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Abstract. Evolutionary multicriteria optimization has traditionally concen-
trated on problems comprising 2 or 3 objectives. While engineering design 
problems can often be conveniently formulated as multiobjective optimization 
problems, these often comprise a relatively large number of objectives. Such 
problems pose new challenges for algorithm design, visualisation and imple-
mentation. Each of these three topics is addressed. Progressive articulation of 
design preferences is demonstrated to assist in reducing the region of interest 
for the search and, thereby, simplified the problem. Parallel coordinates have 
proved a useful tool for visualising many objectives in a two-dimensional graph 
and the computational grid and wireless Personal Digital Assistants offer tech-
nological solutions to implementation difficulties arising in complex system de-
sign.  


1   Introduction 


Real-world engineering design problems often involve the satisfaction of multiple 
performance measures, or objectives, which should be solved simultaneously. Auto-
motive and aerospace examples provide illustrations of some typical design chal-
lenges and demonstrate that these problems often involve a large number of objec-
tives. It is demonstrated how a typical set of engineering design specifications might 
be mapped onto a familiar formulation of an EMO problem. EMO research has, for 
the most part, focused on problems having 2 or 3 objectives; however, in recent years 
there has been growing interest in the area of many-objective optimization where the 
problem might consist of 4 – 20 objectives, for example.  







Of the three key requirements for EMO solution set quality - proximity, diversity 
and pertinency - a case is made that pertinency, focussing on solutions in the de-
signer’s region of interest, has a special prominence in many-objective optimization 
studies. A method whereby the MOEA is operated in an interactive manner through 
progressive articulation of preferences is described and an example worked through 
to explore the potential of this approach. 


The means of using the method of parallel coordinates to reduce the study of a 
many-dimensional Pareto front to a 2-D representation reveals a number of strengths 
and limitations. Many-objective optimization in an engineering design context is 
inevitably very compute-intensive and there is an expectation that a design procedure 
will often be time-consuming. Two schemes are introduced to deal with these de-
mands. In one scheme, the MOEA is parallelised to execute effectively in a computa-
tional grid environment in reduced time. For the second scheme, it is shown that 
wireless PDAs can be effective tools for designers in the interactive computational 
steering of the design process. 


2   Design approaches 


In this section we provide examples of conflicting objectives in two areas of engi-
neering design and then provide some background to solution approaches used in the 
past. 


2.1   Typical engineering design optimization problems  


Automotive engineering examples 
Historically, in automotive engineering, the process of establishing trade-offs has 
been to conduct parametric studies. That is, evaluating the conflicting objective func-
tions at different values of the decision variables (parameters), comparing the results 
in objective space and then finally selecting a single trade-off solution. An example 
of such a parametric study is shown in an enumeration plot (see Fig. 1), where two 
conflicting objective functions (empirical models of NOx and Brake Torque) are 
plotted against each other, evaluated as a function of their input (decision) variables. 


Brake Torque is a surrogate variable for fuel economy and is easily measurable on 
an engine dynamometer test rig; maximising brake torque is equivalent to optimizing 
fuel economy. NOx or Oxides of Nitrogen are one of the three legislated exhaust 
emission pollutants and in this case is measured pre-catalytic converter. Minimising 
NOx minimises the precious metal (e.g. Platinum or Rhodium) coating in the catalytic 
converter and thus cost. 


In Fig. 1 the decision variable is EGR (Exhaust Gas Recirculation) rate, which 
gives a benefit in brake torque and NOx. Brake Torque maximises at moderate EGR 
rate, but NOx minimises at maximum EGR rate. Thus, the objectives conflict.  
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Fig. 1. Relationship between conflicting objective functions, NOx and Brake Torque 


Since the optimization problem is to maximise Brake Torque and minimise NOx, 
trade-off solutions in the lower RH corner of Fig. 1 are preferred. Using a parametric 
approach, many objective function evaluations are required, which may be expensive, 
particularly if there are a large number of objective functions. (In automotive engi-
neering it is not uncommon to have problems with 4-10 objectives.) Also, it is possi-
ble that suitable Pareto-optimal solutions will not be discovered and that a sub-
optimal trade-off solution will be selected. 


