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Abstract. Pareto optimality is someway ineffective for optimization
problems with several (more than three) objectives. In fact the Pareto
optimal set tends to become a wide portion of the whole design domain
search space with the increasing of the numbers of objectives. Conse-
quently, little or no help is given to the human decision maker. Here
we use fuzzy logic to give two new definitions of optimality that extend
the notion of Pareto optimality. Our aim is to identify, inside the set of
Pareto optimal solutions, different “degrees of optimality” such that only
a few solutions have the highest degree of optimality; even in problems
with a big number of objectives. Then we demonstrate (on simple ana-
lytical test cases) the coherence of these definitions and their reduction
to Pareto optimality in some special subcases. At last we introduce a first
extension of (1+1)ES mutation operator able to approximate the set of
solutions with a given degree of optimality, and test it on analytical test
cases.

1 Introduction

The application of Pareto optimum definition to optimization problems with
a high number of objectives is somewhat unsatisfactory. This happens for two
reasons. First, when there are more than three objectives the visualization of
Pareto front must be carefully considered. Second, the set of solution classified
as Pareto optimal can be a relevant fraction of the whole objective search space.
Consequently, there we have little help in our effort to find the solution which is
most suitable for the given problem. Many real life optimization problems have
several (more than three) objectives; examples may be:

– the optimal design of electromagnetic devices where electrical efficiency,
weight, cost and electric or magnetic field properties have to be considered
[1, 4],

– combustion process and engine optimization where efficiency, NOx emis-
sions, soot emissions, noise are considered [10, 17]

– the aerodynamic shape optimization of supersonic wings where transonic and
supersonic drag coefficients together with bending and twisting momenta [7]

– the paper machine optimization where up to five or six objective can be
considered [11]



Due to the number of examples that may be considered and due to the
unsolved difficulties that are encountered when more than three objectives are
considered, the treatment of several objective problems is probably one of the
most actual open issues in practical multiobjective evolutionary optimization.

In [8] and [13] the authors proposed a hierarchy of optimality definitions
extending the Pareto one. These definitions are based on fuzzy logic [12] a key
tool for the treatment of uncertainty and partial truth, and for the processing
of large class of data.

The main idea behind the given definitions is to introduce different degree of
optimality (each degree defining its own front). The lowest degree (let’s say 0)
corresponds to Pareto optimality. The highest degree (let’s say 1) corresponds
to a strong definition of optimality. The set of points classified as optimal by
the latter are, thereafter, a small subset (eventually a single point) of the Pareto
front. This classification is obtained by considering in the dominance relation
(i) how many objectives a solution improves with respect to the other solution,
and (ii) the size of each improvement. In fact, in this way, it is possible not only
to discriminate between dominated and non-dominated (optimal) solution, but
also between “less” and “more” optimal solutions.

In this work we show how these definitions can be exploited in continuous op-
timization problems. In particular we introduce an evolution strategy algorithm
for approximating the optimal front associated to a certain degree of optimality.

2 Limits and drawbacks of Pareto optima definition

The following multi-objective optimization problem is considered [14, 9, 15]:

Definition 1 (Multi-criteria optimization problem). Let V ⊆ K1 ×
K2 × . . . × KN and W ⊆ O1 × O2 × . . . × OM be vector spaces, where the
Ki, Oj (with i = 1, . . . , N and j = 1, . . . ,M) are (continuous or finite) fields
and N,M ∈ N, and let g : V �→ R

p,h : V �→ R
q and f : V �→ W be three

mappings, where p, q ∈ N. A Non-linear constrained multi-criteria (minimum)
optimization problem with M objectives is defined as:

min
v∈V

f � {f1(v), ..., fM (v)} subject to

{
g(v) ≤ 0
h(v) = 0.

Definition 2 (Design and objective search space). We call Design do-
main search space Ω and objective domain search space ΩO the following two
set:

Ω = {v ∈ V | g(v) ≤ 0 ∧ h(v) = 0}, ΩO = {f(v) ∈ W | v ∈ Ω}.
We consider multi-objective non-linear constrained optimization in a contin-

uous search space are considered; Ω and ΩO are thus continuous spaces.
The Pareto definition of optimality in a multi-criteria decision making prob-

lem can be unsatisfactory due to essentially two reasons:



P1 the number of improved or equal objective values is not taken into account,
P2 the (normalized) size of improvements is not taken into account.

