45

Multiobjective Genetic Algorithms Made Easy: Selection,
Sharing and Mating Restriction

Carlos M. Fonseca and Peter J. Fleming

University of Sheffield, UK

1 Introduction

The populations of current approximations
maintained by Genetic Algorithms (GAs)
and other evolutionary approaches confer
the ability to concurrently search for multi-
ple solutions to given problems. This is par-
ticularly relevant in engineering, where mul-
tiple and often conflicting objectives seldom
define optimal solutions uniquely. However,
this ability is overlooked in most current ap-
plications of GAs in engineering, and GAs
are used simply for their generality and ro-
bustness as an alternative to, but in the
same spirit of, more restrictive conventional
optimizers. Different objectives are thus an-
alytically combined into a single function
prior to optimization, and the GA applied.

This paper aims to illustrate how an
existing GA can be modified and set up
to explore the relevant trade-offs between
multiple objectives with a minimum of ef-
fort. While Pareto and Pareto-like ranking
schemes [1, 2] can be easily implemented,
current guidelines on the associated set-up
of techniques such as sharing and mating re-
striction [3, 2] are intricate and/or based on
more or less rough assumptions about the
cost landscape, making them impractical.
However, if fitness sharing is reinterpreted
as a technique involving the estimation of
the population density at the points defined
by each individual by so-called kernel meth-
ods [4], the setting of the sharing parame-
ter comes to depend only on the size and
current distribution of the population, and
not on the problem. Kernel density estima-
tion [4], a technique from statistics and data
analysis, will be introduced and shown to
find direct application in sharing and mat-
ing restriction, simplifying implementation
and avoiding the introduction of any more
tunable parameters in the GA formulation.

After a brief introduction to multiobjec-
tive optimization and a discussion of pref-
erence articulation in GAs, the main differ-
ences between single-objective and multiob-
jective GAs are highlighted, and the conver-
sion of an existing GA into a multiobjective
GA described by means of an example. Sim-
ple experimental results are presented to-
wards the end of the paper.

2 Multiobjective
optimization and pref-
erence articulation

Most engineering problems are character-
ized by several non-commensurable and of-
ten competing objectives to be optimized.
Due to the trade-offs involved, such prob-
lems usually have no unique, perfect solu-
tion. Instead, they admit a set of equally
valid, or non-dominated, alternative solu-
tions, which is known as the Pareto-optimal
set [5]. These solutions are such that im-
provement in any objective can only be
achieved at the expense of degradation in
other objectives, and can only be discrim-
inated on the basis of expert knowledge of
the problem. This may include the under-
standing of the importance of certain objec-
tives relative to others or the need to meet
given specifications, for example.

Although non-dominated solutions can
generally be obtained through optimization,
expressing informal design preferences in
terms of a sufficiently well behaved cost
function, as expected by many conventional
optimizers, is not always easy. In particular,
unimodality requirements imply that all de-
cisions must be made prior to optimization.
If the solution produced by the optimizer is
not satisfactory, the cost function must be
changed and the process repeated.

Genetic Algorithms in Engineering Systems: Innovations and Applications
12-14 September 1995, Conference Publication No. 414, © IEE, 1995



On the other hand, Genetic Algorithms
only require that the cost (or, alternatively,
the utility) of each individual be determined
with respect to the current population so as
to permit the broad ranking of the popu-
lation. Individuals need only be rated bet-
ter, similar, or worse than others, effectively
allowing the decision maker to delay other-
wise uninformed decisions until sufficient in-
sight into the problem has been gained. At
that point, the decision maker can adjust
the current decision strategy, as the popula-
tion evolves.

3 How do MOGASs differ
from simple GAs?

In single-objective GAs, individual perfor-
mance, as measured by the objective func-
tion, and individual fitness are so closely re-
lated that the objective function is some-
times referred to as the fitness function. The
two are, however, not the same. In fact,
whereas the objective function characterizes
the problem and cannot be changed at will,
assigned fitness is a direct measure of in-
dividual reproductive ability (i.e., expected
number of offspring), forming an integral
part of the GA search strategy.