Fig. 1 is obtained from empirical models of Brake Torque and NOx. The models 
are based on automated test data arising from a designed experiment on an engine on 
an engine dynamometer test rig. The resulting models are then validated against inde-
pendent test data and against known physical trends. 


Such models offer practical advantages over an online approach (i.e. connecting an 
optimizer directly to the test rig) in terms of efficiency, re-use and a noise-free or 
repeatable objective function evaluation. Connecting the optimizer to these models 
provides an efficient and systematic search capability for Pareto-optimal solutions, 
which, by definition, represent optimal system capability that is of high engineering 
and business value. 


Fig. 2 is an example of a piece-wise continuous Pareto front obtained by compar-
ing SDNMEP (Standard Deviation of Net Mean Effective Pressure - a measure of 
combustion stability) with torque. Good combustion stability is necessary for engine 
smoothness, which is now a customer expectation of modern mass-produced engines. 
The decision variables, Intake Valve Opening (IVO) & Exhaust Valve Closing 
(EVC), are used to determine cam positions in a continuously variable Twin Inde-
pendent Variable Cam Timing system. Torque maximises at moderate IVO + late 
EVC (medium overlap) or late IVO & EVC, whereas SDNMEP minimises at late 
IVO + early EVC (low overlap). Again, the objectives conflict. 
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Fig. 2. Piece-wise continuous Pareto front obtained by comparing SDNMEP with torque 


Aerospace Engineering examples 
For different classes of gas turbine engines (GTEs) for aircraft propulsion, while 


the controller structure will often remain the same, there is a requirement for redesign 
of the control system for new engines and new performance requirements. (Besides 
aerospace, GTEs are also used for applications such as marine vehicle propulsion and 
power generation.) Each application requires the engine to operate in a specified 
manner and provide particular shaft velocities, efficiencies and thrust output. These 
depend on the purpose for which the engine is being used. One way of varying the 
performance of these engines is through the choice of a suitable control system that is 
able to regulate the fuel supplied to the combustion chamber of the engine and thus 
influences the performance of the engine.  


Fig. 3 provides a typical set of design specifications (and, for later discussion, a 
mapping to a specific EMO treatment is provided). For example, objective (1) repre-
sents a measure of rapid acceleration for go-around/aborted landing, objective (2) 
represents a measure of rapid deceleration for stopping on runway for aborted take-
off, and objective (8) prevents flameout, a factor which is relevant on rapid decelera-
tions, e.g. when decelerating at high altitude at the end of cruise or an aborted takeoff. 







 


Design Specifications 
 
Obtain a controller such that 
 
System is closed-loop stable   
 
and 
 
1) idle to 90% MTO < 6s 
2) MTO to 15% < 6s 
3) Thrust oscillations < 0.005 EPR
4) Bandwidth > 3 rad/s 
5) Overshoot < 0.02 EPR 
6) Maximum TET < 1960 K 
7) Surge margin > 10% 
8) Minimum FAR > 0.015 
 
where 
MTO = Max Take off Power. 
EPR = Engine Pressure Ratio  
TET = Turbine Entry Temperature 
FAR - Fuel to Air Ratio 
 


MOEA Formulation 


Minimise the vector f , where 


f =      [ idle to 90%MTO  
    MTO to 15% 
       Thrust oscillations 
       Bandwidth 
      Overshoot 
       Maximum TET 
       Surge margin 
       Minimum FAR ] 


 
with respect to goal vector g, 
where 
g =  idle to 90%MTO < 6s 


MTO to 15% < 6s 
Thrust oscns< 0.005 EPR
- Bandwidth < -3 rad/s 
Overshoot < 0.02 EPR 
Max TET < 1960 K 
- Surge margin < -10% 
- Min FAR <-0.015 


 
Fig. 3. Mapping of design specifications into a multiobjective evolutionary algorithm (MOEA) 
formulation 


High-fidelity nonlinear dynamic models of engine performance exist and controller 
design is realized by implementing alternative strategies on these models for perform-
ance evaluation and comparison. Until recently based designs were limited to scalar 
objectives and, often, addressed the design specifications indirectly by employing 
measures that required weight manipulation to shape the response into the desired 
form. The availability of tools to directly address multiple objectives is leading to 
shorter design times and improved system performance. 


