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Abstract

Multiobjective Genetic Algorithms (MOGAs) are in-
troduced as a modification of the standard genetic
algorithm at the selection level. Rank-based fitness
assignment and the implementation of sharing in the
objective value domain are two of the important as-
pects of this class of algorithms. The ability of the
decision maker (DM) to progressively articulate its
preferences while learning about the problem under
consideration is one of their most attractive features.

Illustrative results of how the DM can interact with
the genetic algorithm are presented. They also show
the ability of the MOGA to uniformly sample regions
of the trade-off surface.

1 Introduction

There are many real world problems which cannot
satisfactorily be characterized by a single perfor-
mance measure. In the design of an engineering sys-
tem, for example, factors such as quality, economy
and actual performance may have to be compromised.
An optimization approach to such problems conven-
tionally requires an expert, the decision maker (DM)
to specify how important those measures, or objec-
tives, are relatively to one another, previous to the
the optimization process.

The solution to a multiobjective optimization prob-
lem, however, is generally not a single point. It con-
sists of a family of points, the Pareto-optimal set,
which describes the trade-offs available in the prob-
lem. Each point in this set is such that no improve-
ment can be achieved in any one objective without
degradation occurring in at least one of the remain-
ing. Therefore, Pareto-optimal points are also called
non-dominated, or non-inferior, solutions to the MO
problem.
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Non-inferior solutions have been obtained one at
a time by solving appropriately formulated non-
linear programming problems. Methods such as the
weighted sum approach, the e-constraint method and
goal programming have been used, of which the goal
attainment method, a particular case of goal pro-
gramming, has shown to be particularly useful in
Computer Aided Control System Design (CACSD) |1,
2, 3]. Still, an & priori articulation of preferences,
made through the precise expression of usually not
well known weights and/or priorities, obscures the
interplay between objectives and denies the DM a
better understanding of the problem.

Genetic algorithms maintain a population of solu-
tions and, therefore, can search for many non-inferior
solutions in parallel. Their ability to produce a set of
solutions in a single run, without recourse to strong
domain-specific assumptions and heuristics, confers
an immediate benefit over conventional MO meth-
ods. Earlier work on genetic algorithms for multiob-
jective optimization has been carried out by Schaf-
fer [4], Wienke et al. [5], Hajela and Lin [6]. Kur-
sawe [7] used evolution strategies.

2 Multiobjective selection
approaches

The main difference between a conventional GA and
a MOGA resides in the assignment of fitness. Once
fitness has been assigned to individuals, selection can
be performed and genetic operators applied as usual.

Methods that rely on the direct combination of per-
formance measures can easily be combined with a
GA. However, the GA can be used to address broader
formulations where objectives are kept separate dur-
ing the optimization process.

2.1 Vector Evaluated Genetic
Algorithms

In the Vector Evaluated GA (VEGA) approach [4],
the population is divided into as many subpopula-
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Figure 1: Multiobjective ranking

tions as there are objectives. Individuals in each
subpopulation are selected according to their perfor-
mance, measured in terms of the corresponding objec-
tive function. Finally, all subpopulations are shuffled
together and the algorithm continues with the appli-
cation of the genetic operators.

The VEGA approach is in fact equivalent to lin-
early combining all the objectives in a single fitness
measure and, therefore, cannot be expected to per-
form well in the case of a concave trade-off surface.
The fact that individuals tend to split into different
species, each of them particularly strong in one of
the objectives, was called speciation and is due to the
proportional selection approach.

2.2 Multiobjective ranking according
to dominance

The use of the concept of dominance in a ranking ap-
proach to multiobjective selection was proposed by
Goldberg (8, p. 201]. Ranking completely ignores how
objectives are scaled and can guarantee that, at each
selection step, all currently non-dominated individu-
als are given the same preference.

A suitable MO ranking scheme is described in [9)
and illustrated in Figure 1. Individuals are assigned
a rank which corresponds to how many individuals in
the current population dominate them. In this way,
non-dominated individuals are always assigned the
same rank, independently of the shape of the trade-off
surface.

Individual fitness can be derived in the following
way:

1. Sort population according to rank.

2. Assign fitnesses to individuals by interpolating
from the best to the worst in the usual way, ac-
cording to some function, usually linear but not
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necessarily.

. Average the fitnesses of individuals with the
same rank, so that all of them will be sam-
pled at the same rate. This procedure keeps the
global population fitness constant while main-
taining appropriate selective pressure, as defined
by the function used.

3 Niche-formation methods
for MOGAs

When used on a multimodal function, the genetic al-
gorithm is expected to converge to its global opti-
mum. In the case where there are two or more equiv-
alent optima, the GA is known to drift towards one of
them in a long term perspective. This phenomenon of
genetic drift has been well observed in nature and is
due to the populations being finite. It becomes more
and more important as the populations get smaller.

Niche formation methods such as sharing [10, 11]
prevent genetic drift by penalizing individuals which
are too close to one another. The population then
tends to distribute itself around the existing optima,
balancing performance with relative distance, and
forming stable sub-populations, or niches.

