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Abstract

Though optimization problems in industrial electromagnetic design are often truly multiob-
jective, solving them by evolutionary Pareto Optimal Front approximation is often unpractical,
due to the high computational cost of objective evaluations. In order to overcome this draw-
back, an extension of classical single-objective Generalized Response Surface (GRS) methods
to Pareto-optimal front approximation is proposed. Such an extension implies essential modifi-
cations, due to the increased complexity of multiobjective optimization problems.

Neural network (NN) interpolation, Pareto evolutionary search and special zooming strate-
gies are combined in an iterative procedure, that leads to a strong reduction in true objective
function calls.

After a brief formal presentation of multiobjective optimization problems, and an overview
of the utility of such an approach in electromagnetic design, a description of the proposed
methodology is given and an electromagnetic test case is presented and solved, in order to show
the validity of the strategy.

1 Introduction

GRS methods are a well established technique for single-objective optimization, in case of
time consuming objective function evaluation. The essential idea is to consider two different
objective functions, i.e. the true function is computed, to provide values for a subsequent
interpolation (interpolated objective function). Since computation is costly for the true function,
and virtually inexpensive for the interpolated, calls to the former should be kept as few as
possible. Yet, as also precision is required in retrieving the solution, iterative enhancement
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of the interpolation is often included, which adds points in the most likely interesting or worst
defined zones of the surface. Polynomials, multiquadrics and neural networks are some examples
of the interpolating techniques used, and the ’virtual’ objective function they provide, can be
called by the optimization algorithm.

In fact, in the literature, many Response Surface Methods are documented [1, 2, 3, 4],
coupling especially the aforementioned approximation techniques with stochastic algorithms,
such as genetic or evolutionary. Evolutionary Multi-objective Optimization (EMO), on the
other hand, is a well established computational research area, whereby several powerful methods
are available for POF approximation ([5],[6]). The relevance of the possible link between EMO
methods and GRS strategies is evident, thinking of the high computational costs of Multi-
objective Evolutionary Algorithms (MOEAs), which may become impractical when industrial
design is concerned [7].

2 Pareto Multi-objective Optimization Problems: Math-

ematical Aspects

The following nonlinear constrained multi-objective optimization problem (MOP) will be con-
sidered throughout the paper assuming, without loss of generality, that all objectives are to be
minimized; for a detailed and rigorous mathematical theory of MOPs see [8]:


min
x∈RN

f = {f1(x), ..., fM (x)}
subject to g(x) ≤ 0

h(x) = 0

(1)

Problem 1 gives rise to the following subspaces, known as design domain and objective domain
search spaces, respectively:

Ω : {x ∈ R
N s.t. g(x) ≤ 0 and h(x) = 0}

ΩO : {f(x) ∈ R
M s.t. x ∈ Ω} (2)

Ωo being the image of Ω through function f . In order for problem 1 to be non-trivial, the
following condition is to be imposed:

� ∃ xU ∈ Ω s.t. fi(xU ) = min
x∈Ω

fi(x) ∀i = 1 : M (3)

that is, no points in Ω minimize all objectives at the same time (no cooperative objectives).
When such a problem is tackled, a proper definition of optimality is to be considered. It
is common in engineering problems to use Pareto optimality and we will do it as well, but
other possible definitions may be considered (see for example Nash optimum definition and its
applications in [9]). The following two definitions give the concept of Pareto-better (Pareto-
dominating) solution and Pareto-optimal solution:

Def 2.1 For any two points (candidate solutions) x1,x2 ∈ Ω, x1 is said to dominate x2 in the
Pareto sense if and only if the following conditions hold:{

fi(x1) ≤ fi(x2) for all i ∈ {1, 2, ..., M}
fj(x1) < fj(x2) for at least one j ∈ {1, 2, ..., M}

Def 2.2 x∗ ∈ Ω isPareto− optimal (PO) if � ∃x ∈ Ω s.t. fi(x) ≤ fi(x∗)∀i = 1 : M andfj(x) <
fj(x∗) for at least one j ∈ [1 : M ]
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As a consequence of definition 2.2 the number of solutions of problem 1 is infinite, and
we call Pareto-optimal set (POS) and Pareto-optimal front (POF) the following two subspaces
respectively:

POS = {x∗ ∈ Ω s.t. x∗ is PO}
POF = {f(x∗) ∈ ΩO s.t. x∗ ∈ POS} (4)

The following two points in the objective space domain ΩO

U =
[
min
x∈Ω

fi

]
i = 1 : M (5)

D =
[
max
x∈Ω

fi

]
i = 1 : M (6)

are known as Utopia and Distopia point respectively; they give some very preliminary informa-
tion about ΩO itself.

