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Abstract - Recent studies confront the problem of multiple er-
ror terms through summation. However this implicitly assumes
prior knowledge of the problem’s error surface. This study con-
structs a population of Pareto optimal Neural Network regression
models to describe a market generation process in relation to the
forecasting of its risk and return.

I. INTRODUCTION

Theuseof NeuralNetworks (NNs) in the time seriesfore-
castingdomain is now well established,with a numberof re-
centreview andmethodology studies(e.g. [1], [2], [3]). The
main attribute which differentiatesNN time seriesmodelling
from traditional econometric methods is their ability to gen-
eratenon-linear relationships betweena vectorof time series
input variablesanda dependentseries,with little or no a pri-
ori knowledgeof the form that this non-linearity shouldtake.
This is opposedto therigid structural form of mosteconomet-
ric timeseriesforecastingmethods(e.g.Auto-Regressive(AR)
models, Exponential Smoothing models,(Generalised)Auto-
Regressive Conditional Heteroskedasticitymodels, andAuto-
Regressive IntegratedMoving Average models) [4], [5], [6].
Apart from this importantdifference,theunderlying approach
to time seriesforecastingitself has remained relatively un-
changed during its progressionfrom explicit regressionmod-
elling to thenon-lineargeneralisationapproachof NNs. Both
of theseapproachesaretypically basedon theconcept thatthe
mostaccurateforecast,if not theactualrealised(target) value,
is theonewith thesmallestEuclideandistancefrom theactual.

Whenmeasuringfinancialpredictor performancehowever,
practitionersoften usea whole rangeof different error mea-
sures(15 commonly usedtime seriesforecastingerror mea-
suresaloneare reported in [7]). Theseerror measures tend
to reflect the preferencesof potential end usersof the fore-
castmodel. For instance,in the areaof financial time series
forecasting, correctly predicting the directional movementof
a time series(for instanceof a stockprice or exchange rate)
is arguably moreimportant thanjust minimising the forecast
Euclidean error.

In order to encapsulate multiple objectives, recent ap-
proachesto timeseriesforecastingusingNNshave introduced
augmentationsto traditional learning algorithms. Thesehave
beenin theform of propagatinga linearsumof errors [8], [9],
[10], andpenalising particularmis-classificationsmoreheavily
[11].

However theseapproachesimplicitly assumethe practi-

tioner hassomeknowledgeof the true Pareto error front de-
finedby thegenerating process,andthe featuresandnetwork
topology they areusing to model it. A Paretoerror front is
definedsuchthat a feasiblemodel lying on the Paretofront
cannot improveany error(by theadjustmentof its parameters)
without degradingits performancein respectto at leastoneof
the others. Therefore, given the constraints of the model,no
solutionsexist beyond thetrueParetofront.

Given that it is likely that the error surfacedefinedby the
generating processis not known, a new approachto imple-
mentingmultipleobjective trainingwithin NNs is needed.

Through the useof a Multi-Objective Evolutionary Algo-
rithms (MOEAs) it is possibleto find an estimatedPareto
set of the combinations of parametersto multiple objective
‘clean’ functionmodellingproblems[12], [13], [14]. Over the
previous 15 years, sincethe work by Schaffer [15], MOEAs
havebeenappliedto a vastnumberof designproblems,where
mathematical formulaedefinethemultiobjective surfaceto be
searched. Thesemethods had not, until very recently, been
applied to the noisy domain of multi-objective neural net-
work (MONN) generalisation. The first and, to the author’s
knowledge,only study using a MOEA to train a population
of MONNs is that by Kupinski andAnastasio[16]. In their
study a population of MONNs are trainedusing the Niched
ParetoGeneticAlgorithm (NPGA)MOEA developedby Horn
et al. [17], which areappliedin themedicalimageclassifica-
tion domain, to a synthetictwo-classproblem. In this study
however themethodology usedin [16] is extended,by theuse
of aMOEA with provensuperiority in thenoiselessdomain to
the NPGA (the StrengthParetoEvolutionary Algorithm [18],
SPEA)andappliedto realdatain thefinancialtime-seriesfore-
castingdomain.