This issues are essential decision elements when looking for the best solution,
and they are implicitly included in the common-sense notion of optimality.

The limit of Pareto definition when the first issue (P1) is considered can
be viewed in the schema shown in figure 1. Since the Pareto dominance gives
a partial order of solutions in criteria space1, when a vector (a candidate for
optimal solution) in the criteria space is considered, all other possible solution
can belong to one of the following three different set: better solutions, worse
solutions and equivalent2 solutions.

Fig. 1. Schematic view of Pareto-dominance based partial order in 2D and 3D problems
when a candidate solution is considered (•): equal (e), better (b) and worse (w) solution
regions are shown.

Figure 1 shows such sets for 2 and 3 criteria problems. Let e the portion of
the M -dimensional criteria domain space containing all the points that the P-
dominance concept classify as equivalent to a given one. The portion e increases
with the increasing of the number M of objectives as follows:

e =
2M − 2

2M
(1)

Thus when M tends to infinity, e tends to 1 (i.e., it is the whole space). This
fact is general and problem independent and when a single problem is considered
and Ω and ΩO are introduced, always e tends to 1 when M tends to infinity,
1 Indeed the partial ordering induced by Pareto dominance is a weak ordering. In fact,

in general, an algebraic structure equipped with this partial order is not a lattice.
2 Since Pareto dominance does not induce an equivalent relation, it should be better

to call them “indifferent” solutions.



eventually with a behavior different from equation 1. From this it derives that
Pareto definition is ineffective for a large number of objectives, even without
considering the second aforementioned issue.

In the following sections we will give two more general definition of optimum
for a multi-criteria decision making problem, taking into account one issue at
a time. As we shall see, Pareto optimum definition is a special case of both
definitions.

3 Two generalizations of Pareto definitions

In this section we give a brief description of two optimality definitions that
soundly extend the Pareto one. For a deeper discussion about these definitions
see [8, 13].

3.1 Taking into account the number of improved objectives:
k-optimality

In Pareto optimality definition two candidate solutions v1 and v2 are equiv-
alent if at least in one objective the first solution is better than the second one,
and at least in one objective the second one is better than the first one (or if
they are equal in all the objectives). Indeed a more general definition, able to
cope with a wider variety of problems, should take into account in how many ob-
jectives the first candidate solution is better than the second one and viceversa.
To do so, we introduce the following functions which associate to every couple
of points in Ω a natural number.

nb(v1,v2) � |{i ∈ N|i ≤ M ∧ fi(v1) < fi(v2)}|
ne(v1,v2) � |{i ∈ N|i ≤ M ∧ fi(v1) = fi(v2)}|
nw(v1,v2) � |{i ∈ N|i ≤ M ∧ fi(v1) > fi(v2)}|

For every couple of points v1,v2 ∈ Ω, the function nb computes the number
of objectives in which v1 is better than v2, ne computes the number of objectives
in which they are equal, and nw the number of objectives in which v1 is worse
than v2. To lighten the mathematical notation, from now on we will consider
a generic couple of points and we will write simply nb, ne and nw instead of
nb(v1,v2), ne(v1,v2) and nw(v1,v2).

A moment’s reflection tell us that the following inequalities holds:

nb + nw + ne = M 0 < nb, nw, ne < M

We are now able to give a first new definition of dominance and optimality
namely k-dominance and k-optimality:

Definition 3 (k-dominance).



v1 is said to k-dominate v2 if and only if:{
ne < M

nb ≥ M − ne
k + 1 ,

(2)

where 0 ≤ k ≤ 1.