Fig. 3 demonstrates how a conventional design specification can be mapped into a 
multiobjective optimization (MO) formulation. Subsequent sections will describe and 
illustrate how such a MO formulation, complete with goals, can be treated in a mul-
tiobjective optimization evolutionary algorithm (MOEA) framework and the designs 
executed using progressive preference articulation. 


2.2   Requirements of a Multi-Objective Optimizer for Engineering Design 


The globally optimal trade-off surface of a multi-objective optimization problem 
can contain a potentially infinite number of Pareto-optimal solutions. The task of a 
multi-objective optimizer is to provide an accurate and useful representation of the 
trade-off surface to the decision-maker. The set of solutions generated by the opti-







mizer is known as an approximation set [32]. Three aspects of solution set quality can 
be considered. These are listed below, and shown graphically in Fig. 4. 


Proximity. The approximation set should contain solutions whose corresponding 
objective vectors are close to the true Pareto front. 


Diversity. The approximation set should contain a good distribution of solutions, in 
terms of both extent and uniformity. Good diversity is commonly of interest in objec-
tive-space, but may also be required in decision-space. In objective-space, the ap-
proximation set should extend across the entire range of the true Pareto front with a 
parametrically uniform distribution across the surface. 


Pertinency. The approximation set should only contain solutions in the decision 
maker’s (DM’s) region of interest (ROI). In practice, and especially as the number of 
objectives increases, the DM is interested only in a sub-region of objective-space. 
Thus, there is little benefit in representing trade-off regions that lie outside the ROI. 
Focusing on pertinent areas of the search space helps to improve optimizer efficiency 
and reduces unnecessary information that the DM would otherwise have to consider. 
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Fig. 4. The ideal solution to a multi-objective optimization problem 


 


2.3   A brief account of multiobjective optimization in engineering design  


A typical control system design problem might be posed as follows. Given a sys-
tem x = Φ (x, u, t) where x and u are the system state and control vectors and Φ is a 
vector non-linear function, find a controller u such that the design specifications, 


migtf ii ,,1,),,( K=≤ux , (1) 


are satisfied, where gi are the design goals. Such problems were most often addressed 
via optimization by aggregating objectives directly (or by indirect means) into a 







weighted sum, such as the following objective function used in linear quadratic 
regulator design [1],  


{ } ,
0


dtRQJ TT∫
∞


+= uuxx  
(2) 


where Q and R are user-selected weighting matrices to guide the design. The well-
known drawbacks of the weighted sum approach are the difficulty in setting values 
for the weights, and the fact that the method has been proved to be incapable of gen-
erating solutions in non-convex regions of the trade-off surface [4]. It is also a single 
solution method, requiring multiple starts in attempts to build up trade-off informa-
tion. 


Zakian and Al-Naib proposed a method for obtaining a control vector, u, of pre-
specified structure [31], which satisfied the design specifications/constraints eqn. (1). 
However, this was a constraint satisfaction approach that (i) did not attempt to opti-
mize the solution once one was found that satisfied the constraints, and (ii) had no 
recovery strategy, should the solution space prove to be null. 