As a consequence of statement 3, the inverse image of U does not belong to Ω and U does
not belong to ΩO.

From the point of view of application in electrical engineering shape design, we consider the
following classification of problems:

• A single Pareto-optimal solution is required without any preference on objectives,

• A single Pareto-optimal solution is required with some preference on objectives,

• n Pareto-optimal solutions are required (a sampling of the POF).

The method we consider in this paper is devoted to the solution of problems belonging to
the third class, and presenting time consuming evaluation of one or more objectives.

3 Pareto Multi-objective Optimization problems in

electromagnetic design

The degree of complexity of design problems in electrical engineering asks for sophisticated mod-
els and robust algorithms to solve both direct and inverse problems. In particular, the latter
naturally are multiobjective problems and imply the simultaneous minimization of conflicting
objectives subject to suitable constraints. A typical case is to minimize weight and materials
cost or to maximize some output of the device, taking into account physical constraints and
geometrical bounds. It should be recognized that the presence of a single objective is some-
what an exception or a simplification. Often, constraints are nothing but hidden objectives;
always, the fabrication tolerance of a device represents an objective being in conflict with the
device performance. From the designer viewpoint, there are numerous benefits coming from
the approach to the design in terms of multiobjective optimisation. First, a wide choice among
best compromises implies a better compatibility of the design with industrial normalization
and technological constraints; the latter, in fact, are difficult to be prescribed a priori in an
exhaustive way. Moreover, having a set of optimal solutions makes it easy to fulfil a posterior i
time-varying constraints that are typical of real-life engineering; an example could be the actual
availability of materials, depending in turn on the flow imposed by suppliers. On the other
hand, in scalar optimization all constraints have to be carefully prescribed in order for the only
solution to be feasible. Finally, multi-objective optimization enhances the diversity of perfor-
mances among best compromises and, therefore, could highlight non-trivial designs that are a
priori unpredictable even by an experienced designer.
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4 Extending GRS methods to Pareto-optimal front

identification

Generalized Response Surfaces (GRS) methods are a well established technique for single-
objective optimization [10, 11] in case of time consuming objective function evaluation. The
essential idea of such methodologies is to handle any of the objective functions in two different
fashions. The first one is the true function which is to be evaluated as few times as possible, due
to its computational cost. The second one is the interpolation of the true objective function via
a suitable technique (polynomials, multi-quadrics [10, 11], neural networks [12]) and its evalu-
ation can be considered inexpensive. A global search algorithm (GA, ES, SA, DE) can be run
on the interpolated function up to full convergence. Moreover an iterative strategy, alternating
search of a new optimum and enhancement of the interpolation in the current optimum region,
is performed. The aim of single-objective GRS methods is to increase convergence speed on
one hand, and to improve interpolation in the area of current optimum only, with a dramatic
reduction in the number of experiments, on the other hand. The extension of such a strategy
to POF approximation is considered in the following. The general structure of a GRS method
for multiobjective optimization is essentially similar to the single-objective counterpart. The
location of new points in the design domain, is chosen by means of an auxiliary function.

The proposed GRS-MOEA is based on NN-interpolation; its main steps are here summarized
[13]:

Step 1 – If the design domain is an n-dimensional box, build an initial training set [X] as an
n-dimensional regular pn points grid, where p is the number of points in each edge of
the n-dimensional search space. On the other hand, if the search space is bounded
by nonlinear constraints, a design of experiments strategy for the choice of [X] is to
be used; the cost of this step is NI .

– Evaluate the true objective functions for all points on the set in order to build the
first training values array [F ].

Step 2 Build the first NN interpolation FNN (0) using all training nodes and values of step 1.

Step 3 – Start an iterative procedure, t being the iteration counter. If 〈t, ka〉=0 (ka being a pa-
rameter to be defined ≈ 2-10 ) add a node x∗ ( information point) in the interpolation
nodes set [X] in the most unexplored area of the whole search space, and compute
the true objectives values F (x∗) for that point. The contribution of this block to the
cost is 1. The addition of information points increases the probability of jumping out
of possible local fronts and requires an optimization in itself.

– On the other hand, if 〈t, ka〉 �=0 run a MOEA on the current NN-interpolated functions
FNN (t) and obtain a current solution set [XP ] for the interpolated functions;

– extract non-dominated solutions (see section 2 for the definition) and obtain the set
[Xd

P ],
– select some solutions discarding those that are too close in design space and obtain

[Xdc
P ];

– compute true objective functions F ([Xdc
P ]); this block costs NDC

P (t).
– update the search space in the design domain (see below for details).

Step 4 If the termination criterion is satisfied stop the search, otherwise add [Xdc
P ] and F ([Xdc

P ])
to the training set and values and build an updated NN-interpolated functions FNN (t+1);
after that go to the next iteration .

