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On the Optimal Solution Definition for
Many-criteria Optimization Problems

M.Farina and P. Amato

Abstract—When dealing with many-criteria decision mak-
ing and many-objectives optimization problems the concepts
of Pareto optimality and Pareto-dominance are inefficient in
modelling and simulating human decision making. Different
fuzzy-based definitions of optimality and dominated solution
are introduced and tested on analytical test cases in order to
show their validity and closeness to human decision making.

Keywords— Multi-criteria decision making, Pareto opti-
mality, fuzzy optimality definition.

I. Introduction

Pareto’s definition captures the notion of “optimality”
in a narrowly prescribed sense. In fact this definition is
relevant and useful for engineering and design problem-
s where typically the objective number is small and the
computational cost of each objective is high, but is less
suitable for many other kind of problems (especially de-
cision making problems) where the number of objectives
may be big (though computationally costless). Let us con-
sider, for example, a minimization problem with 50 objec-
tives f1, . . . , f50 (a number which is unusual for engineering
problems, but common for many real world decision prob-
lem), and two point v1 and v2 such that in 49 objectives v1

is better than v2 (i.e., fi(v1) < fi(v2)), and in just one ob-
jective j it holds fj(v2) < fj(v1) (maybe for a small value
ε). It is obvious that any person would vote v1 as a better
solution than v2. However, by Pareto definition they are
absolutely equivalent. The combination of fuzzy logic tool-
s and multiobjective optimization or multicriteria decision
making has a great relevance in the literature [1],[2] and [3];
fuzzy sets are considered for interactive multiobjective op-
timization in [4], [5]. Usually the term fuzzy optimization
is used when fuzzy objective functions are tackled via crisp
optimization strategies; in this work we consider crisp ob-
jective function with fuzzy optimality definition. The idea
of this work is to generalize the definition of (Pareto) op-
timality, in order to capture the common-sense undefined
concept of optimality for a multi-criteria decision making
problem using some fuzzy-reasoning tools.

II. Limits and drawbacks of Pareto optima

definition

The following multi-criteria decision making problem or
multi-objective optimization problem is considered:

Def. II.1: Let V and W be n-dimensional and M -
dimensional continuous or discrete vector spaces, g and

M.Farina and P. Amato are with STMicroelectronics Srl, SoftCom-
puting and Nano-organics operation, Via C. Olivetti, 2, 20041, Agrate
(MI), IT. marco.farina@st.com, paolo.amato@st.com

Fig. 1. Schematic view of Pareto-dominance based partial order in
2D and 3D problems when a candidate solution is considered (•):
equal (e), better (b) and worse (w) solution regions are shown.

h be two functions defining inequalities and equalities con-
straints and f be a function from V to W. A Non-linear
multi-criteria (minimum) optimization problem with M
objectives is defined as

min
v∈V

f = {f1(v), ..., fM (v)}
subject to g(v) ≤ 0 h(v) = 0.

Def. II.2: We call Design domain search space Ω and
objective domain search space ΩO the two following sets:
Ω = {v ∈ V | g(v) ≤ 0 ∧ h(v) = 0} ΩO = {f(v) | v ∈
Ω}.
Both multi-criteria search in a discrete database and multi-
objective non-linear constrained optimization in a contin-
uous search space are considered. Ω and ΩO can thus
be either discrete or continuous spaces. For the conve-
nience of the reader we recall here the well known defini-
tion of Pareto-dominance (definition II.3) and Pareto opti-
mum (definition II.4) in a multi-criteria (M criteria) deci-
sion making problem on variable v belonging to the search
space Ω.

Def. II.3: For any two points (candidate solutions)
v1,v2 ∈ Ω, v1 is said to dominate v2 in the Pareto sense
if and only if the following conditions hold:{

fi(v1) ≤ fi(v2) for all i ∈ {1, 2, ...,M}
fj(v1) < fj(v2) for at least one j ∈ {1, 2, ...,M}

Def. II.4: v∗ ∈ Ω is Pareto-optimal (PO) if there is no
v ∈ Ω such that v dominates v∗.