As can be easily seen, definition 3 with k = 0 corresponds to Pareto-dominance.
Ideally k can assume any value in [0, 1], but because nb has to be a natural num-
ber only a limited number of optimality degree need to be considered. In fact in
equation (2) the second inequality is equivalent to nb ≥

⌈
M−ne

k+1

⌉
. With this new

dominance definition the following new optimality can be defined:

Definition 4 (k-optimality). v∗ is k-optimum if and only if there is no
v ∈ Ω such that v k-dominates v∗

The terms “k-dominance” and “k-optimality” derives respectively from the
fact that the former is a loose version of Pareto dominance (1-dominance), while
the latter is a strong version of Pareto optimality (0-optimality). We can now
easily extend concepts of SP and FP in the following way:

Definition 5 (k-optimal set and front ).
We call k-optimal set (Sk) and k-optimal front (Fk) the set of k-optimal

solutions in design domain and objective domain respectively.

Several Sk sets and Fk fronts are thus introduced, one for each value of k.
Let us refer to Pareto optimal front as FP, and to Pareto optimal set as SP.
Then it is evident that S0 = SP and F0 = FP.

3.2 Taking into account the size of improvements: Fuzzy optimality

A natural way of extending the notion of k-dominance and k-optimality is to
introduce fuzzy relations instead of crisp ones. As first step, to take into account
to which degree in each objective function a point v1 is different from (or equal
to) a point v2, we will consider fuzzy numbers and fuzzy arithmetic. As second
step, we will consider the dominance relation itself as a fuzzy relation.

Fuzzy numbers A standard way to introduce fuzzy arithmetic on a given
universe (here the objective domain search space ΩO), is to associate to each
of its point a triple of fuzzy sets — one for equality (fuzzy number), one for
“greater than” and one for “less than”. Figures 2 and 3 shows two possible
definitions of the fuzzy sets for “equal to 0”, “greater than 0” and “less than
0”. For coherence with the terminology used so far, we refer to their respective
membership function as µe, µw (where w means “worst”, remember that we are
talking about minimization problems) and µb.



Fig. 2. Linear membership for i-th objec-
tive to be used in equation 3 for a fuzzy
definition of =, < and >: ε and γ are
parameters to be chosen by the decision
maker.

Fig. 3. Gaussian membership for i-th ob-
jective to be used in equation 3 for a fuzzy
definition of =, < and >: σ is s parameter
to be chosen by the decision maker.

The fuzzy definition of nb, nw and ne (now with superscript F ) are the
following:

nF
b (v1,v2) �

M∑
i=1

µ
(i)
b (fi(v1) − fi(v2))

nF
w(v1,v2) �

M∑
i=1

µ(i)
w (fi(v1) − fi(v2))

nF
e (v1,v2) �

M∑
i=1

µ(i)
e (fi(v1) − fi(v2))

In order nF
b , nF

w and nF
e to be a sound extension of nb, nw and ne, the mem-

bership functions µ
(i)
b , µ

(i)
w and µ

(i)
e must satisfy Ruspini condition (i.e, in each

point they must sum up to 1) [2]. In fact, under this hypothesis the following
holds:

nF
b + nF

e + nF
w =

M∑
i=1

(µb
i + µw

i + µe
i ) = M

In the figures 2 and 3, two possible different membership shapes are consid-
ered: linear and gaussian. Both of them are characterized by parameters defining
the shape, εi and γi for the linear one and σi for the gaussian one. Although the
definition of such parameters is to be carefully considered, their intended mean-
ing is clear. They thus can be derived from the human decision-maker knowledge
on the problem.

– εi defines in a fuzzy way the practical meaning of equality and it can thus
be considered the tolerance on the i-th objective, that is the interval within
which an improvement on objective i is meaningless.

– γi can be defined as a relevant but not big size improvement for objective i.



– σi evaluation requires a combination of the two aforementioned concepts of
maximum imperceptible improvement on objective i (εi) and γi; the follow-
ing formula for the membership µe can be used:

µ(i)
e = exp

(
− ln χ

ε2
i

(f i
1 − f i

2)
2

)
(3)

where χ is an arbitrary parameter (0.8 < χ < 0.99) and where µb and µw

can be computed univocally in order to satisfy Ruspini’s condition.

