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Abstract The performance of stochastic optimisers can be assessed ex-
perimentally on given problems by performing multiple optimisation
runs, and analysing the results. Since an optimiser may be viewed as
an estimator for the (Pareto) minimum of a (vector) function, stochastic
optimiser performance is discussed in the light of the criteria applicable
to more usual statistical estimators. Multiobjective optimisers are shown
to deviate considerably from standard point estimators, and to require
special statistical methodology. The attainment function is formulated,
and related results from random closed-set theory are presented, which
cast the attainment function as a mean-like measure for the outcomes of
multiobjective optimisers. Finally, a covariance-measure is defined, which
should bring additional insight into the stochastic behaviour of multiob-
jective optimisers. Computational issues and directions for further work
are discussed at the end of the paper.


1 Introduction


Stochastic optimisers, such as evolutionary algorithms, simulated annealing and
tabu search, have found many successful applications in a broad range of scientific
domains. However, only limited theoretical results concerning their performance
are available. Typically, simple versions of the algorithms and/or objective func-
tions must be considered in order to make the theoretical analysis possible,
which limits their practical applicability. As an alternative, the performance of
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stochastic optimisers may be assessed experimentally on given problems by per-
forming multiple, independent optimisation runs, and statistically analysing the
results.


Two main issues are raised by such an inferential approach. Firstly, the very
notion of optimiser performance must take into account the stochastic nature of
the optimisers considered, as well as any other relevant optimiser characteristics,
such as scale-independence, for example. As the same considerations apply to
statistical estimators, optimiser performance will be discussed in that light in
Section 2.


Secondly, specific statistical methodology may be needed, depending on the
notion of performance adopted, in order to analyse the data produced by the op-
timisation runs. In particular, multiobjective optimisers such as multiobjective
genetic algorithms (Fonseca and Fleming, 1995) produce sets of non-dominated
objective vectors, instead of a single optimal objective value per run. Dealing
with random sets introduces additional difficulties into the analysis. In Section 3,
the attainment function is formally defined, and shown to relate closely to es-
tablished results in random closed set theory. In particular, it is shown to be
a measure analogous to the common mean, which considerably strengthens its
role as a measure of multiobjective optimiser performance. Based on the same
theory, variance-like and covariance-like measures are introduced which should
provide additional insight into multiobjective optimiser performance.


Finally, computational issues are discussed. The paper concludes with a sum-
mary of the results, and a discussion of their implications for future work.


2 Inferential performance assessment


Optimiser performance can ultimately be understood in terms of the trade-
off between the quality of the solutions produced and the computational effort
required to produce those solutions, for a given class of optimisation problems.
Experimentally, optimiser performance may be assessed in terms of:


1. The time taken to produce a solution with a given level of quality (run time),
2. The quality of the solutions produced within a given time,


where time may be measured in terms of number of iterations, number of function
evaluations, CPU time, elapsed time, etc., and solution quality is defined by
the problem’s objective function(s). When considering stochastic optimisers, or
deterministic optimisers under random initial conditions, both run time, in the
first case, and solution quality, in the second case, are random, and the study of
optimiser performance is reduced to the study of the corresponding distributions.


Hoos and Stützle (1998) propose the estimation and analysis of run-time
distributions. It is worth noting that such time-to-event data may originate from
improper distributions, since an optimiser may fail to find a solution with the
desired quality in some runs. Also, the data may be subject to censoring whenever
the actual run-time of the optimiser exceeds the practical time-limits of the
experiment. Thus, the data may require special statistical treatment, of the kind







usually encountered in statistical survival analysis. Run-time distributions are
univariate distributions by definition, even if the problem considered involves
multiple objectives.


Fonseca and Fleming (1996) suggested the study of solution-quality distribu-
tions. The outcome of a multiobjective optimisation run was considered to be the
set of non-dominated objective vectors evaluated during that run. In the single-
objective case, this reduces to a single objective value per run, corresponding to
the quality of the best solution(s) found, and leads to the study of univariate
distributions. In the multiple objective case, however, solution-quality distribu-
tions are either multivariate distributions, in the case where optimisers produce
a single non-dominated vector per run, or set distributions, in the general case.