Def. II.5: We call Pareto Optimal Set (POS) and Pareto
Optimal Front (POF) the set of Pareto-optimal solutions
in design domain and objective domain respectively.
As shown by the simple example in the introduction, the

Pareto definition of optimality in a multi-criteria decision
making problem can be unsatisfactory due to essentially
two reasons: the number of improved or equal objec-
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tive values is not taken into account, the (normal-
ized) size of improvements is not taken into accoun-
t. The two aforementioned issues are essential decision el-
ements when looking for the best solution and they are
included in the common-sense notion of optimality. The
limit of Pareto definition when the first issue is considered
can be viewed in the schema shown in figure 1. Since the
Pareto dominance gives a partial order of solutions in crite-
ria space, when a vector (a candidate for optimal solution)
in the criteria space is considered, all other possible solu-
tion can belong to one of the following three different set:
better solutions, worse solutions and equivalent solution-
s. Figure 1 shows such sets for 2 and 3 criteria problems.
The portion e of the M-dimensional criteria domain search
space that the dominance concept classify as equivalent
solutions increases as the number of criteria increases as
follows: e = 2M − 2

2M . Thus when M tends to infinity, e

tends to 1 (i.e., it is the whole search space). From this it
derives that that Pareto definition is uneffective for a large
number of objectives, even without considering the second
aforementioned issue. In the following sections we will give
two more general definition of optimum for a multi-criteria
decision making problem, taking into account one issue at
a time. As we shall see, Pareto optimum definition is a
special case of both definitions.

III. Taking into account the number of improved

objectives

In Pareto definition two candidate solutions are equiva-
lent if at least in one objective the first solution is better
than the second one, and at least in one objective the sec-
ond one is better than the first one (or if they are equals in
all the objectives). Indeed a more general definition, able
to cope with a wider variety of problems, should take into
account in how many objectives the first candidate solution
is better than the second one and viceversa. To do so, we
introduce the following functions which associate to every
couple of points in Ω a natural number.

nb(v1,v2) =def |{i ∈ N|i ≤ M ∧ fi(v1) < fi(v2)}|
ne(v1,v2) =def |{i ∈ N|i ≤ M ∧ fi(v1) = fi(v2)}|
nw(v1,v2) =def |{i ∈ N|i ≤ M ∧ fi(v1) > fi(v2)}|

For every couple of points v1,v2 ∈ Ω, the function nb com-
putes the number of objectives in which v1 is better than
v2, ne computes the number of objectives in which they are
equal, and nw the number of objectives in which v1 is worse
than v2. To lighten the mathematical notation, from now
on we will consider a generic couple of points and we will
write simply nb, ne and nw instead of nb(v1,v2), ne(v1,v2)
and nw(v1,v2). A moment’s reflection tell us that the fol-
lowing inequalities holds:

nb + nw + ne = M 0 < nb, nw, ne < M

We now give a first new definition of dominance and opti-
mality namely (1− k)-dominance and k-optimality

Fig. 2. Linear membership for i-th objective to be used in equation
2 for a fuzzy definition of =, < and >: ε and γ are parameters to be
chosen by the decision maker.

Fig. 3. Gaussian membership for i-th objective to be used in equation
2 for a fuzzy definition of =, < and >: σ is s parameter to be chosen
by the decision maker.

