

Multi-Criteria Evaluation of Interesting Dependencies according to a Data
Mining Approach


Dominique Francisci
I3S Laboratory,


University of Nice-Sophia Antipolis,
06903 Sophia Antipolis - Cedex France


francis@i3s.unice.fr


Martine Collard
I3S Laboratory,


University of Nice-Sophia Antipolis,
06903 Sophia Antipolis - Cedex France


mcollard@unice.fr


Abstract- This paper addresses the problem of the good-
ness of dependency rules extracted by mining data. Our
approach is experimental and based on the idea that
model quality has to be measured according to several
criteria of quality such as accuracy, interestingness or
domain-dependent criteria. Most works on model qual-
ity are focusing on one criterion at a time only and do
not take into account multiple factors simultaneously. A
few works combine different measures in weighted ex-
pressions. In order to combine multiple measures, we
have first realized a comparative study which highlights
the relative contribution of different factors and reveals
trade-offs among some of them. This situation suggests
looking in the rules search space for compromises rather
than for best rules which may not exist. Thus we show
that a multi-objective evolutionary approach is able to
reveal interesting rules which are ignored by standard
solutions.


1 Introduction


Data Mining may be defined as the discovery of unexpected
relationships by analyzing such large volumes of data
that automated processes are necessary. The extracted
knowledge is expressed as a model or a pattern like sets
of rules, neural networks or clusters for instance. As
mentioned in [4] a model refers to a global structure that
covers all the data while a pattern makes a summary or
description of a locally restricted region of the data space.
Numerous data mining applications are more concerned
with the search of local patterns rather than global models.
In this paper, we focus on rule-like patterns A → B where
A and B are conjunctions of attribute-value terms Att op a,
Att is an attribute, a is a value and op ∈ {=, <, >,≥,≤}.
In a data mining process, it is quite frequent to search for
rule based models since they are easily understandable by
end users and have been found to be useful concepts for
learning interpretable knowledge from data. One essential
issue is to measure the interestingness of the dependency
link between the premises A and the consequent B.
Standard algorithms currently use basic measures for rule
selection. But the specific goal of data mining has led
to the definition of more specific indices which address
different facets of rule goodness. In the following, we give
an overview of standard algorithms and propose measures
of interestingness.


1.1 Standard methods


Numerous algorithms have been proposed for rule in-
duction from data in the machine learning literature.
Tree induction or separate-and-conquer rule learning for
instance are used for prediction in data mining too. They
provide classification rules which right-hand side attributes
are predefined and represent the class. These methods
generally search for general prediction rules covering many
data rather than specific rules. They aim to discover a set
of rules that form an accurate classifier and this model is
intended to apply to all the data. Thus the quality of an
extracted model is evaluated according to its accuracy that
is the ratio of correct classifications the entire set of rules
makes on previously unseen examples.
As mentioned above, in frequent practical data mining ap-
plications, rules are rather considered individually outside
the model they would form together. The goal is often
to discover interesting patterns which are not only valid
but novel, unobvious or surprising. These “good” patterns
may not cover a large range of data. Criteria for goodness
evaluation are measured on a rule individually rather than
collectively.
One technique for generating a set of individually inter-
esting and useful rules is to build a classification tree and
then to evaluate each of the branches as individual rules
according to specific targeted quality criteria. But some
rules produced by standard classification make no sense
to the user since they use biases and specific heuristics to
generate the classifier. Thus this kind of technique may
loose interesting rules as shown in [19].
On the other hand, so called association rules are among
the most popular representation for local patterns in data
mining. They originated in applications involving market-
basket analysis where frequent relationships between
products are expected to be discovered. In these rules the
target is not predefined and the right-hand side of such a
rule may be a conjunction of attribute-value terms. An
association rule may be seen as a probabilistic statement
about the co-occurrence of events which satisfy statistical
constraints on the database like minimum Support and
minimum Confidence. The Support is defined as
p(A ∩ B) and Confidence represents the conditional
probability p(B/A).