This distinction becomes all the more im-
portant when performance is measured in
terms of a vector of objective values, be-
cause fitness must remain a scalar. In this
case, fitness assignment is a more elaborate
process. For the sake of generality, the nec-
essary scalarization of the objective vectors
may be viewed as a multicriterion decision
making problem involving a (finite) number
of candidates, the individuals in the popu-
lation [2, 6]. Individuals are thus assigned a
measure of their utility indicating whether
they perform better, worse, or similar to
others, and possibly also how much better
or worse. If the utility measure conveys only
ordinal information, then fitness must be as-
signed through ranking. Otherwise, rank-
ing or proportional fitness assignment may
be used. This setup is general enough to
include problems where individual perfor-
mance must be assessed through palrwise
comparison 7], such as when evolving game-
playing programs.

Since the solution of a multicriterion de-
cision making problem depends only on the
vectorial performance of the available candi-
dates and on the preferences of the decision

46

f2

f1

Figure 1: Pareto ranking

maker, and not on any subsequent search or
optimization, utility is also essentially differ-
ent from fitness. In particular, techniques
such as sharing affect the individuals’ fit-
ness, but not their utility or cost.

3.1 Scale-independent decision

strategies

In the total absence of information concern-
ing the relative importance of the objec-
tives, Pareto-dominance is the only basis
on which an individual can be said to per-
form better than another. Therefore, non-
dominated individuals must all be consid-
ered best performers, and thus be assigned
the same cost [1], e.g., zero. Deciding on the
performance of dominated individuals is a
more subjective matter. One may, for exam-
ple, assign them a cost proportional to how
many individuals in the population domi-
nate them (Figure 1), in which case non-
dominated individuals would also be treated
as desired. This 1s essentially the Pareto-
ranking scheme proposed in [2].

Another popular Pareto-ranking scheme
[1], also known as non-dominated sorting [8],
consists of removing the non-dominated in-
dividuals (still ranked zero, for ease of com-
parison) from contention, finding the non-
dominated individualsin the remaining pop-
ulation and assigning them rank 1, and so
forth, until the whole population is ranked.
Both of these approaches guarantee that
non-dominated individuals are all ranked
best, and that individuals are consistently
assigned better ranks than those they dom-
inate. However, the first ranking scheme
does appear to be easier to interpret and
analyze mathematically [6].

When goal and/or priority information



is available for the objectives, it may be-
come possible to discriminate between some
non-dominated solutions. For example, if
degradation in objective components which
meet their goals does not go beyond the
goal boundaries, and results in the improve-
ment of objective components which do not
yet satisfy the corresponding goals, then it
should be accepted. Similarly, in a dual pri-
ority setup [6], it is only important to im-
prove on high priority objectives (i.e., con-
straints) until the corresponding goals are
met, after which improvement should be
sought for the remaining objectives. These
considerations have been formalized by the
authors in terms of a transitive relational
operator (preferability), based on Pareto-
dominance, but which selectively excludes
objectives according to their priority and to
whether or not they meet their goals.

For simplicity, only one level of priority
will be considered here. The full, multiple
priority version of the preferability operator
is described in detail in [6]. Consider two
objective vectors u and v and a goal vector
g. Also, let the smile & and the frown 2 de-
note the components of u which meet their
goals and those which do not, respectively.
Assuming minimization, one can write

u u u u
uw<gT A us>g”,

where the inequalities apply component-
wise. This is equivalent to

ViE\g,uiggi A Vie}-l\,ui>g¢
where u; and g; represent the components
of u and g, respectively. Then, u is said to
be preferable to v given g if and only if

u u u u
(u™ < vV {(u’“ =VvT)A

% 6% v® e v}

where a p< b denotes a dominates b. In
other words, u will be preferable to v if and
only if one of the following is true:

1. The violating components of u domi-
nate the corresponding components of
V.

2. The violating components of u are
equal to the corresponding components
of v, but v violates at least another
goal.

47

Assigned fitness

1 (

1 '
ey '
' Mt N
i b i
1 i '
i e '
i i '
V He §
4 o) !
' it '
' Wt '
' it ‘
L s

4 2 1 o o 0 0 o0
Rank values

Figure 2: Rank-based fitness assignment

3. The violating components of u are
equal to the corresponding components
of v, but u dominates v as a whole.

Like Pareto-dominance, this relation can be
used to rank the individuals in a population
by one of the methods described above.

3.2 Cost to fitness
and selection

mapping

Once cost has been assigned, selection can
proceed in much the usual way. Suitable al-
ternatives include rank-based cost to fitness
mapping [9] followed by stochastic universal
sampling [10] (or even roulette wheel selec-
tion) and tournament selection also based
on cost, as reported in [11, 12].
Exponential rank-based fitness assign-
ment is illustrated in Figure 2. Individuals
are sorted by cost (the values are those from
Figure 1) and first assigned fitness values
according to an exponential rule (narrower
bars). Then, a single value of fitness is de-
rived for each group of individuals with the
same cost, through averaging (wider bars).

3.3 Sharing

Although all preferred individuals are as-
signed the same fitness, their actual number
of offspring, which must obviously be an in-
teger, may differ. The imbalance can easily
accumulate with the generations and result
in the population drifting towards an arbi-
trary region of the the trade-off surface, a
phenomenon known as genetic drift [13]. In
addition, recombination and mutation may
be less likely to produce individuals in cer-
tain regions of the trade-off surface (e.g., the



Fitness sharing Kernel density estimation

Kernel function
Smoothing parameter (h)
Density estimate

Sharing function
Niche size (oshare)
Niche count

Table 1: The analogy between sharing and
kernel estimation

extremes) than in others, causing the popu-
lation to cover only a small part of it.

Fitness sharing [14], originally introduced
to promote the sampling of multiple fit-
ness peaks, helps counteract genetic drift
by penalizing individuals due to the pres-
ence of other individuals in their neighbour-
hood. The niche count of each individ-
ual is initially set to zero and then incre-
mented by a certain amount for every in-
dividual in the population, including itself.
The contribution of an individual to an-
other’s niche count is dictated by a shar-
ing function, which is a function of their
mutual distance in genotypic, phenotypic,
or objective space. Raw fitness values are
then weighted by the inverse of the niche
counts and subsequently normalized by the
sum of the weights, before selection. In this
way, the total fitness in the population is
re-distributed (and thus shared) by the in-
dividuals. Fitness can also be shared only
between individuals with the same raw fit-
ness, by computing partial weight totals and
performing the normalization within each
group of such individuals [2].

The use of fitness sharing has been re-
stricted by the difficulty found in determin-
ing the appropriate niche size, i.e., how close
together individuals should be for degra-
dation to occur. Current guidelines ei-
ther make assumptions about the number
and distribution of peaks in the cost land-
scape [3], or rely on the estimation of the
(maximum) size of the trade-off surface
based on the properties of the Pareto-set [2].

However, niche count computation {ex-
plained above) turns out to be remark-
ably similar to the kernel density estima-
tion methods [4] known to statisticians. Ba-
sically, density estimates are computed in
exactly the same way as niche counts, ex-
cept for a constant factor. The parallel
is drawn in Table 1. As in sharing, the
choice of the smoothing parameter is ulti-
mately subjective, but guidelines have been
developed for certain kernels, such as the
standard normal probability density func-
tion and the Epanechnikov kernel. The lat-

48

ter can be written as [4]

K.(d/h) =
:{ T n+ 21— (d/h)?) ifd/h <1

otherwise
where n 1s the number of decision variables,
¢, is the volume of the unit n-dimensional
sphere and d/h is the normalized Euclidean
distance between individuals. The param-
eter h is the smoothing parameter analo-
gZous 1o Ogshare. Note that this kernel is,
apart from the constant factor —%c;l(n +2),
a particular case of the family of power law
sharing functions proposed by Goldberg and
Richardson [14].