Oncea setof MONNs, that lie uponthe ParetoSurfacein
error space,have beengenerated,a practitionergains knowl-
edgewith respectto theerrorinteractionsof their problem. In
additionthey alsohave theopportunity to selectanindividual
modelthat encapsulatestheir errorpreferences,or a groupof
modelsif sodesired.By analogywith theCapitalAssetPricing
Model (CAPM) it is demonstratedthatby generating a Pareto
set of models with respectto estimatedrisk and return, the
practitioner canaccesshigherratesof return (for a givenlevel
of risk) by diversifying theirwealthbetweenforecast-basedar-
bitrageand‘risk-free’ investments.

Thisstudytakesthefollowing form: amoreformaloverview
of thecurrent approachto multi-objective optimisationin the



forecastingdomainis presentedin Section II. Paretooptimal-
ity is presented in Section III andtheCAPM model is intro-
ducedin Section IV. This is followedin Section V by a brief
description of the datausedandthe measuresof risk andre-
turn usedin training. In Section VI experimentsandresults
arediscussedwith conclusions andfurther work containedin
Section VII.

II. CURRENT APPROACH

An illustration of the problemsassociatedwith the current
approachto multi-objectivity in NN regressionis provided in
Figure1(a)and1(b).

(a)

(b)

Fig. 1. (a) Two-dimensional error surface1. (b) Two-dimensional
errorsurface2.

Considerthe situationwheretwo error measuresare used
that lie in the range[0,1]. Given that the practitioner wishes
to minimiseerrors,the typical approach in linear sum back-
propagationis to minimise the compositeerror ��� , in the D
errormeasure case(wheretheerrors areto beminimised)this
is calculatedasfollows:�������	�
���
����������������������������� �� � � � � � �! �� (1)

where"$#�%'& � � &  .
In the two dimensional caseillustratedin Figures1(a) and

1(b), wherethe practitioner gives equalweightingto bother-
rors,andbotherrorslie within thesamerange,thisis calculated

as: � � � % �)(�� � � % � (�� � � (2)

This approach implicitly assumesthat the interactionbe-
tweenthetwo errortermsis symmetric. ConsiderFigures1(a)
and1(b): Figure1(a) illustratesthesituationdescribed, where
theminimum error surfacedefinedby theproblemis shown as
theParetofront FF. Onits extremesit canbeseenthattheerror
combinations(0.0, 1.0) and(1.0,0.0) arepossible,which de-
fine theaxial symmetrichyper-boundariesof the front. In ap-
plying eq.2 thecompositeerror curveCC is generated.As the
illustrationshows, if thetraining processof themodel reaches
theerrorfront (thetrueParetofront), themodel returnedwill be
attheminimumof thecompositecurve,anddefinedby(e1,e2).
In thecaseof Figure1(a), this modelcanbeseento have the
error properties(0.50, 0.32). Figure1(b) illustratesthe same
situation,with identicalhyper-boundariesbut a slightly differ-
entdegreeof convexity of thefront *+* . In thiscasethemodel
returnedis definedby theerrorproperties(0.42,0.22). Thetwo
modelsaresignificantlydifferent,andin bothcases,dueto the
shapeof theParetoerrorfronts (andcontrary to thedesiresof
the user),the error propertiesof the models returnedarenot
equal.Although thefeasiblerange of botherrormeasuresare
thesame,theinteractionof theerrors,asdemonstratedby the
shapeof their trueParetofronts, resultsin the return of mod-
els,thatthough Paretooptimalin themselves,donot represent
the preferencesof the practitioner. An even worsesituation
arisesif the true Paretofront is concave andnot convex. In
thiscasecompositeerrorweightedsummationwill only return
thosemodelson theextremesof theParetofront, asillustrated
in Figure2.
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Fig. 2. Exampletheeffect of compositeweightingwhenthefront is
concave with respectto theorigin. (a) Illustratesa concave front.
(b)Variouscompositecurveswith differenterrorweighting.Table
shows theoptimalmodelsin relationto thecompositecurves.

In Figure2(a)thetrade-off betweentwo errors is definedby
the concave Paretofront *+* , with Figure2(b) illustrating a
number of possiblecompositeerror curves constructedusing
eq. 1. Thecompositeweights,andpropertiesof themodel(s)



whichminimisethesecompositeerrors areshown in theTable
below to 2(b). This illustratesthecasethat,irrespective of the
valuesusedfor ,.- and ,0/ in theconstruction of thecomposite
curves, themodelreturnedwill alwaysbetheonethatstrictly
minimiseseithererror1 or error2.