In the goal attainment method [18], the designer is required to specify a set of 
goals, let us also call them g, for the objective function vector, f. The nonlinear pro-
gramming problem to be solved is:  


Min λ , with λ , p subject to: migwf iii ,,1, K=≤− λ  (3) 


 
where p is the decision variable vector (or controller parameters), wi ≥ 0 are weight-
ing coefficients and λ is an unrestricted scalar variable. The quantity wi λ may thus be 
interpreted as the degree of under-attainment or over-attainment of the goal gi. This 
method is not subject to the convexity limitations of the “weighted sum” approach 
and its use of weights and goal enables the designer to be more expressive and pre-
cise in directing the search. Goal expression has an affinity with the common form of 
engineering design specification (cf. Fig. 3).  The goal attainment method is, though, 
irredeemably a scalar optimization method, capable of revealing only one solution on 
the Pareto front as a result of one pass of this algorithm. Nonetheless, it was to prove 
influential for Fonseca and Fleming as they refined their multiobjective genetic algo-
rithm [14] for use in engineering design [15]. 


The population-based nature of evolutionary algorithms and their flexible selection 
mechanism have proved to be extremely successful for solving multi-objective opti-
mization problems and for revealing a satisfactory approximation set to the desired 
globally optimal trade-off surface in a single execution of the algorithm. The funda-
mental benefit of this latter factor over multiple-start strategies is the potential for a 
cooperative search for ultimately different solutions, thus saving on the total number 
of solution evaluations required.  Excellent descriptions of the history of EMO may 
be found, for example, in [8] and [6]. A timeline of key events is shown in Fig. 5. 
 
 







 
 


Fig. 5. Key developments in EMO history [24] 


3 Many-Objective Optimization 


As we have seen in section 2, engineering design has a propensity to produce sig-
nificant numbers of objectives, considerably in excess of 2 or 3 objectives commonly 
addressed by EMO researchers. This section looks at the new issues that arise and 
suggests way of tackling these. 


3.1   Issues 


Interactions often arise between objectives and these have been classified as con-







flict or harmony [23]. A relationship in which performance in one objective is seen to 
deteriorate as performance in another is improved is described as conflicting. A rela-
tionship in which enhancement of performance in an objective is witnessed as another 
objective is improved can be described as harmonious. The conflict that exists in a 
many-objective optimization task is a serious challenge for EMO researchers. 


Given the typical numbers of requirements arising in engineering design, and else-
where (see [6]), there is a very clear need to develop an understanding of the effects 
of increasing numbers of objectives on EMO. The phrase many-objective has been 
suggested in the OR community to refer to optimization problems with more than the 
standard two or three objectives [13]. 


For M conflicting objectives, an (M-1)-dimensional trade-off hypersurface exists 
in objective space. The number of samples required to achieve an adequate represen-
tation of the surface is exponential in M. In [9] it is shown that the proportion of lo-
cally non-dominated objective vectors in a finite randomly-generated sample becomes 
very large as the number of objectives increases. Since dominance is used to drive the 
search toward the true Pareto front, there may be insufficient selective pressure to 
make such progress. Of course, the use of a large population can help address this, 
but this is impractical for many engineering designs in which evaluation of objectives 
for a single candidate solution can be very compute-intensive. 


Due to the ‘curse of dimensionality’ (the sparseness of data in high dimensions), 
the ability to fully explore surfaces in greater than five dimensions is regarded as 
highly limited [27]. Statisticians generally use dimensionality reduction techniques 
prior to application of the estimator. This assumes that the ‘true’ structure of the sur-
face is of lower dimension, but the potential for reduction may be limited for a trade-
off surface in which all objectives are in conflict with each other. 


Possible measures that have been considered previously by the EMO community 
to address the issues arising from many-objective optimization include  


o the use of preferences,  
o aggregation,  
o goals and priorities,  
o dimension reduction, and  
o visualisation.  


Aspects of all of these measures are considered, both later in this section and in an 
example of use in the next section. 
 


3.2   Preference-based Methods 


The exploitation of DM preferences, either a priori, a posteriori, or progressively, 
is arguably the current best technique for handling large numbers of conflicting ob-
jectives. In the a priori and progressive cases, the aim of EMO is to achieve a good 
representation of trade-off regions of interest to the DM (essentially limiting the am-
bition of the optimizer by requiring it to represent only a sub-space of the trade-off 
hypersurface). 