The flowchart of the described methodology is shown in figure 1. The true objective function
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Figure 1: Principle flowchart of the proposed NN-based GRS-MOEA; the use of three different
objective function for each criterion is outlined together with the contribution of each block to the
cost c.

5



Figure 2: Behavior of the proposed GRS-MOEA strategy on a test problem (see [13] for equations)
in the objective domain (two objectives); black ∗: current POF, gray dot: search space sampling
(the overall iteration number is marked on the left) .

evaluation number (cost of the algorithm) up to iteration t̃ can be evaluated as follows:

c(t̃) = NI +
t̃−1∑

t = 1
〈t, ka〉 �= 0

[size(Xdc
p (t))] +

t̃ − 1
ka

(7)

where the third term gives the cost of the information point addition and the 〈·, ·〉 is intended
as the modulus function.

The task of updating the current search space when the overall iterative process goes on
is much more complex for a multiobjective problem than for the single-objective counterpart.
In the latter case the current optimum region can be easily defined as an n-dimensional cube
or sphere centered in the current optimum point; it is therefore easy to perform a zooming
procedure in such a situation. When a multiobjective problem is concerned the current set of
non-dominated solutions is a general (sometimes disconnected ) n-dimensional set in the design
domain and a proper zooming strategy is to be carefully considered (see [13] for details).

When the term ”cost” is used, the number of true objective function evaluation is intended;
moreover we point out that, in order to save computational efforts, all points where the true
objective functions are computed, are added to the NN training set; c(t) for 0 < t < t̃ is thus the
NN training cost at iteration t. At each iteration a new NN interpolation is built on the current
training set. On the other hand, as can be seen easily from the flowchart, the pseudo-cost
(number of NN-interpolated function evaluations) is extremely high, but its time requirement
is supposed to be negligible with respect to the cost (the case of very time consuming true
objective function evaluation is always considered).

Moreover, the cost does not depend on the number of desired solutions on the POF and on
the population size of the MOEA in step 3.

The updating of the search space in design domain is non-trivial with respect to the single-
objective counterpart. The POS region may be connected or disconnected.

6



Figure 3: Behavior of the proposed GRS-MOEA strategy on a test problem (see [13] for equations)
in the design domain (two design variables); ◦ : initial NN-training grid, ∗ : current solution (the
overall iteration number is marked on the left).

In the first case an n-dimensional box, centered on the center of weights of the current POS,
can be considered. In the second case the sum of different boxes centered on centers of weight
of all parts of the POS is to be used. As an example, a test problem where this second strategy
is to be used, is shown in figure 3 (design domain) and 2 (objective domain). The POS is a set
of disconnected regions while the POF is non-convex but connected. As can be seen the both
the POS and POF are properly sampled with a satisfactory number of solutions;

The choice of a point in the most unexplored area of the search space, to be added to
interpolation set, can be performed via an auxiliary optimization procedure (see details in
[11], but could also be substituted by a suitable DOE strategy for the evaluation of the most
unexplored area in the search space. Moreover the choice of NN as interpolation technique is of
course arbitrary and other techniques could also be done, such as multiquadrics or polynomial
functions. The power and flexibility of NN with respect to other techniques was outlined in
previous studies on GRS methods for single-objective problems [10, 11]. From this point of view
the proposed method behaves in a similar way to single-objective GRS methods. On the other
hand, when the proposed method is considered the quality of approximation is to be evaluated
on the resulting POF and not on the single interpolated objective functions.

5 Electromagnetic test-case

An electromagnet composed of an excitation winding included in a fixed magnetic core and a
plunger, representing the movable core, is considered. The cross section of the device, exhibiting
a translational symmetry, is shown in Figure 4a. The electromagnetic force acting on the
plunger appears when the winding is supplied a rectangular pulse of magneto-motive force,
corresponding to a current density of J = 2 · 105 [A/m2] for a duration of 80 [ms]. The current-
carrying conductor has a diameter small with respect to penetration depth, and is wound up to
form a stranded winding; moreover, a rough calculation shows that the power loss due to eddy
currents in the plunger is much smaller than the Joule power loss in the winding. Therefore
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Figure 4: Detail of: a - finite element mesh , b - field solution
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eddy current effect has been neglected. Although the behavior of the electromagnet is time-
dependent, the steady state condition is considered, just to take into account the worst case for
the design. Resorting to finite element method, the computational domain has been discretized
in a mesh composed of about 500 triangular elements, as is shown in Figure 4a. The boundary
conditions are expressed in terms of magnetic vector potential A as ∂A/∂n = 0 along the
symmetry axis of the device and A = 0 elsewhere. Given the current density in the winding,
Poisson’s equation of the vector potential in two dimensions is solved, taking into account the
nonlinear characteristic of iron; a typical field solution is represented in Figure 4b. At a given
current density, the electromagnetic force F acting on the plunger depends strongly on its
position and, therefore, on the magnetization of iron. In particular, the force-stroke curve is
obtained by applying the virtual work principle