Theconstraintsandpropertiesof Paretooptimality, whichis
an integral part of all recentMOEAs [12], [13], [14], is now
formally defined.

III. PARETO OPTIMALITY

Paretooptimality andnon-dominancewill now beformally
introduced.

Themulti-objective optimisationproblemseeksto simulta-
neously extremise 1 objectives:2436587�3:9<;6=?> @A5CB4>�D�D�D�> 1 (3)

whereeachobjectivedependsuponavector ; of E parameters
or decisionvariables.

Without lossof generality it is assumedthattheseobjectives
(referredto asmodel errors in this study)areto beminimised,
assuchtheproblem canbestatedas:

Minimise F 5G7H9I;6=J5K9L7 - 9I;6=$>
7 / 9I;6=M>�D�D�D�>
7�NO9I;6=P=$> (4)

subjectto Q 9<;6=J5R9 Q - 9<;6=?> Q / 9<;6=$>�D�D�D�> Q�S 9L;6=T= (5)

where;U5K9�; - >4; / >�D�D�D�>4;0VW= and F 5C9 F - > F / >�D�D�D�> F N = .
When facedwith only a single error measure,an optimal

solution(regressionmodel) is onewhich minimisesthe error
giventhemodel constraints. However, whenthereis morethan
onenon-commensurableerrortermto beminimised, it is clear
thatsolutionsexist for whichperformanceononeerror cannot
be improved without sacrificingperformanceon at leastone
other. Suchsolutionsaresaidto beParetooptimal[19] andthe
setof all Paretooptimalsolutionsaresaidto form the Pareto
front.

The notion of dominancemay be usedto make Paretoop-
timality moreprecise. A decisionvector X (vector of model
parameters) is said to strictly dominate another Y (denotedX�Z�Y ) if 7 3 9 X =�[�7 3 9 Y = \$@]5RB�>�D�D�D�> 1 and7 3 9 X =�^�7 3 9 Y = for some@
D (6)

Lessstringently, X weaklydominates Y (denoted X�_�Y ) if7 3 9 X =�[`7 3 9 Y = \$@A5CB4>�D�D�D�> 1 (7)

A setof a decisionvectors b�c 3ed is saidtobeanon-dominated
set(anestimateof theParetofront) if no memberof thesetis
dominatedby any othermember:c 3�fZKchg \$@
>jik5CB4>�D�D�D�> a (8)

IV. ANALOGY WITH THE CAPM MODEL

An illustrationof the interaction of multiple objectives in a
problem, wherea set of modelsis desiredfor collective use
(asopposedto comparison) canbe shown by analogy to the
CAPM from finance[20]. TheCAPM describesthe relation-
shipbetweenrisk andreturnin anoptimumportfolio of stocks,
whererisk is to beminimisedandreturnmaximised,andcan
thereforealsobeappliedto populationsof forecastmodels.
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Fig. 3. TheCAPM.

In Figure3, thefront l+l represents theParetooptimal port-
folios (calledefficientportfolios in CAPM), or forecastmodels
in the analogy, with examples of othersub-optimal portfolios
(models)lying beneathl+l alsomarked. Line mnm is thesecu-
rity market line, with point o+p , wherethesecuritymarket line
intersectsthey-axis,representingthelevel of ‘risk free’ return
available in the market placeto the individual (i.e. through
borrowing/lending through the banking system). The secu-
rity market line is tangentialto theefficientportfolio front, the
point whereit touches the front at q being the optimal mar-
ket portfolio. In thesimpleillustrationshown in Figure3, by
investing in the market portfolio at point q (by tradingusing
the forecast model at point q ) and lending or borrowing at
the risk free rate o+p , it is possibleto operateon the security
market line, gaining a higher rate of return for any level of
risk thanthatpossibleby investing in anefficient portfolio of
stocks.Morecomplex interactions canalsobemodeledwithin
theCAPM framework. For example wheretherearetwo dif-
ferentzero-riskratesin the market; that availableto the user
when borrowing, and that available from government bonds
(risk-freeinvesting). In this situationtherearetwo tangential
lines generated,with a ‘kinked’ SecurityMarket Line itself a
combinationof thetwo andthefront itself betweenthetwo tan-
gents.In addition, given thatdifferent individuals/institutions
may experiencediffering o+p s (dueto differing costsof bor-
rowing and lendingavailabledependenton size andcircum-
stance),thetangential pointsthemselves(andthereforespecific
modelsof interest)will varyacrossindividuals.