In a priori schemes, DM preferences are incorporated before the search begins. In 
progressive methods, DM preferences are incorporated during the search. The key 
advantage of these techniques over a priori methods is that the DM may be unsure of 
his or her preferences at the beginning of the procedure and may be informed and 
influenced by information that becomes available during the search. The final class of 
methods is a posteriori, in which a solution is chosen from the approximation set 
returned by the optimizer. 


Refer to [4] for a survey of the literature on preference methods for EMO. Progres-
sive preference methods appear to hold much relevance for engineering design and 
are discussed below. 


Fonseca and Fleming [15] possibly introduced the first truly progressive MOEA 
scheme as an extension to the Pareto-based ranking of their multiobjective genetic 
algorithm (MOGA) [14]. Using a preferability operator, the DM can set goal values 
and priority levels for any objective. This can be done at any time during the run of 
the MOEA and can be updated when required. The data feeds into a modified defini-
tion of dominance, which provides a unification of Pareto optimality, the lexico-
graphic method, goal programming, constraint satisfaction, and constrained optimiza-
tion. All these methods, plus hybrids, can be derived from the preference operator.  A 
detailed explanation of the preferability operator is described in [21]. 


Deb et al. [10] developed a constrained-domination approach that is very similar to 
the preferability operator. The main distinction is that, in this new scheme, an overall 
quantity of goal violation is calculated. This enhances the amount of information 
available to the search, but requires the forced cohesion of objectives. Another similar 
scheme, known as favour, has been proposed by Drechsler et al [12]. Tan et al. [28] 
developed logical connectives to allow a DM to make alternative preference scenarios 
for a problem in the context of preferability-type schemes. Todd and Sen [29] pro-
posed an alternative progressive scheme, which incorporates learning and automation 
of DM preferences. Rather than setting goals and priorities, the DM is asked to make 
judgements on a set of potential solutions at various intervals during the optimization 
process. 


Cvetkovic and Parmee [7] have proposed an interactive scheme involving the com-
bined use of a weighted Pareto front and a variable parameter representing the mini-
mum level of dominance. Branke et al. [2] describe the Guided Multi-Objective 
Evolutionary Algorithm, where DM preferences are manifested through a modifica-
tion of the dominance definition, which specifies the level of trade-offs acceptable 
among objectives, i.e. the maximum acceptable amount of degradation of an objec-
tive’s performance is recompensed by a specified level of improvement of another 
conflicting objective’s performance. In the biased crowding approach [3], Branke and 
Deb describe how the DM can control the ROI along a specific front and plane by 
specifying the value of a specific parameter, a “biased crowding measure” [11], 
which expresses the ratio of the true distances between neighbouring solutions on the 
true Pareto-optimal front and the projected distance of the same solutions on a plane 
with a user specified direction connoting a central linearly weighted utility function.  
It is, however, the progressive articulation scheme [15], which is elaborated in Sec-
tion 4.1. 







3.3   Visualisation (Parallel Coordinates) 


Fonseca and Fleming [15] used a user interface that featured the parallel coordi-
nates method of visualising trade-offs between objectives [19]. The Cartesian system 
of having the axes orthogonal to each other has obvious limitations when trying to 
visualise geometry with higher than 3 dimensions or more than 3 variables in a set of 
data. Parallel coordinates give a systematic and rigorous way of representing the 
relationships between multiple variables – in our case, design objectives. 


The approach of parallel coordinates places all the axes parallel to each other thus 
allowing any number of axes to be shown in a flat representation. Fig. 6 illustrates the 
mapping between the Cartesian system and the corresponding representation in paral-
lel coordinates, where points A and B in the coordinate system are represented by 
lines in the parallel coordinates representation. Fig. 7 illustrates a representation that 
deals with more than two objectives (four objectives, in fact). Here, each line in the 
graph connects the performance objectives achieved by an individual member of the 
population and represents a potential solution to the design problem. 
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Fig. 6. Mapping between Cartesian system and corresponding parallel coordinate 


 
The order in which the axes are set out in parallel coordinates does not have any 


bearing on the translation of the data in to parallel coordinates, although it is not en-
tirely neutral to the technique, a point that will be expanded upon later. 