According to Silverman [4], a good choice
(approximately optimal in the least mean
integrated squared error sense if the popu-
lation follows a multivariate normal distri-
bution) of the smoothing parameter for the
Epanechnikov kernel K.(d) is

[TV

h = [BC;l(TLﬁ-4)(2\/;)”/N]1/("+4>

for a population with N individuals and
identity covariance matrix. Populations
with arbitrary sample covariance matrix S
can simply be ‘sphered’ (or normalized) by
multiplying each individual by a matrix R
such that RRT = S~!. This implies that the
niche size (which depends on h and S) can
be constantly, and automatically, adapted
to suit the population at each generation,
regardless of what the cost function may be.

These results can be used directly to per-
form sharing in Euclidean decision variable
spaces. It might be possible to develop
guidelines based on the same principles for
other types of spaces.

3.4 Mating restriction

Mating restriction consists of biasing the
way in which individuals are paired for re-
combination {3]. As the population dis-
tributes itself along the trade-off surface, re-
combining arbitrary pairs of individuals may
conduce to the formation of a large number
of unfit offspring, or lethals. To address this
issue, mating can be restricted, where pos-
sible, to individuals within a given distance
Omate from each other. Following the com-
mon practice of setting omate = Tshare, indi-
viduals may be allowed to mate only if they
lie within a distance h from each other in
the ‘sphered’ space used for sharing.



3.5 Interactive
optimization and changing
environments

As the GA population evolves and trade-off
information is acquired, the decision maker
may wish to see the population concentrate
on a smaller region of the trade-off surface,
or even back off and move on to a totally
different region. This can be achieved sim-
ply by changing the goals supplied to the
GA at the cost assignment stage, which in
turn affects the ranking of the population
and modifies the cost landscape. The GA
must then be able to respond quickly to such
preference changes.

Introducing a small percentage (10-20%)
of random individuals at each generation
has been shown to make the GA more re-
sponsive to sudden changes in the fitness
landscape [15]. This technique can be easily
incorporated in a multiobjective GA.

4 Putting it all together

The implementation of a multiobjective GA
incorporating the techniques described in
the previous section will now be considered.
Matlab [16] pseudo-code for a simple, aggre-
gating, GA is given in Figure 3. Individual
chromosomes (the rows of matrix Chrom) are
initially generated at random, and then de-
coded, producing the corresponding vectors
of decision variables, in matrix DVar. Eval-
uation is made in two steps: objective vec-
tors are computed first (rows of 0bjV), and
then aggregated to produce a scalar mea-
sure of cost for each individual (the compo-
nents of vector Cost). Fitness is assigned
through ranking, with given selective pres-
sure SP. Individuals are selected using SUS
(stochastic universal sampling), recombined
and mutated, and a new generation begins.
Functions multobjfun and aggregate are
written by the user, the former defining the
problem and the latter implementing a fixed
decision strategy, such as a weighted sum.
The remaining functions implement the GA
itself, and are not far from those found in
the current version of the GA Toolbox for
Matlab [17].

Preference-based multiobjective ranking
(rankprf in Figure 4) comes as a drop
in replacement for aggregate which may
take two optional parameters: a goal vector,
GoalV, and a vector indicating the priority

Chrom = creatpop(NIND, LIND);

while Gen < MAXGEN
DVar = decode(Chrom);
0bjV = multobjfun(DVar);
Cost = aggregate(DbjV);
Fitn = ranking(Cost, SP);

Ix = sus(Fitn);

SelCh = Chrom(Ix, :);

SelCh = xover(SelCh, XOVR);
Chrom = mutate(SelCh, MUTR);

Gen = Gen + 1;
end

Figure 3: A simple aggregating GA

of the objectives, PriorV (not used in the
example).