With such a fuzzy definition of nF
b , nF

e and nF
w , both k-dominance and k-

optimality definition can be reconsidered.

k-optimality with fuzzy numbers of improved objectives (fuzzy op-
timality) A first extension of the definitions of k-dominance and k-optimality
can be given if nb, ne and nw are replaced by nF

b , nF
e and nF

w in definitions 3
and 4 as follows:

Definition 6 (kF -dominance). v1 is said to kF -dominate v2 if and only
if: nF

e < M

nF
b ≥ M − nF

e
kF + 1 , 0 ≤ kF ≤ 1

(4)

Definition 7 (kF -optimality). v∗ is kF -optimum if and only if there is
no v ∈ Ω such that v kF -dominates v∗

The parameter k (now called kF ) has the same meaning as in the previous
case (0 ≤ kF ≤ 1) but now a continuous degree of optimality and dominance are
introduced (kF -dominance and kF -optimality). An extension of Sk and Fk can
be defined as follows:

Definition 8 (kF -optimal set and front). We call SkF
and FkF

the set
of kF -optimal solutions in design domain and objective domain respectively.

Each SkF
can be viewed as the kF -cut3 of a fuzzy set O for the notion

of “optimality in design domain search space”. Then the whole membership
function for this fuzzy set is implicitly defined by its kF -cuts. In fact let V
be the search space, then for all v ∈ V its degree of optimality is given by
O(v) = supα{α ∈ [0, 1]|v ∈ Sα}. An example of fuzzy set for optimality is
given in figure 5. The same reasoning can be applied to define the fuzzy sets for
optimality in objective space and the fuzzy sets for the dominance relation.

3 Remember that an α-cut of a fuzzy set A on an Universe U is the crisp set {u ∈
U |A(u) ≥ α}.



Remark: It is it possible to give a further extension of the notion of optimality.
In fact A more general procedure can be introduced by fuzzifying not only the
quantities nF

b , nF
e and nF

w , but also the dominance relation itself. The resulting
notion of optimality has been introduced and discussed by the authors in [13]. It
is this last definition that is properly referred to as fuzzy optimality. However in
the rest of the paper we will sometime use this term to indicate kF -optimality.

4 Test cases

This last section is devoted to two examples showing the validity of the
introduced definitions. They both are continuous constrained multiobjective op-
timization problems (RN → R

M ).

4.1 A first test case: 6 objectives

In the first test case (figure 4 and 5) a 6D problem with only two design
variables is considered with parabolic function located in an asymmetric way on
a rhombus borders.

min
v∈R2

f = {f1(v), ..., fj(v), ..., f6(v)}
fj(v) = (v1 − c1,j)2 + (v2 − c2,j)2

s. t. −1 ≤ v1, v2 ≤ 1

(5)

The coordinates for points (c1,j , c2,j) are marked with black bullets and the

Fig. 4. k-optimality classification on prob-
lem (5). Six parabolic functions are cen-
tered on • and three different degree of k-
optimal solutions are shown together with
the whole search space.

Fig. 5. fuzzy optimality classification on
problem (5) with linear membership

search space is shown with bright gray dots. We apply k-optimality definition;



as can be seen the region of Pareto optimal solution (SP = S0) is quite big with
respect to the search space. If k is increased (k=.5) a smaller region is selected
up to a single optimum for k=1. We thus have four regions, one included in
the other: SSP ⊂ SP ≡ S0 ⊂ S 1

2
⊂ S1 where SSP is the search space. If we

move from a solution f1 to a solutions f2 both belonging to SP we can expect
one of the two to be better than the other in at least one objective; if on the
other hand we move from a solution f1 to a solutions f2 both belonging to
S 1

2
we can expect one of the two to be better than the other in at least two

objective. The same may in general hold for S1, but in this example S1 is a
single solution. When fuzzy-optimality is considered on the same test problem
a continuous classification of solution can be obtained and is shown in figure 5;
the sets SkF

are infinite and corresponds to any real value of kF ∈ [0 : 1] (any
kF -cut of µO surface).

4.2 Second test case: M objectives

As a second test case (figure 6 and 7) the classification ability of fuzzy-
dominance and fuzzy-optimality is shown on the following more general R

N →
R

M multiobjective optimization problem on a box-like constrained search space:

min
v∈RN

f = {f1(v), ..., fi(v), ..., fM (v)}

fi(v) =
np∑

k=1

exp(−ci,k

N∑
j=1

(vj + pk,j)2)

i = 1 : M

s. t. Lj ≤ vj ≤ Uj j = 1 : N

(6)

In this example, the number of objectives is increased with respect to the pre-
vious one and the shape is a little bit more complex. A case with M=12 and
N=2 is first considered. A sampling of 400 points on the search space (candidate
solutions) is considered and classified. It is easy to see that almost all points in
the search space (a box ∈ R

2) are Pareto-optimal (see figure 6 where the SP is
shown on the ground level). No (or at most very poor) decision could thus be
taken with Pareto optimality.