It is not sufficient just to be able to display multivariate data in a 2-dimensional 
representation. The key requirement is to be able to easily interpret the relationships 
between the variables. It can be shown that the geometrical features of a surface in n-
dimensional space are preserved in the parallel coordinates system. This is important 
because it allows these features to be easily identifiable when represented in parallel 
coordinates and therefore the relationship between the variables that give rise to these 
features can be visualised. For example, in Fig. 7, “crossing lines” indicates conflict 
between the two adjacent objectives. The degree of conflict is demonstrated by the 
intensity, or degree to which, the lines cross. Conversely, lines that do not cross dem-
onstrate objectives which are in relative harmony with one another. 


 
 







 
Fig. 7. Parallel coordinates for four objectives 


 
Other requirements fulfilled by parallel coordinates are that there is no loss of data 


in the representation, which in turn ensures that there is a unique representation for 
each unique set of data. It also has a low representational complexity, O(n), where n 
is the number of variables modelled, allowing the technique to scale well to large 
numbers of variables. Weaknesses of this visualisation method, however, are (i) that 
it requires multiple views (different orderings of objectives) to see different trade-offs 
and (ii) that it can be hard to see what is going on when many vectors are represented. 
Wegman [30] describes some countermeasures to these problems. 


4 Facilitating the engineering design exercise 


4.1 Use of preference articulation 


We will now illustrate the way in which preference articulation, as described in [15], 
can be used in a many-objective problem to focus on a specific region of interest 
(ROI) on the Pareto front and, ultimately to isolate a desired design solution. An 8- 
objective flight control system design problem is used to illustrate the process; for 
reasons of clarity and commercial sensitivity, the objectives are unspecified, having 
titles such as Objective 1, etc. The preference articulation sequence is illustrated in 
Fig. 8 (a-f). Selection throughout the progress of the optimization uses the preferabil-
ity operator defined in [15]. 







 


a) 
 


d) 


 
b) 


e) 


 
c)  


f) 


Fig. 8. Preference articulation sequence 
 


Initially, the design is expressed as follows: 







 
 
1. The designed controller seeks to 


simultaneously optimize Objectives 1-8 
 


2. Each Objective i must satisfy Goal i,  
i = 1,…,8 
 


3. The controller has a prespecified structure
with 7 variable parameters (decision 
variables) 


 
Fig. 8(a) is a snapshot of the parallel coordinates representation of the eight objec-


tives after a number of generations. Note that the initial design specification that each 
Objective i must satisfy Goal i, i = 1…8 immediately imposes a strict ROI for the 
optimizer. Fig. 8(a) shows Pareto-optimal solutions obtained after running the opti-
mizer for a number of generations. Goal points for each of the Objectives are marked 
with an “x” in the plots. Since this example will exercise progressive articulation of 
preferences, these goal values will be subject to change during the design process. 


From the plot we can immediately see that Objectives 2 and 3 are in “harmony” 
and that the goal of Objective 7 is easily satisfied. There is also a suggestion that 
Objectives 4 and 5 might be in “harmony”. 


The sequence that follows makes certain assumptions about the flight control sys-
tem designer’s preferences but serves to provide an example of how the interactive 
preference articulation process can reduce the ROI, focus on key Objectives and, 
ultimately, identify an acceptable solution - in this case, a flight controller that satis-
fies initial design goals and is “optimal” with respect to the design objectives. 


The representation in Fig. 8(a) leads to the first interactive design decision: to re-
move Objective 3 from further consideration since it will benefit from improvements 
in Objective 2 and the latter is the more important of these two objectives. Objective 
7 is converted to be a constraint; its value is constrained to be at least as good as the 
“worst” solution for that objective shown in Fig. 8(a). The optimizer is now released 
to cycle through more generations. Fig. 8(b) is a snapshot of the parallel coordinates 
representation of the remaining six objectives under consideration, after further runs 
of the optimizer. 