Def. III.1 ((1− k)-dominance) v1 is said to (1 − k)-
dominates v2 if and only if:{

ne < M

nb ≥ M − ne
k + 1 ,

(1)

where 0 ≤ k ≤ 1.
As can be easily seen, definition III.1 with k = 0 corre-
sponds to Pareto-dominance (definition II.3). Ideally k can
assume any value in [0, 1], but because nb has to be a natu-
ral number only a limited number of optimality degree need
to be considered. In fact in eq (1) the second inequality is
equivalent to nb ≥

⌈
M − ne
k + 1

⌉
. With this new dominance

definition the following new optimality can be defined:
Def. III.2 (k-optimality) v∗ is k-optimum if and only if

there is no v ∈ Ω such that v (1− k)-dominates v∗

The terms “(1−k)-dominance” and “k-optimality” derives
respectively from the fact that the former is a loose version
of Pareto dominance (1-dominance), while the latter is a
strong version of Pareto optimality (0-optimality).

Def. III.3 (k-OS and k-OF) We call k-optimal set (k-
OS) and k-optimal front (k-OF) the set of k-optimal solu-
tions in design domain and objective domain respectively.
As evident the Pareto Optimal set (POS) is the 0-OS and
the Pareto Optimal Front (POF) is the 0-OF.

IV. Taking into account the size of

improvements

A natural way of extending the notion of (1 − k)-
dominance and k-optimality is to introduce fuzzy relations
instead of crisp ones. As first step, to take into account in
which degree in each objective function a point v1 is dif-
ferent from (or equal to) a point v2 we will consider fuzzy



3

number and fuzzy arithmetic. As second step, we will con-
sider the dominance relation itself as a fuzzy relation. A
standard way to introduce fuzzy arithmetic on a given u-
niverse (here the objective domain search space ΩO), is to
associate to each of its point a triple of fuzzy sets — one
for equality (fuzzy number), one for “greater than” and
one for “less than”. Figures 2 and 3 shows two possible
definitions of the fuzzy sets for “equal to 0”, “greater than
0” and “less than 0”. For coherence with the terminology
used so far, we refer to their respective membership func-
tion as µe,µw (where w means “worst”, remember that we
are talking about minimization problems) and µb. Now the
fuzzy definition of nb, nw and ne is the following

nF
b (v1,v2) =def

M∑
i=1

µ
(i)
b (fi(v1)− fi(v2))

nF
w(v1,v2) =def

M∑
i=1

µ(i)
w (fi(v1)− fi(v2))

nF
e (v1,v2) =def

M∑
i=1

µ(i)
e (fi(v1)− fi(v2))

In order that nF
b , nF

w and nF
e are a sound extension of nb, nw

and ne, the membership functions must satisfy Ruspini
condition (i.e, in each point they must sum up to 1) [6].
In fact, under this hypothesis the following holds:

nF
b + nF

e + nF
w =

M∑
i=1

(µb
i + µw

i + µe
i ) = M

In the figures 2 and 3, two possible different membership
shapes are considered: linear and gaussian. Both of them
are characterized by parameters defining the shape, εi and
γi for the linear one and σi for the gaussian one. Although
the definition of such parameters is to be carefully consid-
ered, their intended meaning is clear. Thus they can be
derived from the human decision-maker knowledge on the
problem.
• εi defines in a fuzzy way the practical meaning of equality
and it can thus be considered the tolerance on the i-th
objective, that is the interval within which an improvement
on objective i is meaningless.
• γi can be defined as a relevant but not big size of im-
provement for objective i.
• σi evaluation requires a combination of the two afore-
mentioned concepts of maximum imperceptible improve-
ment on objective i (εi) and γi; the following formula for
the membership µ can be used:

µi = exp
(
− lnχ

ε2
i

(f i
1 − f i

2)
2

)
0.8 < χ < 0.99 (2)

χ being an arbitrary parameter.
With such a fuzzy definition of nF

b , nF
e and nF

w , both dom-
inance and optimality definition can be reconsidered.

A. k-optimality with fuzzy numbers of improved objectives

A first extension of the definitions of (1−k)−dominance
and k-optimality can be given if nb, ne and nw are replaced

Fig. 4. k-optimality classification on problem 5.Six parabolic func-
tions are centered on • and three different degree of k-optimal solu-
tions are shown together with the whole search space.