V. DATA AND ERROR MEASURES

In this studytwo errormeasures to beoptimisedare‘Risk’
(minimised)and‘Return’ (maximised).

Thedependenttimeseriesusedfor forecasting,2?r , is a form
of theonedayreturnbetweentheopenpriceof themarketand
thenext dayrealisedhigh,asshown in eq.9.2 r 5ts u$vrw D x4x�y u$zr|{ -~} (9)

whereu zr is theopenlevel of themarket at day � and unvr is the
markethighat day � .

Themultiplication of theopen valueby 0.993 is dueto the
tradingstrategybeingdependentonthevaluefallingduring the
dayby at least0.7%beforetradinginto themarket is (poten-
tially) triggered (asdescribedin Algorithm 1). The‘Risk’ of a
forecast model is simply measuredastheRootMeanSquared
Error (RMSE)of the model prediction of 2?r - asit is a direct
measureof the � (standarddeviation) of themodel prediction
from the actual. The ‘Return’ measure is calculatedusinga
simpletradingstrategy basedupon transaction costscalculated
at0.1%of price(asdefinedasareasonablelevel in [21]), there-
fore a minimum increasein price from buy to sell of 0.2% is
neededbefore any profitscanberealised.In addition thetrad-
ing strategy is designedsuchthat a tradewill only take place
if estimatedprofitsbeyondtransactioncostsof a tradeinto and
out of the market equalapproximately1.5% (the forecast of2�r , �2�r being � 1.017). The‘Return’ error measure is formally
describedin Algorithm 1.

Algorithm 1 Trading strategy (‘Return’ error).� , currenttime step(day).�2�r , themodel forecastat day � .���r 5 ������� ���P� ����<�~� , where u �r is themarketcloseonday � .��� rr , Returnvalueat time � (asapercentageof capitalat �$� B ).
1. Set ��� 5RB , first tradingdayof train (or test)setinstance.
2. If 9 �2�rI� - � B4D w B���=:�K� u��rT� u zr [ w D x4x�y�� shift capitalfrom

risk freedeposit into marketat thepointwherethemarket
pricefalls to 99.3% of open(incurring transactioncosts),
goto3, otherwisegoto4.

3. ��� 5 �M� B , Calculateprofit / loss.
(a) if 9I2 r � B4D w B���= , sell when market reachesthe level
101.7%of thatwhenentered, �W� rr 5RB�D �~x4��y , goto2. Else:
(b) if 9L2 r ^ B�D w B��4= , sell at the end of day, �¡� rr 59L���r � B¢= � 9 w D£B � w D¤B����r = , goto2.

4. ��� 5 ��� B , Calculatenominal risk freeinterestaccruedon
assets,��� rr 5 w D w�w B¢¥ (compoundequivalent to 4% p.a.),
goto1.
Halt processwhenendof train (or test)setis reached.

The measureshows that if the forecastof tomorrows high
is 1.7% higher or more than99.3% of today’s openprice,and
the price during todayfalls to (or below) a level of 99.3%of
today’sopenprice,tradingwill occur(Algorithm 1). If thissit-
uationoccurs,andtherealisedvalueof valueof 2MrI� - is greater

than B .017, thenwhenthemarket level reachesthepoint of be-
ing 1.7%above the price paid on entrance, the assetswill be
soldandprofits realised(aftercostsincurred). If however the
market level doesnot reacha level 1.7%above thepricepaid
onentrancethentheassetsaredisposedof attheendof theday,
with thepotential for eitherprofit or loss. If u¦�rT� u zr¨§ w D x4x�y ,
or �24rI� - ^©B4D w B�� thenno tradewill occurandthecapitalwill
lie in abankdeposit accruingtheequivalentof 4%interestp.a.
(
w D w4w B�¥«ª a daycompoundedover250tradingdays).