In this context, optimisers may be seen as estimators for the global (Pareto)
optimum of a (vector) function. Therefore, optimiser performance can be viewed
in the light of the performance criteria usually considered for classical statistical
estimators. However, it must be noted that optimisers are actually more than
simple estimators, as they must also provide the actual solutions corresponding
to their estimates of the function’s optimum.


2.1 The single-objective case


As discussed above, the outcomes of single-objective optimisers consist of a single
value per optimisation run, which is the objective value corresponding to the
best solution(s) found. Therefore, one is interested in the stochastic behaviour
of random variables X in R, and the performance of optimisers and that of point
estimators may be seen in parallel.


Good estimators should produce estimates which are close to the unknown
estimand, both in terms of location and spread. The same applies to the outcomes
of single-objective optimisers. Closeness in terms of location may be measured by
the difference between the mean or the median of the corresponding distributions
and the unknown estimand. This is known as the mean-bias and the median-bias,
respectively. Ideally, both should be zero. Possible measures of spread are the
variance and the interquartile-range, both of which should be small. Alternat-
ively, location and spread may be combined in terms of the mean-squared-error,
which should also be small.


Mean and variance are the first moment and the second centred moment of
a distribution. They are efficiently estimated by the arithmetic mean X̄ and the
empirical variance s2, respectively, when the underlying distribution is close to
normal. This is the case with many statistical estimators, at least for sufficiently
large sample sizes. The solution-quality distributions of optimisers, on the other
hand, can (and should) be very asymmetric. Moreover, objective-scale inform-
ation is ignored by some optimisers, which rely solely on order information.
Thus, estimating the median and the inter-quartile range through their empir-
ical counterparts might be preferred here, since quantiles are scale-invariant, i.e.
τ [γ(X)] = γ[τ(X)] for any quantile γ and any strictly monotonic transformation
τ (Witting, 1985, p. 23).







In addition to closeness considerations, point estimates and optimisation out-
comes should follow a type of distribution easy to deal with. In the case of estim-
ators, this is usually the normal distribution. Optimisation outcomes, however,
must follow a distribution which is bounded below (considering minimisation
problems). Its left end-point should be as close to the unknown minimum as
possible, and it should be right skewed, so that outcomes are likely to be close
to the minimum. Given that the outcome of a single-objective optimisation run
is the minimum of all objective values computed in the course of the run, ideal
solution-quality distributions would be extreme-value distributions, the estima-
tion of which has been vastly studied in the literature (see for instance Smith
(1987), Lockhart and Stephens (1994), and Embrechts et al. (1997)), both in a
parametric and in a semi/non-parametric setting.


The shape of a distribution can be assessed directly by estimating the cumu-
lative distribution function, FX (·), which completely characterises the underlying
distribution. One may also wish to study specific aspects of the distribution, such
as skewness (e.g. through the kurtosis) and tail behaviour (through end-point
and tail-index estimation, for example). For minimisation problems, left and
right-tail behaviour is related to best and worst-case performance, respectively.


2.2 The multiobjective case


When the optimisation problem is multiobjective, a whole front of Pareto-
optimal solutions in R


d is to be approximated, and the outcome of an optim-
isation run may be a set of non-dominated objective vectors. For simplicity, the
situation where the outcome of a run consists of a single objective vector shall
be considered first.


Single objective vectors The most common multivariate measure of location
is possibly the arithmetic mean, which is now a vector in R


d. If the unknown
estimand is also a vector, as is the case with multivariate point estimators, this
is clearly appropriate. The mean-bias of a point estimator, for example, can be
written as the difference between the mean of corresponding distribution and the
unknown estimand. Common measures of spread are the covariance matrix and
other measures related to it (Mood et al., 1974, p. 351ff). All formulate spread
in terms of deviation from the mean, which is a point.


In a multiobjective optimisation context, however, both bias and spread
should be understood in terms of Pareto fronts. Note that the mean-vector of
a number of non-dominated vectors could be located beyond a concave Pareto-
optimal front to be approximated, outside the collection of all possible outcomes!
Useful, alternative measures of bias and spread shall be given later in Section 3.