Fig. 5. kF -optimality classification on problem 5 with linear mem-
bership and with ε = and γ =

by nF
b , nF

e and nF
w in definitions III.1, III.2 and III.3. The

parameter k has the same meaning as in the previous case
( 0 ≤ k ≤ 1) but now a continuous degree of optimality is
introduced: (1− k)F − dominance and kF -optimality .

B. Fuzzy-optimality

A more general procedure can be introduced by fuzzyf-
ing not only the quantities nF

b , nF
e and nF

w , but also the
dominance relation itself.

Def. IV.1 (Fuzzy dominance) Let µD(v1,v2) a mem-
bership function defined as follow:

µD(v1,v2) = fµD
(nF

b (v1,v2), nF
e (v,v2), nF

w(v1,v2)),

where fµD
can be a membership function or a fuzzy system.

Then µD is a fuzzy dominance relation if for any α ∈ [0, 1]
µD(v1,v2) > α implies that v1 (1− α)F -dominates v2.
For example, two straightforward definition of fµD

are the
following:

fµD
=

nF
w(v, ṽ)

M
fµD

=
nF

w(v, ṽ)
M

+
nF

e (v, ṽ)
2M

(3)

However fµD
could be defined by a whole fuzzy system like:

fµD
=

∗∨
((µnF

b ,i

∗∧ µnF
e ,i

∗∧ µnF
w,i)

∗∧ µD,k)

where
∗∨ and

∗∧ are a t-conorm and a t-norm respectively,
µnF

b ,i, µnF
e ,i and µnF

w,i are membership functions for nF
b ,
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Fig. 6. (1− k)F dominance based classification with linear member-
ship and corresponding maximum point (•); linear membership with
εi = 0.01 and γi = 0.2, 1 < i < 11 have been used.

nF
e and nF

w (antecedents) and where µD,k are membership
functions for the dominance concept (consequents). As a
consequence, a membership function for optimality µO(v)
can be implicitly defined through its α-cuts in the following
way:

Def. IV.2 (Fuzzy optimality) A membership function
represents the fuzzy optimality relation if for any α ∈ [0, 1]
v∗ belongs to the α-cut if and only if there is no v ∈ Ω
such that:

µD(v,v∗) > α
As will be evident from examples in the following section,

when such a membership µO for optimality is considered,
α-cuts are an extension of kF -optimal set (kF -OS).

V. Test cases

This last section is devoted to four examples showing
the validity of the introduced definitions. The first two
are simple MCDM problems that shows in an immediate
way the main ideas of the definitions; the third and fourth
one are continuous constrained multiobjective optimization
problems (RN → R

M ).

A. Simple discrete examples

Let us consider the following simple example where five
Italian students are scored in five subjects from 10 (best
score) to 1 (worst score).

Student S1 S3 S2 S4 S5
• A 9 8 5 6 8

B 6 9 6 8 5
•� C 5 10 10 9 7
• D 10 4 4 7 9

E 2 7 2 10 6

(4)

As can be seen most of people would say that the best
student is student C. Nevertheless when applying Pareto
optima definition as a selection rule all students are equiv-
alent because they all are Pareto optimal. When we apply
the crisp k-optimality definition we have the following set:
A,C,D. If we need to select further the best student (C)
among the three we need kF -optimality definition with the

Fig. 7. Classical normalized sum of objectives on problem 6 and
corresponding minimum point (•)

Fig. 8. Normalized number of kF -optimal solutions versus k for
different number of objectives .