Fifteenexplanatoryvariableswereusedin the model,and
aredefinedasfollows:¬ -®­ �)�)� ­ - �r 5G2�r|{ / >�D�D�D�>�2�r|{ -P- (10)¬ -P-
­ �)�)� ­ -T¯r 5 �24r|{ - >�D�D�D�> �2�r|{ ¯ (11)

variables1 to 10containthelast10laggedrealisedvaluesof 2 r
(2 weeksof trading), of course2 r|{ - cannot beusedasit incor-
poratesinformationthatwill notbeavailableat thestartof day
at �A� B . Variables11to 15arerecurrentvariables. In addition
to the 15 input units, the network designusedincorporateda
singlehiddenlayerof 5 sigmoidal transferunits.

Thedatausedin themodel is theopen,high, low andclose
of the Dow JonesIndustrial Average (DJIA) over the 2500
tradingday period from 28/2/1986 to 3/1/2000. In (the Ex-
perimentation)SectionVI aslidingwindow is usedto contain
the trainingandtestsetswhich aregeneratedby first creating
therelevantexplanatoryvector anddependentvaluepairs(em-
beddedmatrix), andthenpassingawindow with thefirst 1000
pairsastraining dataandthenext 100pairsastestdataacross
theseries,moving thewindow forward by 100pairs25 times.
As illustratedin Figure4 below, thismeansthatthe25testsets
containa total of 1500 tradingdays(approximately10 years)
from 12/2/1990to 3/1/2000.
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Fig. 4. Figureillustratingthetestandtrainingsets(top) in relationto
thetransformeddata°�± (bottom).



VI. EXPERIMENTS AND RESULTS

The experimentsin this studyaredesigned to demonstrate
thefeasibilityof thisnew approachto forecasting,andtheben-
efit of producinga population of modelswhich lie on anesti-
mateof theParetofront of thegenerating process.As stated,
thisallows thepractitioner to chooseamodelfrom aviableset
thatdescribesa their error trade-off preferencesafter training
andthereforeknowledgeof thetrainingerror interactions(in-
steadof theapproachof summation, whereonly onemodel is
returnedandwherethepractitioner musthave a priori knowl-
edgeof theerrorsurface). However, if theerrorpropertiesdo
not hold trueon thetestdata,this approachis of no usein the
financialdomain.

To test this threepreferencesof threegeneral practitioners
aredefined(risk averse,profit maximiserandmiddle-way)and
therelevant models for eachof thesetypeof investorselected
ateachof thetrainingwindowsandtheperformanceof therel-
evantmodel evaluatedonthefollowing testset.Therisk averse
model practitioner is representedby thelowest‘Risk’ (RMSE)
model from the Paretomodel set beingselectedat eachpe-
riod. Theprofit maximisingpractitioner is representedby the
highest ‘Return’ model selectedat eachperiod and the mid-
dlepractitioner (neither totally risk aversenor totally expected
profit maximising) beingrepresentedby the middle model in
theorderedmodel setat eachwindow period.

TheGeneticAlgorithm usedin theSPEAwasimplemented
usingsingle-point crossover, the mutatorvariable wasdrawn
from a zero-mean,symmetric, leptokurtic distribution (kurto-
sis ² B w ) generatedby the product of two uniform distribu-
tionscoveringtherange[0,1], andaGaussiandistribution with
a varianceof 0.1 andzeromean.Theprobability of mutation
was0.1andtheprobability of crossover 0.8. Thesearchpop-
ulation contained80 individuals, with an unconstrainedelite
secondary population usedasa sourceof up to 20 individuals
eachgeneration for the binary tournament selectionphaseof
theSPEA(thealgorithms anddatastructuresusedto facilitate
this canbefoundin [22], [23]). Eachpopulationof networks
wastrainedfor 2000generations,with thesearchpopulationin
eachinstanceseededwith thesearchpopulationat theendof
theprevioustrainingwindow (thevery first training window’s
searchpopulationbeingrandomly generated).