A decision is made now to isolate the best solution so far with respect to Objective 
1, see Fig. 8(c). The designer knows that this objective has a strong cost impact on 
the final solution although modest improvements beyond the best case here are likely 
to have little further impact. A decision is now made to convert Objective 1 to be a 
constraint, where its value must be at least as good as the isolated solution. 


Fig. 8(d) is a snapshot of the parallel coordinates representation of the remaining 
five objectives under consideration after further runs of the optimizer. Now is the 
time to reduce the ROI still further. Isolating the best solution so far with respect to 
Objective 5, see Fig. 8(e), and converting this objective into a constraint in a similar 
way to that of Objectives 1 and 7 achieves this. Observing this isolated solution, a 







decision is also made that Objective 8 can similarly be converted to a constraint, 
provided that its value is at least as good as this solution. 


To arrive at Fig. 8(f), the goals of Objectives 2, 4 and 6 are progressively tightened 
until a very small set of solutions are obtained with little to discriminate them. At this 
point, the designer selects the best of these solutions with respect to Objective 2 
(there is a slight preference with regard to the importance of this objective) as the 
desired solution. 


4.2 Grid-enabled EMO 


The Grid computing paradigm is a recent development that enables complex system 
designers seeking to accelerate EMO solutions. The computational grid is a “hard-
ware and software infrastructure that provides dependable, consistent, pervasive, and 
inexpensive access to high-end computational capabilities.” [17]. Originally moti-
vated by “big science" with high-performance computing requirements, the Grid 
lends itself to EMO applications whose objective function evaluations are sufficiently 
compute-intensive. 


MOGA-G [25] is a grid-enabled framework for EMO.  For non-trivial objective 
functions, EMO is compute-intensive since designs normally require a relatively large 
number of evaluations of the objective function to produce a satisfactory result. Fur-
thermore, objectives arising in engineering designs often require considerable compu-
tational effort, for example involving nonlinear dynamic simulations.  The popula-
tion-based nature of evolutionary algorithms means that they are well suited for paral-
lelism using the master-worker paradigm (see Fig. 9). Here, EMO operations (rank-
ing, crossover, mutation, fitness sharing, etc.) are performed by the Master Node, and 
the evaluations of the objective function are executed in parallel on the Worker 
Nodes. 


 


Master Node  


Worker 1 Worker 2 Worker n


 
Fig. 9. Master-worker paradigm 


MOGA-G implements the master-worker paradigm in a Service Orientated Archi-
tecture (SOA).  This is the view of grid computing taken by the Globus Project 
(globus.org) and focuses on providing access to the resources of the grid via services.  
The main advantages of using this approach are: 


• suitability to the proposed form of parallelism, 
• flexibility of use, 
• interoperability with current (and, hopefully, future) standards, and 
• the modular nature of the Globus Toolkit. 







 
Using the SOA approach, the client acts as the master node and the service acts as 


the worker.  In the implementation of the MOGA-G framework (see Fig. 10) there are 
two different services.  One service exposes the operations of the multi-objective 
evolutionary algorithm to the client, and the other provides operations for evaluating 
the objective function. Compute-intensive function evaluations can therefore be 
“farmed” out to a user-specified number of computing nodes on the Grid, often geo-
graphically distributed.  
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Fig. 10. MOGA-G implementation 


The provision of these tools as services means that they can be accessed via the 
http protocol, and therefore via any device with a capable web browser such as a 
PDA Personal Digital Assistant (PDA).  This flexibility stems from the use of easily 
accessible protocols like http and the loosely coupled nature of the SOA approach. 
For computationally trivial objective functions the communication overheads in-
volved in executing the evaluations result in a decrease in performance.  However, 
the framework shows significant performance advantages for more computationally 
complex objective functions such as nonlinear dynamic simulations. 