Sharing has conventionally been applied in the de-
cision variable and in the genotypic domains. In the
case of multiobjective optimization, it can also be ap-
plied in the objective value domain, in order to pro-
mote the uniform sampling of the trade-off surface.

Due to the definition of non-dominance, an upper
bound for the hyper-area of a bounded trade-of sur-
face can be calculated, which enables one to sensi-
bly estimate the sharing parameter ohare. Mating
restriction can also be implemented, by defining the
corresponding parameter Omating-

4 Progressive articulation of
preferences with the MOGA

A simple Pareto-based ranking scheme, as described
earlier, would make the GA try to evolve a discretized
version of the whole trade-off surface of a given prob-
lem. However, the GA works with a finite population
and the full solution to the MO problem may simply
be too large to be sampled accurately by a reduced
number of individuals.

Since the designer is usually looking for a single
compromise solution to the MO problem, a very pre-
cise knowledge of areas of the trade-off surface which,
according to some higher level knowledge, express bad
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Figure 2: A General Multiobjective Genetic Optimizer

compromises is of no utility. When such higher-level
information exists and can be expressed, for example
in terms of goals to be attained, it should be used to
influence selection.

In this case, the utility (or fitness, in GA terminol-
ogy) of a candidate solution is no longer necessarily
constant across the whole Pareto set. It is now an,
often subjective, value which depends on the DM.
When nothing is known about what a good compro-
mise is, the concept of Pareto optimality allows for an
objective rating of individual performance. As differ-
ent points are evaluated, the DM acquires knowledge
about the trade-offs present in the problem and is in
a better position to refine its requirements. The in-
teraction between the DM and the GA is illustrated
in Figure 2.

4.1 Goal-directed multiobjective

ranking

The multiobjective ranking scheme presented earlier
can be extended to take goal information into ac-
count, by including this information when comparing
pairs of individuals. The main idea is that degrada-
tion in those objectives which satisfy their goals is
acceptable provided it results in real improvement in
the remaining objectives and it does not go beyond
the goal values.

This concept can be implemented by modifying the
relational operator used to compare individuals, as
proposed in [9]. Individual ranks are still computed
as one plus the number of individuals in the current
population which are preferable to the individual un-
der consideration.

This approach allows the DM to direct the search
to the compromise region of interest without impos-
ing any restrictions on the search space. Decisions are
made solely at the objective value level and only re-
flected in the decision variable domain via the process
of evolution.
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5 Some experimental results

The MOGA, as briefly presented here, is currently
being applied to the step response optimization of a
Pegasus gas turbine engine. A full non-linear model
of the engine [12], implemented in SIMULINK [13], is
used to simulate the system, given a number of ini-
tial conditions and the controller parameter settings.
The GA is implemented in MATLAB [14, 15], which
means that all the code actually runs in the same
computation environment.

The logarithm of each controller parameter was
Gray encoded as a 14-bit string, leading to 70-bit long
chromosomes. A random initial population of size 80
and standard two-point reduced surrogate crossover
and binary mutation were used. The initial goal val-
ues were set according to a number of performance re-
quirements for the engine. Four objectives were used:

t, The time taken to reach 70% of the final output
change. Goal: ¢, < 0.59.

t, The time taken to settle within +10% of the final
output change. Goal: ¢, <1.08s.

os Overshoot, measured relatively to the final out-
put change. Goal: os < 10%.

err A measure of the output error 4 seconds after the
step, relative to the final output change. Goal:
err < 10%.

A typical trade-off graph, obtained after 40 gener-
ations with the initial goals, is presented in Figure 3
and represents the accumulated set of satisfactory
non-dominated points. At this stage, the setting of a
much tighter goal for the output error (err < 0.1%)
reveals the graph in Figure 4, which contains a sub-
set of the points in Figure 3. Continuing to run the
GA, more definition can be obtained in this area (Fig-
ure 5). Figure 6 presents an alternative view of these
solutions, illustrating the arising step responses.



Figure 3: Trade-off Graph for the Pegasus Gas Tur-
bine Engine after 40 Generations (Initial Goals)
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Figure 4: Trade-off Graph for the Pegasus Gas Tur-
bine Engine after 40 Generations (New Goals)

Figure 5: Trade-off Graph for the Pegasus Gas Tur-
bine Engine after 60 Generations (New Goals)
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Figure 6: Satisfactory Step Responses after 60 Gen-
erations (New Goals)

6 Concluding remarks

Genetic algorithms are a powerful optimization tool
which is particularly appropriate to multiobjective
optimization. The ability to sample trade-off sur-
faces in a global, efficient and directed way is very
important for the extra knowledge it provides. An
illustrative example which shows how the DM can in-
teractively guide the GA by specifying a goal vector
was given.

At this stage, the development of a front-end
and suitable visualization tools which cater for easy
human-machine interaction is necessary. Its devel-
opment under MATLAB is now even more attractive,
given the new graphic capabilities of version 4.
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