The shape of a multivariate distribution can be assessed through estima-
tion of the cumulative multivariate distribution function, even though this is
more challenging computationally than the corresponding univariate case. Again,
solution-quality distributions should be skewed in the sense that outcomes should
be likely to be close to the unknown Pareto front. Note that the Pareto front







imposes a bound on the support of solution-quality distributions. Multivariate
extreme-value theory is currently an active, but very specialised, area of research.


Multiple non-dominated objective vectors Outcomes are represented by
the random (point) sets X = {Xj ∈ R


d, j = 1, . . . , M} where the elements Xj


are non-dominated within the set and random, and the number M of elements is
random. Performance assessment oriented towards solution quality, as discussed
so far, must take into account the particular set-character of the distributions
involved.


Statistical estimators which produce a set of non-dominated vectors in R
d


when applied to a data-set are not known to the authors, but curve estimators,
seen as (continuous) random curve sets in R


2, could be related. Bias measures
for curve estimators ĝ(·), such as the average sum of squares


1


k


k
∑


i=1


[ĝ(Zi) − g(Zi)]
2


or the supremum-norm
sup


i=1,...,k


|ĝ(Zi) − g(Zi)|,


where the Zi ∈ R are either random or deterministic, might suggest suit-
able analogues for the performance assessment of multiobjective optimisers.
If the difference is replaced by the minimum Euclidean-distance between the
random-outcomes Xj and the Pareto-optimal front to be approximated, one ob-
tains measures similar in spirit to the generational distance, proposed by Van
Veldhuizen and Lamont (2000).


Unlike curve-estimators, the performance of multiobjective optimisers is ad-
ditionally affected by the variability of the outcomes within a set and by how
uniformly the outcomes are distributed along the final trade-off surface (Zitzler,
1999; Zitzler et al., 1999; Van Veldhuizen and Lamont, 2000). Hence, taking into
account the overall point-set character of the outcomes promises to be much
more informative than just relying on summary measures such as the above.
Random closed set theory (Matheron, 1975; Kendall, 1974) addresses precisely
this issue. Note that the outcome-set X is closed.


The mean of a random-set distribution has been defined in various set-valued
ways. One of the most popular is the Aumann-mean, which is defined as “the
set of expected selections, where a selection is any random vector that almost
surely belongs to the random set” (Cressie, 1993, p. 751). A possible estimator
for this mean of some (general) random closed set W is formulated as


W̄n =
1


n
(W1 ⊕W2 ⊕ . . . ⊕Wn),


which is the Minkowski average of n independent copies W1, . . ., Wn of W
(Cressie, 1993, p. 751). Note that the Minkowski addition of two sets A1 and A2


is defined as
A1 ⊕A2 = {a1 + a2 | a1 ∈ A1, a2 ∈ A2}.
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Figure 1. The estimated Aumann-mean for two sets of non-dominated points in R
2.


Clearly, the estimated Aumann-mean of the outcome set X of a multiobjective
optimiser contains many more elements than the observed sets themselves (see
Figure 1). In addition, the theoretical mean is typically a convex set, and does
not contain exclusively non-dominated elements. As for the vector-mean, some
elements might even be located beyond Pareto-optimal front to be approxim-
ated, if it is concave. The Aumann-mean is therefore unsuitable as a measure of
location in an optimisation context.


An alternative (empirical) mean-formula appears to be more useful. It is the
empirical covering function, which is defined for a (general) random-set W as


pn(z) =
1


n


n
∑


i=1


III{z ∈ Wi}, z ∈ R
d. (1)


The random sets W1, . . . ,Wn are independently and identically distributed like
W , and III{·} denotes the indicator function. The empirical covering function
has been applied in the area of “Particle Statistics” to describe the average
of possibly non-convex particles. Note that particles must be transformed into
sets first, by choosing “reasonable locations and orientations” for them (Stoyan,
1998).


The attainment function and its empirical estimator (Shaw et al., 1999; Fon-
seca and Fleming, 1996) turn out to be equivalent to the theoretical covering
function p(z) = P (z ∈ W) and its empirical counterpart. The definition of the
attainment function and additional theoretical results are given in the following
section.