Classically multiobjective search problems are tackled via an equivalent scalar
function such as weighted sum of objectives [14],[5]. The limitations of such an
approach are the following: only one special Pareto-optimal solution can be com-
puted, preference and tolerance on objectives are difficult to be expressed in a
clear way. As an example, figure 7 shows a classification of solutions in the search
space for problem (6) with a normalized sum of objectives. As can be seen the
peak value identifies a special Pareto-optimal solution and there is no way to
identify a bigger subset of the Pareto-optimal set.

On the other hand the proposed optimality definition can give a continuous
classification of solution, and consequently any number of Pareto optimal so-
lutions with a clearly defined degree of stronger (with respect to P-optimality)
optimality can be easily computed. This possibility is clearly shown in figure 6



Fig. 6. fuzzy-optimality based classifica-
tion with linear membership and corre-
sponding maximum point (•); linear mem-
bership with εi = 0.01 and γi = 0.2,
1 < i < 11 have been used.

Fig. 7. Classical normalized sum of objec-
tives on problem (6) and corresponding
minimum point (•)

where a continuous classification similar to the one in figure 5 is obtained. More-
over, the point corresponding to the minimum of the sum function is coincident
with the maximum of the fuzzy-optimality-based classification; both points are
shown under 3D surfaces. The normalized number of solution s(kF ) satisfying
fuzzy-optimality at degree kF is plotted against kF in figure 8 for problem (6).
As can be seen the s(kF ) behavior depends on the problem complexity. In case of

Fig. 8. Normalized number of fuzzy-
optimal solutions versus the optimality de-
gree kF for different number of objectives.

Fig. 9. From fuzzyα-optimality to k-
optimality for a 4-objectives problem (6) ;
membership parameters for the four cases
are listed in the table.

a problem with 32 objectives an high value of kF is required in order to find some
solutions belonging to SkF

. We now point out with an example (problem (6),



M=6) that the crisp k-optimality can be seen as the limit of fuzzy-optimality
when εi, γi, σi → 0, that is when crisp memberships are considered. This can
be easily seen form figure 9 where four different s(k) functions are plotted for
the values of membership parameters shown in the table. From a continuous
fuzzy-optimality based classification (case 1), a crisp k-optimality based clas-
sification (case 4) can be obtained with membership parameters close to zero;
some intermediate levels are also shown.

An example of fuzzy-dominance membership function with respect to one
fixed solution is shown in figure 10; as can be seen the region of the most fuzzy-
dominated solution with respect to the fixed one (that is fuzzy-dominated with
the highest value of kF ) correspond to the maximum region of the surface. An
example of fuzzy-optimality membership building through kF -cuts can be shown
in figure 11; as can be seen the obtained maximum optimality degree is 0.5 and
not 1. This is a numerical effect due to the poor sampling of the search space (a
coarse sampling has been considered for better figure rendering purposes).

Fig. 10. Membership µD(v1, v2)|ṽ for
dominance degree with respect to a fixed
solution ṽ.

Fig. 11. fuzzy-optimality membership
building through kF -cuts, a sampling of
400 solutions in the search space is con-
sidered.

A comparison of two kF -cuts (corresponding to two different degrees of opti-
mality) and the crisp Pareto optimal front is also shown in figure 12. As can be
seen the fuzzy optimality definition is able to select properly, among Pareto opti-
mal solutions, some “more optimal” solutions corresponding to the degree kF of
optimality. Moreover for low values of kF , the crisp Pareto Optimal front (which
is obtained via a different procedure for comparison and checking purposes) can
be properly reconstructed.

5 Is fuzzy-optimality useful for 2D and 3D cases?

Though being specifically developed for treatment of many (> 3) objectives
problems, fuzzy-optimality is meaningful even in case of 1 or 2 objectives only.