Niche counts ShrC are computed using
a kernel estimator based on the Epanech-
nikov kernel. DVar is passed to the function
twice because it constitutes simultaneously
the sample data and the points where the
population density needs to be estimated.
The estimation function also returns the de-
fault smoothing parameter Sigma (h) and
a matrix R such that DVar*R has identity
covariance matrix, both of which are used
at a later stage in mating restriction. The
ranking function now uses ShrC to perform
sharing between individuals with equal cost
as an integral part of the fitness assignment
procedure,

Since a small number NImmigr of individ-
uals in the new population will consist of
random immigrants, only NIND-NImmigr in-
dividuals are selected from the old popula-
tion. Mating restriction is implemented by
reordering the individuals in the population
so that consecutive pairs of chromosomes in
SelCh correspond, where possible, to indi-
viduals within a required distance Sigma of
each other in normalized decision variable
space. (The parental population is rotated
and scaled according to the same transfor-
mation R used for niche count computation).
The random immigrants are appended to
the population after mutation, having to
survive selection before being allowed to re-
combine. This will be most likely whenever
the fitness landscape changes and the GA
population is no longer adapted to it.

As can be easily seen, the only additional
GA parameter in this second version of the



Chrom = creatpop(NIND, LIND);

while Gen < MAXGEN

DVar = decode(Chrom);
0bjV = multobjfun(DVar);
Cost = rank_pri(0bjV,GoalV);
[ShrC, Sigma, R] .

= epanechnikov(DVar,DVar);
Fitn = ranking(Cost, SP, ShrC);
Ix = sus(Fitn, NIND - NInmigr);

SelCh = Chrom(Ix, :);

SelDV = DVar(Ix, :);

PermIx = pairup(SelDV * R, Sigma);

SelCh = SelCh(PermlIx, :);

SelCh xover (SelCh, XOVR);

Chrom { mutate(SelCh, MUTR):
creatpop(NImmigr, LIND) J;

Gen = Gen + 1;
end

Figure 4: A multiobjective GA

GA is the number of random immigrants to
be inserted in the population at each gen-
eration, the setting of which is not critical.
Random immigrants make the GA more ex-
ploratory and thus more responsive to sud-
den preference changes, as long as a bal-
anced amount of exploitation can still be
maintained. In particular, selective pres-
sure should probably be increased slightly,
to compensate for the fact that the insertion
of random immigrants into the population
reduces the expected number of offspring of
the best individual by NImmigr/NIND.

5 Experimental results

Several applications of multiobjective GAs
have been reported in the literature, mainly
related to control engineering. In an in-
dependent study, Whidborne et ol [18]
have recently compared a multiobjective GA
based on the preferability relation to other
interactive multiobjective approaches such
as the Method of Inequalities, and noted the
tendency for the MOGA to produce solu-
tions very similar to each other. However,
they also pointed out that the GA did not
include sharing or mating restriction.

To show how sharing and mating restric-
tion together can significantly contribute to
the performance of the GA, consider the
minimization of the following two objec-

50

tives:
filess . an) =

1—exp (~ i(wi - 1/\/5)2>
fame, . 2a) = -

1 — exp (~ ;(zi + 1/—\/5)2)

which are defined for any number of decision
variables n. The minimum of f; is located
at (z1,...,zn) = (1/3/n,...,1/y/n) for all
n, and that of f, islocated at (zy,...,2n) =
(=1/\/n,...,—1/y/n). Due to the symme-
try of the two functions, the Pareto-optimal
set clearly corresponds to all points on the

line defined by

Ti=ey= =, A —1/v/n<z <1/v/n

A simple genetic algorithm with a popula-
tion size of 100 individuals, binary chromo-
somes, reduced-surrogate shuffle crossover
and binary mutation was used to approach
this problem for n = 8. Decision variables
were Gray-encoded as 16-bit strings in the
interval [—2,2) and concatenated to form
the chromosomes. Multiobjective ranking
was performed as described and illustrated
earlier in Figure 1.