3 The attainment function


3.1 Definition, interpretation, and estimation


The attainment function provides a description of the distribution of an outcome
set X = {Xj ∈ R


d, j = 1, . . . , M} in a simple and elegant way, using the notion
of goal-attainment. It is defined by the function αX (·) : R


d −→ [0, 1] with


αX (z) = P (X1 ≤ z ∨ X2 ≤ z ∨ . . . ∨ XM ≤ z)


= P (X E z).


The symbol “∨” denotes the logical “or”. The expression αX (z) corresponds
to the probability of at least one element of X being smaller than or equal to
z ∈ R


d, that is, the probability of an optimiser finding at least one solution
which attains the goal-vector z in a single run. Clearly, the attainment function
is a generalisation of the multivariate cumulative distribution function FX(z) =
P (X ≤ z). It reduces to the latter when M = 1, i.e. when the optimiser produces
only one random objective vector per optimisation run.


The attainment function simultaneously addresses the three criteria of solu-
tion quality in the multiobjective context pointed out by Zitzler and colleagues
(Zitzler, 1999; Zitzler et al., 1999), although not separately: a long tail (in the
multidimensional sense) away from the true Pareto front may be due to the loc-
ation of individual outcome elements in some runs (first criterion), to the lack of
uniformity of the elements within runs (second criterion), or to the small extent
of the outcome non-dominated sets (third criterion).


The attainment function can be estimated via its empirical counterpart


αn(z) =
1


n


n
∑


i=1


III{Xi E z},


the empirical attainment function, where the random sets X1, . . . ,Xn correspond
to the outcomes of n independent runs of the optimiser. Note the similarity to
the empirical covering function (1).


3.2 The link to random closed set theory


The attainment function can be written in terms of so called “hit-or-miss prob-
abilities”, which are of fundamental importance in random closed set theory.
For this, an alternative representation of the outcome set X = {Xj ∈ R


d, j =
1, . . . , M} with equivalent stochastic behaviour is chosen. It is the random (closed)
set


Y = {y ∈ R
d | X1 ≤ y ∨ X2 ≤ y ∨ . . . ∨ XM ≤ y}


= {y ∈ R
d | X E y}


(2)


describing the region in R
d which is attained by X (see Figure 2). Using this


alternative representation of X , the attainment function may be expressed as


αX (z) = P (z ∈ Y), z ∈ R
d.
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Figure 2. Outcome set X with non-dominated realizations x1, x2, and x3 and the set
Y (here as a realization).


Hence, the attainment function of the outcome-set X is identical to the covering
function of the associated random set Y . Denoting n independent copies of the
random set Y as Y1, . . . ,Yn one can rewrite the empirical attainment function
as


αn(z) =
1


n


n
∑


i=1


III{z ∈ Yi},


which shows the identity between the empirical attainment function of X and
the empirical covering function of Y (compare with (1)).


Finally, the (theoretical) attainment function of X is identical to the hitting
function or capacity functional (see e.g. Cressie (1993), Goutsias (1998)) of Y
with support restricted to the collection of all one-point sets {z} in R


d. Hence,
it can be expressed via hit-or-miss probabilities as


αX (z) = P
(


Y ∩ {z} 6= ∅
)


. (3)


In general, the hitting function is defined over all compact subsets K in R
d (a


definition for spaces more general than R
d is not of interest here). It fully charac-


terises the stochastic behaviour of a random closed set in R
d, and is of essential


importance in random closed set theory. Note that the attainment function does
not contain enough information to uniquely describe the stochastic behaviour of
X and of Y .


3.3 First-order moment concepts


The hitting function of a (general) random closed set W defined over all compact


subsets K in R
d is identical to the general first-order moment measure C


(1)
W


(·)
of the same set, i.e.


C
(1)
W


(K) = P
(


W ∩ K 6= ∅
)


.