Theaverage‘Risk’ and‘Return’ for thethreepractitionersas
well asthemarket returnandtheperformanceof therandom-
walk forecastof 2~r for the 25 testsetsareshown in Table I.
(Again, as 2 r is not known at day � , the random walk model
takestheform �2 r 5�2 r|{ / ).

As canclearly beseen,the modelattributesover the train-
ing dataareconsistentover the testdataalso,although with
a degree of noise. An exampleof this is illustratedin Fig-
ure5, with the training Paretofront andestimatedtestPareto
front plottedfor thefirst trainingandtestwindow. Themean
‘Risk’ of the centralmodels’,although above that of the risk
aversemodelson thetestsets,is notsignificantlyso.However
the centralmodels’mean‘Return’ is significantlyhigher, as
aretheprofit maximisersmodels’‘Return’ significantlyhigher

TABLE I
MEAN RISK AND RETURN OVER THE 25 TEST SETS FOR THE

EXTREME AND MID-WAY MODELS, RANDOM WALK MODEL AND

MARKET RETURN (STD DEVS IN PARENTHESIS).

Train Test
RMSE % Ret RMSE % Ret

Risk 0.00903 0.1391 0.00923 0.0907
Averse (0.00181) (0.0306) (0.00316) (0.0742)
Middle 0.00908 0.2299 0.00923 0.1714

(0.00182) (0.0569) (0.00308) (0.1317)
Prof. 0.00927 0.2904 0.00978 0.2233
Max. (0.00184) (0.0797) (0.00302) (0.1780)

Market - 0.0508 - 0.0619
- (0.0208) - (0.0717)

Rand 0.01348 0.1293 0.01295 0.1175
Walk (0.00312) (0.0364) (0.00461) (0.0968)

RiskFree 0 0.0016 0 0.0016

thanboththecentralmodels’‘Return’ andminimal risk mod-
els ‘Return’. (Calculatedusing the nonparametric Wilcoxon
SignedRanksTest[24] at the2%level (1%in eachtail)).
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Fig. 5. EstimatedParetoerror surfaceon training setandthe noisy
errorsurfacerealisedon thetestset(first window).

Thetabulatedresultsarefurthersupported in a visual fash-
ion by the Profit plots over the 10 year period for the vari-
ousmodels, which areshown in Figure6. It is of interestto
notethatall threeNN model typesoutperformthemarket re-
turn, however the risk aversemodels(RMSE minimiser)dis-
play a lower return over the period than the simple random
walk modelon the transformed data,oncemoreunderlining
the fact that models shouldbe trainedwith respectto the er-
ror preferencesof theuser(modelstrainedstrictly to minimise
RMSEwill notnecessarilygenerateexcessprofits).

VII. COMMENTS AND FURTHER WORK

In this studya novel approachto theconstruction of finan-
cial time seriesmodelshasbeenformedby analogy with the
CAPM from portfolio theory. Approximate Paretofrontiers
have beengeneratedfor the DJIA index basedon NN model



0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5
x 10

4

Trading Days

C
ap

ita
l

12/2/1990 3/1/2000 

Market Ret. 

Lowest Risk NN

Random Walk 

Mid Risk/Ret. NN 

Max Ret. NN 
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risk and return. As a result of this it hasalso beendemon-
stratedthat risk andreturnarenon-commensurablein model
parameterspecification, andthatthisgeneralisesto testdata.

However therearestill many furtherareasof researchin this
field. Both [16] andthis studydo not fully confront theprob-
lem of generalisation/ validation in thedomainof Paretopop-
ulation training. TheMOEA literature wasformed in ‘clean’
process domains. In noisy domains such as financial fore-
casting,wherethegenerating processitself is beingmodelled,
thedivergencebetweentheestimatedParetosurfacefrom the
trainingdata,andtheactualsurfacedefinedby theprocessit-
self meritsmuchfurther investigation. In additionthereis no
reasontoassumethatthepopulationof NN modelsdefiningthe
front should behomogeneousin their topologies,indeed, just
asit is acceptedthatnooneNN topology is optimal for anum-
berof different tasks- so it mayalsobeassumedthatno one
NN topology is sufficient for representingdiverseandcompet-
ing errorrepresentationsof a singlenoisyprocess.These,and
otherareas,arethefocus of theauthor’s currentresearch.
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