Running this GA for 100 generations,
without sharing or mating restriction, shows
how the population tends to concentrate
on a small region of the trade-off surface
(Figure 5). Non-dominated individuals are
marked with filled circles (o) and other indi-
viduals with empty circles (o). The solid line
represents the best approximation to the
real trade-off surface (dashed line) known as
a consequence of the GA run.

If, however, sharing and mating restric-
tion are implemented in the decision vari-
able domain as in the example in Figure 4,
the population is able to remain distributed
across the whole trade-off surface. This can
be seen in Figure 6.

The population can also be driven to sam-
ple a given region of the trade-off surface by
setting goals accordingly. Figure 7 shows
the distribution of the population after set-
ting the goals and running the GA for an-
other 50 generations. Most of the popula-
tion can be seen to be concentrated in the
preferred region of the trade-off surface, as
desired.



Generation 100

1,..,x8)

f2(x1,
T

y2

0 Of5 1
y1=11{x1,..,x8)

o Non-dominated individuals
o Dominated individuals
— Best trade-off found (cumulative)
— — Actual Pareto set

Figure 5: Multiobjective GA without shar-
ing or mating restriction

Generation 100

. )

f2(x1

y2

0.5
y1=f1(x1,..,x8)
e Non-dominated individuals
o Dominated individuals
~— Best trade-off found (cumulative)
— — Actual Pareto set

Figure 6: Multiobjective GA with sharing
and mating restriction

51

Generation 150

0.5
y1 =f1(x1,...,x8)
e Preferable individuals
o Non-preferable individuals

— Best trade-off found (cumulative)
— — Actual Pareto set

Figure 7: Zooming in on a region of the
trade-off surface by setting goals accordingly

An application of the multiobjective GA
described here in the design of controllers
for gas turbine engines is reported in [19].

6 Concluding remarks

Although multiobjective genetic algorithms
are still an area undergoing development,
their application to real world problems is
becoming increasingly feasible. In combi-
nation with a suitable graphical user inter-
face, multiobjective GAs can become a pow-
erful, and possibly interactive, decision sup-
port tool, allowing a decision maker to learn
about the problem before committing to a
final decision.

Due to the multi-solution nature of most
multiobjective problems, fitness sharing is
needed to maintain diversity in the popula-
tion. However, guidelines on how to set the
sharing parameter have been too dependent
on suppositions about the fitness landscape
which are difficult to make in any practi-
cal setting. Understanding sharing as some-
thing similar to density estimation can make
the use of sharing, and thus that of multi-
objective GAs, more practical. More elab-
orate density estimation techniques, such
as adaptive kernel density estimation [4],
may further improve the quality of sharing.
On the other hand, nearest-neighbour es-



timators may be easier to extend to non-
Euclidean spaces, and thus be more appro-
priate to ordering and grouping problems,
for example.

Finally, multiobjective evolutionary opti-
mization is a much broader area than re-
ported here, and the interested reader is re-
ferred to [20] for an up-to-date overview.

Acknowledgement The authors wish to
acknowledge the support of the UK En-
gineering and Physical Sciences Research
Council (Grant GR/J70857).

References

1]

2]

[3]

D. E. Goldberg, Genetic Algorithms in
Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

C. M. Fonseca and P. J. Fleming, “Genetic
algorithms for multiobjective optimiza-
tion: Formulation, discussion and gener-
alization,” in Genetic Algorithms: Proc.
Fifth International Conference (S. For-
rest, ed.), pp. 416-423, Morgan Kaufmann,
1993.