The above definition generalises the notion of first-order moment of a binary
random field {b(z) | z ∈ R


d}, which is a collection of random function values
b(z) where b(z) can be 0 or 1. Here, the first-order moment (measure) is defined
as


P
(


b(z) = 1
)


= P
(


W ∩ {z} 6= ∅
)


where the random closed set W is related to the binary random field according
to W = {z ∈ R


d | b(z) = 1}. See Goutsias (1998).


As its formulation in (3) shows, the attainment function αX (·) is the first-
order moment measure of the binary random field derived from the random set
Y in (2) so that


Y = {z ∈ R
d | b(z) = 1}.


In other words, the attainment function αX (z) is the expected value of the binary
random variable III{Y∩{z} 6= ∅} = III{X E z} for all goals z ∈ R


d. Hence, it makes
sense to see the attainment function as a mean-measure for the set-distribution
of Y and, in the wider sense, also of the outcome-set X . Note again that the
empirical covering function is used as a mean-measure in particle statistics.


As remarked above, the attainment function reduces to the (multivariate)
distribution function FX (·) for singular sets X = {X}. The distribution function
is a mean-measure for the distribution of the random set Y = {y ∈ R


d | X ≤ y}
and, in a wider sense, also of X = {X}. Thus, FX (·) is a suitable alternative
for the mean-vector of single objective vectors as a measure of location, when
the optimisation problem is multiobjective and a whole Pareto-front is to be
approximated (see the discussion in 2.2).


A notion of bias may be constructed in terms of the difference between the
attainment function αX (z) associated with the optimisation outcomes and the
ideal attainment function αI(z) = III{z ∈ Y∗}, where Y∗ denotes the deterministic
region attained by the true Pareto-optimal set of the problem. The bias, in this
sense, is a function of a goal z, and indicates how far from ideal the optimiser is
regarding the attainment of that goal.


3.4 Higher-order moment concepts


When the first-order moment does not fully characterise a distribution, higher-
order moments can contribute with additional information about the stochastic
behaviour of a random variable/vector/set. Depending on the actual distribu-
tion, a finite number of higher-order moments may, or may not, be enough to
fully characterise it. In statistics, this problem is known as the problem of mo-
ments (Mood et al., 1974, p. 81).


The attainment function, as mentioned before, does not uniquely determine
the underlying set-distribution of Y (and of X ). In fact, it just addresses one
aspect of optimiser performance, which is location-closeness. Closeness of the
approximations in terms of spread (variability across runs) could be described
by the variance (second centred moment). The second-order moment (measure)







of Y


C
(2)
Y


({z1}, {z2}) = P
[


(


Y ∩ {z1} 6= ∅
)


∧
(


Y ∩ {z2} 6= ∅
)


]


= P
[(


X E z1


)


∧
(


X E z2


)]


(originally defined for the binary random field associated with Y , see above)
describes the probability of hitting two goals z1 and z2 simultaneously. Together


with the first-order moment C
(1)
Y


({z}), the attainment function, it can be used
to explain the dependence structure between the two binary random variables
III{Y ∩ {z1} 6= ∅} and III{Y ∩ {z2} 6= ∅}. The difference


C
(2)
Y


({z1}, {z2}) − C
(1)
Y


({z1}) · C
(1)
Y


({z2})


= P
[(


X E z1


)


∧
(


X E z2


)]


− αX (z1) · αX (z2)


can be seen as a form of covariance. If it equals zero, the two random variables are
uncorrelated. On the other hand, if the event of attaining a goal z1 is independent
from the event of attaining the goal z2 then the difference is zero (compare with
Goutsias (1998)). Dependencies between more than two goals can be explored
through higher-order moments of Y . Eventually one can hope to completely
characterise the distribution of the outcome-set X (through Y).


Setting z1 = z2 = z, one obtains


C
(2)
Y


({z}, {z})− C
(1)
Y


({z}) · C
(1)
Y


({z}) = αX (z) − α2
X (z) = βX (z)


which is simply the variance of the binary random variable III{Y ∩ {z} 6= ∅} =
III{X E z} for all z ∈ R


d. The corresponding empirical estimator would be


βn(z) =
1


n


n
∑


i=1


(


αn(z) − III{z ∈ Yi}
)2


,


which is rather similar to the variance estimator defined by Stoyan (1998) for
particle data.