4.3 Computational Steering of EMO-based Engineering Designs using a PDA 


Large-scale, long-running, complex optimization routines, such as EMO, are usually 
run non-interactively. Typically, in an engineering design, the user will set the initial 
EMO parameters and then execute the algorithm.  During this execution process, 
which can often take hours or days to complete, user interaction, if any, is limited to 
periodic interventions and the possible termination of the algorithm if it appears to 
have failed (for example, if the search process does not show convergence). When the 
execution is finished, the solutions produced by the algorithm are assessed and, if the 
design results are not satisfactory, the parameters of the algorithm are adjusted and it 







is run again.  This process clearly leads to a very inefficient use of resources, and 
possibly, ultimately, to unsatisfactory solutions. 


One solution to this problem is to allow the designer to interact with the optimiza-
tion routine during execution (referred to as computational steering). This would 
allow the designer to influence the efficiency of the algorithm and the quality of the 
solutions that it produces.  To enable interaction with the search process the user must 
be provided with an appropriate visualisation of the data so they can efficiently ex-
tract the relevant information [22].  


A PDA-based client [26] has been developed to control this steering process (see 
Fig. 11). The client has to be stateless so that when there is no interaction from the 
user the optimization routine will run in batch mode.  The PDA client provides an 
interface for observing the progress of the optimization routine (using a parallel coor-
dinate plot, for example) and adjusting the parameters of the algorithm, if necessary.  
Due to issues related to scarcity of memory and computational power, plus small 
display size, a minimal interface has been developed, while still providing the desired 
functionality.  It connects wirelessly to a web-service that allows the steering of the 
optimization algorithm.  This steering web-service exposes methods for obtaining the 
current values of the candidate solutions and adjusting the parameters of the algo-
rithm.  Further development will allow the steering service to ‘push’ information to a 
client if one is connected. 


 
 


     a     b     c 
 


Fig. 11. a) PDA client for steering an EMO-based design; b) a parameter adjustment 
screen; c) a preference articulation screen. 
 
Steering of EMO can be performed in two main ways.  Firstly, the internal parameters 
of the algorithm (such as crossover rate, mutation rate, etc.) can be adjusted from the 
steering client, see Fig. 11(b).  Adjusting these parameters can alter the behaviour of 
the algorithm, such as speeding up or slowing down convergence.  The second 
method of steering EMO is to alter the goal and priority information for the objec-
tives, see Fig. 11(c). This information is used by the preferability operator [15]. Re-
fining this preference information can help focus the algorithm on to a specific region 
of the non-dominated set.  In this manner it is possible to guide the search and reduce 
the number of candidate solutions in the manner described in section 4.1. 







5 Concluding Remarks 


A particular application of EMO has been studied: design of engineering systems. 
These systems are often complex and, invariably, consist of many objectives. Large 
numbers of objectives present special problems for MOEAs and certain approaches 
have been advocated. The use of goals and a preferability operator in a progressive 
articulation of preferences setting have been demonstrated to be effective in selec-
tively reducing the region of interest in a many-objective search, mitigating the pre-
vailing lack of selective pressure. Through this approach, methods of reducing the 
dimensionality of the problem have been introduced. A special visualisation approach 
has assisted this development. The mix of complex systems and objectives and popu-
lation-based search inevitably poses heavy computational demands on the design 
process and schemes have been described to address this. Grid computing affords a 
means of speeding up the search and remote computational steering is a valuable 
addition to the designer’s toolset. Many other schemes could have been described that 
reduce computational load by introducing means of approximating objective func-
tions. These range from response surface models, neural networks to a knowledge-
based Kriging model (see [20] for an interesting comparison of methods). Inevitably, 
these and other approaches which assist the design engineer in many-objective opti-
mization could not be included here but we trust that the sample of approaches de-
scribed serve to stimulate interest in this fascinating and challenging area of EMO 
research. 
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