Fig. 12. Comparison of kF -cuts (◦) for a fuzzy-optimality membership at different kF

values and crisp Pareto Optimal front (·), a sampling of 400 solutions in the search
space is considered.

In such cases, no reduction of Pareto Optimal front is possible because only
one degree of optimality can be considered (
M/2� < 2) and k-optimality coin-
cides with Pareto optimality. Nevertheless fuzzy-optimality can be used for the
evaluation of a larger front taking into account the tolerances on objectives; an
example is shown in figures 13 and 14.

As can be seen, when including tolerances (coming from the decision maker’s
perception) in the objectives comparison between candidate solution, the crisp
Pareto optimal set and front are a smaller part of the fuzzy sets both in objective
and design space. The size and the shape of the SkF

set and FkF
front (where

kF = 0) depends on ε and γ values. We point out with this example that SP = S0

if k-optimality is used but SP ⊆ S0 if fuzzy optimality is considered.
We stress that here we consider the objectives function as crisp, (i.e. that

there is no uncertainty (fuzziness) in each objectives function). Thus the fuzzy
front in objective space in figure 13 descends only from the fuzzification of the
comparison between objective values. Of course it is possible to obtain different
fuzzy front by considering fuzzy objective functions.

6 Toward fuzzy-optimal sets approximation via
evolutionary algorithms

We have so far shown that, given a MCDM or a MO problem we can classify
candidate solutions with fuzzy-optimality and build N-dimensional memberships
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Fig. 13. Fuzzy front FkF in objective
space (kF = 0) (green •) and Pareto
optimal front (black •) for a 2 objective
2 variable problem (6) .
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Fig. 14. Fuzzy set SkF in design space
(kF = 0) (green •) and Pareto optimal
set (black •) for a 2 objective 2 variable
problem (6).

for optimality and dominance (once one solution is fixed). From a practical point
of view we now need a tool that can give us a satisfactory approximation of an
fuzzy-optimal set once a desired value for kF is fixed, without classifying all
solutions in the search space. A huge variety of methods is available in literature
for the approximation via evolutionary computation of the Pareto optimal front.
From a general point of view any method based on Pareto-dominance [16] can
be extend including fuzzy-dominance. As an example we consider a (1+1)ES
algorithm for Pareto optimal front approximation [3, 6] and we modify as follows
the mutation operator in order the algorithm to converge towards the fuzzy-
optimal set SkF

and fuzzy-optimal front FkF
at a given value of kF . Given the

objective values fP for the parent P and for the sun S (fS): previous mutation
operator

– if nb(fP , fS) = M accept the sun as a new parent else discard, it
– go to next generation.

new mutation operator

– if nb(fP , fS) >= M − kF M accept the sun as a new parent else discard it,
– go to next generation.

Several algorithms (n) with this modification are then run in parallel in order
to have the population evolution. The introduced larger acceptance criterion for
mutation leads to the convergence of the algorithm towards the desired kF -
optimal set (smaller than the Pareto-optimal one). An example is given in figure
15 where a comparison of kF -optimal set from sampling (•), kF -optimal set from
evolutionary algorithm (◦) and Pareto Optimal set (·) is given in the design
space. As can be seen the kF -optimal set is correctly sampled though being a
disconnected set.



Fig. 15. Comparison of fuzzy-optimal set from sampling (•), fuzzyα-optimal set from
evolutionary algorithm (◦) and Pareto Optimal set (·).

7 Conclusion

Via simple and general examples, in this paper we have shown that some
possible weakness of Pareto optimality (weakness becoming evident in the appli-
cation to optimization problems with more than three objectives) can be avoided
by considering other more general definitions.

In particular it seems that fuzzy logic can be profitably used in the general-
ization of the notion of Pareto optimality. In fact it easily and naturally allows
considering the number of improved objectives (not only if at least one objec-
tives is improved without worsening the others) and the size of improvement in
each objective.

Though being developed for more than three criteria the proposed fuzzy
optimality definition is meaningful for 2D and 3D cases for different reasons that
are discussed in some details. In order to apply the definition to real-life decision
making problems, the use of evolutionary algorithms for the computation of
fuzzy-optimality based subset has also been shown.
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