4 Computational issues


The practical usefulness of the attainment function as a measure of multiobject-
ive optimiser performance is tied to the ability to estimate it from experimental
data. The computation of the empirical attainment function (EAF) in arbitrary
dimensions (i.e., number of objectives) is related to the computation of the mul-
tivariate empirical cumulative distribution function (ECDF), but computing the
multivariate ECDF efficiently is not considered an easy task, either (see Justel
et al. (1997)). In fact, whereas the univariate ECDF exhibits discontinuities at
the data points only, the multivariate ECDF exhibits discontinuities at the data
points and at other points, the coordinates of which are combinations of the







coordinates of the data points. As the number of dimensions increases, the num-
ber of points needed to describe the ECDF (and the EAF) may easily become
too large to store. Storing all relevant points may not always be necessary, how-
ever. The maximum difference between two EAFs, for example, can be computed
without that requirement.


Similar considerations apply, to an even greater extent, to the estimation of
the second-order moments. Work in this area is currently in progress.


5 Conclusions and future perspectives


The performance assessment of stochastic (multiobjective) optimisers was dis-
cussed in the light of existing criteria for the performance of classical statistical
estimators, and theoretical foundations for the attainment function were estab-
lished within the field known as random closed set theory.


The outcomes of multiobjective optimisers are random point sets in R
d de-


noted by X . Alternatively, they can be represented by (continuous) random
closed sets Y of a particular type with equivalent stochastic behaviour. Consid-
ering minimisation problems, the sets Y are unbounded towards +∞ in every
dimension, and are bounded below by the elements of X .


The attainment function of an outcome set X is a first-order moment measure
of the corresponding set Y , defined over all possible one-point sets in R


d (the gen-
eral moment measure is defined over all compact subsets in R


d). Comparing the
performance assessment of optimisers with that of statistical estimators showed
that the attainment function is a kind of mean measure of the outcome-set X .
As such, it does indeed address a very sensible aspect of the stochastic behaviour
of the optimiser, i.e. the location of the approximation. A suitable definition of
bias was also suggested, which allows the location of the approximation to be
seen with respect to the unknown Pareto-front.


The attainment function is a generalisation of the (multivariate) cumulative
distribution function to the case of random non-dominated point sets. Thus,
also the cumulative distribution function can be seen as a mean-measure for
the set Y describing the region in R


d which is attained by a single objective
vector X . In a wider sense, the cumulative distribution function can be seen as a
mean-measure of {X} itself. Regarding the empirical attainment function, it is
hoped that it preserves some of the good properties of the empirical cumulative
distribution function. Also, the attainment function makes it possible to compare
the performance of multiobjective optimisers regardless of whether they produce
one or many objective vectors per run!


The attainment function does not fully characterise the distribution of the
random sets X or Y . Extensions of the attainment function based on higher-
order moment concepts were introduced which could contribute with additional
information. They might eventually lead to the full characterisation of the distri-
butions considered. This perspective gives the attainment function an advantage
over performance measures such as the volume measure of the attained region
Y , which is related, for example, to the “size of the dominated space” in Zitzler







(1999, p. 43f). In Matheron’s (1975) theory, the distribution of a random closed
set is characterised by hit-or-miss events (on which the attainment function is
based) and “not by measures or contents” (Stoyan, 1998).


The results presented here are mainly of probabilistic nature. They are needed
to support inferential methodology such as the test procedure for the compar-
ison of optimiser performance used in Shaw et al. (1999), which is based on
the maximum difference between two empirical attainment functions and on a
permutation argument (see Good (2000)). Unlike the methodology proposed by
Knowles and Corne (2000), such a test does not depend on auxiliary lines or suf-
fer from multiple testing issues (see also Fonseca and Fleming (1996)). To a great
extent, inferential methodology which truly exploits the attainment function and
related concepts has yet to be developed.


Finally, the solution-quality view of optimiser performance could be combined
with the run-time perspective by considering time an additional objective to be
minimised. The outcome of an optimisation run would then be the set of non-
dominated objective-vectors, augmented with time, evaluated during the run.
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