following parameters: ε = 0 γ = 1.5 k = 0.5 where
each of the three parameters listed above have been cho-
sen on the basis of the following common knowledge based
assumptions :
• the score from 1 to 10 is a crisp variable with no tolerance
⇒ ε = 0
• a 1 point gap is not so big while a 2 point gap significantly
big ⇒ γ = 1.5
• with the fuzzy definition a non-integer objective number
values can be considered ⇒ ñF

b = 3.5
In this very simple example solution C may also be com-
putable as the minimum of the following sum of objectives:
S = [36, 34, 41, 34, 27]. When more complex problems are
considered the normalized weighted sum of objectives gives
different and unsatisfactory results as it is already well
known from Pareto optima theory and as it is shown in
the following subsection . Let us now consider a little bit
more complex decision making problem example. Table V-
A shows values for five criteria when choosing among 31
houses [7]. When the definitions introduced in previous
sections are considered, the DM is asked to give values for
parameters εi and γi or σi (where i = 1 : 5); once such
values are defined, the classification of houses can be given
and a proper choice can be done. Three different classifica-
tions are shown in figure 9 corresponding to three different
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SIZE AGE P D T SIZE AGE P D T
0.250 48 290 5 4 0.300 26 110 4 2
0.400 22 90 5 22. 60 245 8 5
0.600 25 92 3 2 1.200 7 215 7 4
0.300 45 42 2 1 0.400 11 175 4 3
0.250 16 48 2 1 0.750 15 120 3 2
0.200 34 88 2 1 0.500 3 275 4 3
0.600 12 95 4 2 1. 18 180 5 3
1.330 40 180 7 5 0.350 16 105 4 1
0.300 45 55 3 2 0.450 4 194 3 2
0.400 30 80 3 1 0.200 28 43 3 2
0.600 20 160 5 2 0.850 27 105 5 2
0.350 22 113 4 2 0.500 15 185 5 3
1.250 14 180 3 2 0.250 14 65 4 2
0.600 17 120 6 2 1.750 32 135 4 2
1. 9. 140 6 3 0.400 35 76 3 1

0.250 7 125 4 2

TABLE I

Buying an house database: values for 5 choice criteria

sx:1-15, dx:16-31, P=price, D=bedroom number, T=bathroom

number
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5 10 15 20 25 30
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5 10 15 20 25 30
0

0.5

1

µ O
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 3
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0

0.5

1

Houses

W
S

Fig. 9. Different classifications for the house choice problem.

choices for parameter’s values. A comparison with a classi-
fication based on an equal weights weighted sum equivalent
function is also shown. As can be seen the maximum of
the WS based classification corresponds to the peak of µO

based classifications.

B. Continuous analytical test cases

In the first test case (figure 4 and 5) a 6D problem with
only two design variables is considered with parabolic func-
tion located in an asymmetric way on a rhombus borders.

min
v∈R�

f = {f1(v), ..., fj(v), ..., f6(v)}
fj(v) = (v1 − c1,j)2 + (v2 − c2,j)2

subject to −1 ≤ v1, v2 ≤ 1

(5)

The coordinates for points (c1,j , c2,j) are marked with
black bullets and the search space is shown with bright
gray dots. As can be seen the region of Pareto optimal so-
lution (k=0) is quite big with respect to the search space.
If k is increased (k=.5) a smaller region is selected up to
a single optimum for k=1. We thus have four regions, one

included in the other: SS ⊂ POS ≡ 0OS ⊂ .5OS ⊂ 1OS.
If we move from a solution f1 to a solutions f2 both be-
longing to POS we can expect one of the two to be better
than the other in at least one objective; if on the other
hand we move from a solution f1 to a solutions f2 both
belonging to .5OS we can expect one of the two to be bet-
ter than the other in at least two objective. The same may
in general hold for 1OS but in this example 1OS is a sin-
gle solution. When fuzzy k-optimality is considered on the
same test problem a continuous classification of solution
can be obtained and is shown in figure 5; the sets fkOS
are infinite and corresponds to any real value of k ∈ [0 : 1].
In the second example (figure 6, 7, and 8) the classification
ability of (1 − k)Fdominance and kF optimality is shown
on a R

2 → R
12 multiobjective optimization problem on a

box-like constrained search space, where almost all points
in the search space (a box ∈ R