K. Deb and D. E. Goldberg, “An inves-
tigation of niche and species formation in
genetic function optimization,” in Proc.
Third International Conference on Genetic
Algorithms (J. D. Schaffer, ed.), pp. 42-50,
Morgan Kaufmann, 1989.

B. W. Silverman, Density Estimation for
Statistics and Data Analysis. Chapman
and Hall, 1986.

A. Ben-Tal, “Characterization of Pareto
and lexicographic optimal solutions,” in
Multiple Criteria Decision Making Theory
and Application (G. Fandel and T. Gal,
eds.), vol. 177 of Lecture Notes in Eco-
nomics and Mathematical Systems, pp. 1-
11, 1980.

C. M. Fonseca and P. J. Fleming, “Mul-
tiobjective optimization and multiple con-
straint handling with evolutionary algo-
rithms I: A unified formulation,” Research
report 564, Dept. Automatic Control and
Systems Eng., University of Sheffield,
U.K., Jan. 1995.

V. R. R. Uppuluri,
niques based on stochastic paired compar-
isons,” in Multiple Criteria Deciston Mak-
ing and Risk Analysis Using Microcom-
puters (B. Karpak and S. Zionts, eds.),
pp- 293-303, Springer-Verlag, 1989.

N. Srinivas and K. Deb, “Multiobjective
optimization using nondominated sorting
in genetic algorithms,” Evolutionary Com-
putation, vol. 2, Fall 1994. To appear.

“Prioritization tech-

52

18]

(10]

1]

12)

(13]

[14]

(18]

J. E. Baker, “Adaptive selection methods
for genetic algorithms,” in Proc. First In-
ternational Conference on Genetic Algo-
rithms (J. J. Grefenstette, ed.), pp. 101~
111, Lawrence Erlbaum, 1985.

J. E. Baker,
ficiency in the selection algorithm,” in
Grefenstette [21], pp. 14-21.

S. E. Cieniawski, “An investigation of
the ability of genetic algorithms to gen-
erate the tradeoft
objective groundwater monitoring prob-
lem,” Master’s thesis, University of Illinois
at Urbana-Champaign, 1993.

B. J. Ritzel, J. W. Eheart, and S. Ran-
jithan, “Using genetic algorithms to solve
a multiple objective groundwater pollution
containment problem,” Water Resources
Research, vol. 30, pp. 1589-1603, May
1994.

D. E. Goldberg and P. Segrest, “Finite
markov chain analysis of genetic algo-
rithms,” in Grefenstette [21], pp. 1-8.

D. E. Goldberg and J. Richardson, “Ge-
netic algorithms with sharing for multi-

modal function optimization,” in Grefen-
stette [21], pp. 41-49.

“Reducing bias and inef-

curve of a multi-

] J. J. Grefenstette, “Genetic algorithms for

changing environments,” in Parallel Prob-
lem Solving from Nature, 2 (R. Méanner
and B. Manderick, eds.), pp. 137-144,
North-Holland, 1992.

The MathWorks, Inc., MATLAB Reference
Guide, Aug. 1992,

] A. Chipperfield, P. Fleming, H. Pohlheim,

and C. Fonseca, “Genetic algorithm tool-
box user's guide,” Research report 512,
Dept. Automatic Control and Systems
Eng., University of Sheffield, U.K., July
1994.

J. F. Whidborne, D.-W. Gu, and I
Postlethwaite, “Algorithms for the method
of inequalities — a comparative study,” in
Proc. American Control Conference, 1995.
A. J. Chipperfield and P. J. Fleming, “Gas
turbine engine controller design using mul-

tiobjective genetic algorithms,” in Submat-
ted to GALESIA, 1995.

C. M. Fonseca and P. J. Fleming, “An
overview of evolutionary algorithms in
multiobjective optimization,” Evolution-

ary Computation, vol. 3, Spring 1995. To
appear.

J. J. Grefenstette, ed., Proceedings of
the Second International Conference on

Genetic Algorithms, Lawrence Erlbaum,
1987,