F =
∂W

∂g

where W is the co-energy of the system and g is the displacement of the plunger with respect
to the core; the derivative is approximated by finite difference taking ∆g = 1mm as discrete
displacement. For each position of the plunger the mesh is generated again, and the field analysis
is repeated. To speed up the computation of the electromagnetic force, a lumped parameter
model of the electromagnet has been adopted. Therefore, a non-linear magnetic circuit has been
considered, in which the equivalent reluctance

Req =
4h

µ0µrl2
+

2g

µ0l2

varies according to the position g of the plunger, l being the diameter of the core cross-section
and h being the length of the plunger. The relative permeability of iron µr = dB

dH
is to be

evaluated according to the following expression:

B = β1(1 − e
β2H
β3 ) + µ0H

where B is the flux density, with β1 = 1.586690 [T], β2 = 1.892574, β3 = 399.997068 [A/m]
and µ0 = 4π10−7 [H/m]. The latter model represents with acceptable accuracy the constitutive
relation of laminated iron around saturation. For a given g, the circuit equation is solved
by applying the bisection method; the iterative procedure is stopped when the residual r of
Ampère’s equation

r = J(h − l)2 −
(

B

µ0µr
4h +

B

µ0
2g

)
is less than a prescribed tolerance. The force is then evaluated as:

F =
1
2
J2(h − l)4

d

dg
(R−1

eq ) (8)

The dependence of force F on position g is shown in Figure 5; the validity of the circuit ap-
proach is assessed by means of field analysis ([14]). In the followings, all computations have
been carried out by means of the circuit model.
In view of the design problem, geometric parameters h and l are selected as design variable

vector x, subject to suitable bounds. A constraint on the maximum temperature rise by the
winding has been introduced. The optimization aims at identifying the shape of the electro-
magnet such that:

• the force f1(x) = F on the plunger is maximum for the position g = 10[mm],
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Figure 5: Force vs. displacement curve of the electromagnet.

• the power loss f2(x) = πhJ2fton
σ in the winding is minimum, where σ = 6 · 107 [S/m] and

ton = 80 [ms], f = 6Hz,

• the cost f3(x) = c1V1 + c2V2 of materials is minimum, where c1 = 1, c2 = 3, V1,V2 are the
costs per unit and the volumes of iron and copper, respectively.

It can be easily seen that two of the three objectives are cooperative, namely the power loss and
the cost of materials, whist the first objective does conflict with them. Therefore, it has been
decided to cast the following multi-objective optimization problem:

min
x∈Ω

f = {f1(x), f3(x)}
subject to the problem contraints

(9)

6 Results and conclusion

By applying the methodology described in section 2, the results reported in Figures 6 and 7
were obtained.

As a reference for comparison, a non-dominated set in the objective space was taken, ensuing
from a very large sampling of the feasible region (hereinafter called exact front). Due to the
very low sensitivity to variable l, the POS nearly coincides with the upper border of the feasible
region. The proximity of the POS towards the search space border is a difficulty for the presented
optimization algorithm for the following two reasons:

• The evolutionary engine may find difficulties when approaching the borders of the feasible
region [15],

• The NN interpolation error is often higher in the search space border regions.

This is why the presented test case seems to give good testing for a GRS-MOEA strategy.
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Figure 6: Compared Pareto Optimal Sets and initial NN-training grid.

Figure 7: Compared Pareto Optimal Fronts: global view and zoom of a detail.
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Figure 8: Story of the POF approximation.

The story of the POF interpolation is presented in figure 8; in the first iterations the method
performs a global refinement of the approximation while a local refinement is performed toward
the end of the overall iterative process.

The final front from the optimization (total cost: 120 true objective function evaluation),
shows to overlap with the exact front in fairly good agreement. One could argue that the
observed good accuracy may depend on low sensitivity to the design variables, in the proximity
of the optimal region; actually, the two sets are well overlapped also in the X space. As is
typical of many MO problems, individuals spanning the POS quite uniformly in the X space –
as is the case here – map into a definitely non-uniform sampling of the POF. In fact, the zoom
evidences the crowding of points in the F space, towards the left end of the front. Finally, for
the sake of comparison, a uniform sampling in terms of true objective function evaluation was
taken in the feasible region; the POS and POF so extracted evidence a strong discrepancy to
the reference case. Therefore, one may conclude that the optimization method here proposed
has been successfully applied.
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