2) are Pareto-optimal (see
figure 6 where the POS is also shown). No decision could
thus be taken with Pareto optimality. In this example,
the number of objectives is increased with respect to the
previous one and the shape is a little bit more complex.
A sampling of 400 points on the search space (candidate
solutions) is considered and classified. Classically multi-
objective search problems are tackled via an equivalent s-
calar function such as weighted sum of objectives [8],[2].
The limitations of such an approach are the following: on-
ly one special Pareto-optimal solution can be computed,
preference and tolerance on objectives are difficult to be
expressed in a clear way. On the other hand the proposed
optimality definition can give a continuous classification of
solution, and consequently any number of Pareto optimal
solutions with a clearly defined degree of stronger opti-
mality can be easily computed. This possibility is clearly
shown in figure 6 where a continuous classification similar
to the on in figure 5. Moreover, the point corresponding
to the minimum of the sum function is coincident with the
maximum of the kF -optimality-based classification; both
points are shown under 3D surfaces. The normalized num-
ber of solution nos(k) satisfying a certain kF -optimality
is plotted against k in figure 8 for the two test cases. As
can be seen the nos(k) behavior depends on the problem
complexity. For problem 2 an high value of k is required
in order to select some solutions from the POS. The in-
troduced kF -optimality can be seen as the limit of crisp
k-optimality when εi, γi, σi → 0. This can be easily seen
form figure 10 where four different nos(k) functions are
plotted for the values of membership parameters shown in
the table. From a continuous kF -optimality based classi-
fication (case 1), a crisp k-optimality based classification
(case 4) can be obtained membership parameters close to
zero; some intermediate levels are also shown.



min
v∈RN

f = {f1(v), ..., fi(v), ..., fM (v)}

fi(v) =
np∑

k=1

exp(−ci,k

N∑
j=1

(vj + pk,j)2)

i = 1 : M
subject to Lj ≤ vj ≤ Uj j = 1 : N

(6)
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Fig. 10. From kF -optimality to k-optimality for a 4-objectives prob-
lem (6) ; membership parameters for the four cases are listed in the
table.

Fig. 11. Membership µD(v, ṽ) for dominance degree with respect to
a fixed solution ṽ.

An example of dominance membership with respect to one
fixed solution is shown in figure 11; as can be seen... An
example of kF -optimality membership building through α-
cuts can be shown in figure 12; as can be seen the obtained
maximum optimality degree is 0.5 and not 1. This is a nu-
merical effect due to the poor sampling of the search space
(a coarse sampling has been considered for better figure
rendering purposes). Moreover, a comparison of two α-
cuts (corresponding to two different degrees of optimality)
and the crisp Pareto optimal front is also shown in figure
13; as can be seen the fuzzy optimality definition is able
to select properly among Pareto optimal solutions some
more optimal solutions corresponding to the degree α of
optimality. Moreover for high values of α the crisp Pareto
Optimal front (which is obtained via a different procedure
for comparison and checking purposes) can be properly re-
constructed.

VI. Conclusion

The following conclusive remarks can be given. The
Pareto optimality definition is unsatisfactory when consid-
ering multi-criteria search problems with more than three
objectives. Moreover it does not numerically express the
common knowledge based criteria that a decision maker
would consider when making decision on such a problem.
Fuzzy reasoning tool can be profitably used for treating

Fig. 12. Optimality membership building through α-cuts, a sampling
of 400 solutions in the search space is considered.

Fig. 13. Comparison of α-cuts (◦) at different α values and crisp
Pareto Optimal front (·), a sampling of 400 solutions in the search
space is considered.

concept like equal, smaller, higher and numerically emulate
the decision maker thinking. Moreover the same optimality
definition can be applied to both continuous optimization
and discrete decision making. Some test cases belonging
to both typologies show the validity of definitions and the
accordance to common knowledge based reasoning.
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