 where the set of current actual nodes (∗), the
new node to be added (◦) and the contour plot of func-
tion Fadd have been plotted. As can be seen the node is
added where the Fadd function has its minimum and the
position indeed corresponds to the most unexplored area.







Fig. 8. Behavior of the proposed GRS-MOEA strategy on
a DTZ3 problem in the objective domain;black dotted:
current POF, gray: exact front.


Due to the possible presence of local minima for function
Fadd, when the number of nodes increases, this optimiza-
tion problem can be solved with a stochastic algorithm
(in the test case presented in the following section, a
DE algorithm has been used). The use of the aforemen-
tioned strategy for the addition of information points is
derived from single-objective GRS methods ([17], [18])
and could also be substituted by a suitable DOE strat-
egy for the evaluation of the most unexplored area in the
search space. Moreover the choice of NN as interpola-
tion technique is of course arbitrary and other techniques
could also be done, such as multiquadrics or polynomial;
the power and flexibility of NN with respect to other tech-
niques was outlined in previous studies on GRS methods
for single-objective problems [17], [18]. From this point
of view the proposed method behaves in a similar way to
single-objective GRS methods. On the other hand when
the proposed method is considered the quality of approx-
imation is to be evaluated on the resulting POF and not
on the single interpolated objective functions.


IV. Test Cases


Two test cases are presented; the first one has been
already shown in figure 3 when outlining the difficulties
in the zooming strategy and corresponding equations are
listed in the appendix. A POF analytical expression is
not available but the problem was chosen because the
POS is clustered while the POF is connected. As can be
seen from figures 7 three of the four cluster are correctly
approximated despite the small number of points in he


Fig. 9. DTZ3 test case: POF approximation error (left) and
true objective function evaluations (right) versus GRS-
MOEA iterations.


initial grid (16). The current POF is shown in figure 6
for the corresponding iterations. Moreover, the addition
of information points corresponding to Fadd minima can
be also seen. As can be seen, despite the initial POF is
far from the exact one (the initial training point set was
intentionally chosen to be small) the GRS-MOEA is able
to converge and to approximate all the branches of the
disconnected DTZ3 POF and POS. As can be seen from
figure 7 the information points locates in the centers of
squares delimited by the initial grid points. This is a
correct behavior as shown for the example in figure 5.
The second one is the DTZ3 problem (see [2] for equa-
tions); it was chosen because of the difficulties in approx-
imating the discontinuity of the POF and because of the
known analytical expression for the POF can be used for
monitoring the POF approximation error with formula 1.
The story of the proposed GRS-MOEA run on DTZ3 is
shown in figure 8 in the objective domain. A relevant re-
duction of true objective function evaluation is obtained
(449 for test run in figure 8) at a given number of so-
lutions on the POF. The behavior of the cost function
c, depends on ka and on the number of current Pareto
optimal solutions that are considered after each MOEA
in step 3. The stair-like plot of c (figure 9 on the right for
the run in figure 8.) is due to the addition of one infor-
mation point every two iteration (flat segments) and the
addition of new Pareto Optimal solutions whose number
may change at each iteration (sloping segments). When
the POF equation is known, as it is the case of DTZ3
problem, at each iteration t of the GRS-MOEA the POF
approximation error e can be computed with equation
1. Figure 9 shows on the left the plot of e versus t for







the run in figure 8; after an initial increase e quickly
decreases towards a flat value showing convergence and
stability of the method (several other test cases have been
performed on different analytical test problems showing
the same behavior).


V. Conclusions


The extension of GRS methods to Pareto Optimal
Front approximation requires deep modifications of the
classical single-objective strategy. The validity of the
proposed NN based GRS-MOEA is shown on test cases
in terms of POF approximation errors, convergence and
diversity properties and stability. Essential preliminary
information on the relationship between POF approxima-
tion error and NN training cost are to be considered when
building the iterative strategy. With such a strategy a
strong reduction of objective function calls is obtained at
a given degree of POF approximation accuracy. Further
work are in course of development for a better zooming
strategy toward the current POS region in order to im-
prove convergence speed. Moreover the application of
the proposed strategy to multiobjective optimization of
fuzzy controllers for car suspension system is in progress.


Appendix


Equations for test case in figure 3







min
−1<x1,x2<1


(f1, f2)


f1 = −2 exp(15(−(x1 − .1)2 − x2


2
))+


− exp(20(−(x1 − .6)2 − (x2 − .6)2))+


exp(20(−(x1 + .6)2 − (x2 − .6)2))+


exp(20((−x1 − .6)2 − (x2 + .6)2))+


exp(20(−(x1 + .6)2 − (x2 + .6)2))


f2 = 2 exp(20(−x2


1
− x2


2
))+


exp(20(−(x1 − .4)2 − (x2 − .6)2))+


− exp(20(−(x1 + .5)2 − (x2 − .7)2))+


− exp(20(−(x1 − .5)2 − (x2 + .7)2))+


− exp(20((x1 + .4)2 − (x2 + .8)2))


(4)
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