1.2 Dependency rules


Classification and association rules are two important
techniques in data mining. Both of them are essential in
practical applications. Besides this syntactical similarity,
A. Freitas [8] highlights essential trade-offs between
the two patterns. However while they refer to different
concepts, one can observe they are merged for data mining
applications. For instance, [2] proposes to integrate both
kinds of rules in building classifiers which are more fitted
to data mining objectives. This approach uses association
rule mining techniques for classification tasks. The most
popular association algorithm APriori [1] is adapted for
this task. According to this technique, rules are selected
if they satisfy minimum Support and Confidence which
are not standard criteria for classification rules. Thus these
rules predict a class-attribute value and they are considered
individually. In [19] the system incorporates ideas from
tree induction and rule learning. It is designed in order to
search for classification rules for financial applications. The
evaluation of rules comes in two flavors: number of errors
on unseen data for the entire model, and Confidence and
Support for individual rules. It is argued that in financial
problems, it is unlikely that a model could be built that
classifies all cases accurately. The system is designed to
find models, even with few useful rules and with high
accuracy. Rule goodness is determined on the basis of
Support, Accuracy, Entropy or some combination of
such metrics on individual rules.
In this paper, we follow a similar approach: we study
the interestingness and usefulness of rules which are
considered individually. Furthermore, we look at rules
as dependency links and we consider either a rule which
right-hand side is a class-attribute or not. The framework is
restricted to rules whose target is one attribute-value term
only for convenience and simplicity. Our objective is to
extend this study to more general rules. We do not make a
distinction between classification rules or association ones
since we are only interested in measuring the quality of
the dependency link between premises and consequent of a
rule.


1.3 Interestingness of dependencies


Simple criteria for rule selection like Accuracy for entire
model or Support and Confidence for individual rules
are known to be insufficient for extracting useful and
interesting information. For global classifier quality,
and particularly for medical applications or information
retrieval, Sensitivity and Specificity give more precision
on the model quality. While usefulness and interestingness
may have different meanings, one can distinguish objective
and subjective approaches. Subjective criteria generally are
based on a comparison of learned rules against an a priori
knowledge on data.
Objective measures take their origin from the proposition
of G. Piatetsky-Shapiro [14] who observed the weakness
of the Confidence factor and defined the rule interest.


Numerous other measures have been proposed for eval-
uating the quality of the extracted information: the Lift
factor [12], the JMeasure of Goodman and Smyth [10],
the measure defined by Sebag and Schoenauer [16], the
Conviction [15]. It has been observed [4] that some of
them are quite identical since they rank rules in the same
manner. But they may provide a complementary approach
since their definition was motivated in order to fill the gap.


1.4 A multi-criteria issue


Note that if standard algorithms are involved, the rule
selection according to multiple criteria is made as post-
processing the set of rules extracted first by the algorithm.
This approach may result in undiscovered interesting rules.
Few non-standard approaches have been proposed in order
to apply a multiple criteria selection. For instance [11] and
[5] use a genetic algorithm (GA) which fitness combines
multiple factors in a weighted sum or a product. Note
that these propositions may ignore rules which are good
compromises according to different criteria.
In the context which we consider, i.e. the data mining and
particularly the extraction of rules, few papers related to
this metaheuristic in multi-objective optimization exist. For
instance in [13], the authors suggest multi-criteria based
metrics that can be used as comparators for an objective
evaluation of data mining algorithms. They take into
account all the available positive and negative features of
these algorithms to construct a unique evaluation metric.
Indeed, most existing studies only use the Accuracy
rate to compare algorithm performances. In [6], the
author highlights the problem of feature selection which
can be considered as a multi-objective problem since it
generally evolves feature subset cardinality minimization
and performance maximization. He uses the typical
example of ROC analysis, where performance is assessed
in terms of classifier Specificity and Sensitivity.
The author proposes an extension of the multi-objective
evolutionary algorithm NPGA to handle Specificity
and Sensitivity of classifiers. In the same way in [9],
the authors use a GA to find the best subset of features
that minimize both the error rate and the size of the tree
discovered by a tree induction algorithm. Finally, we
can quote [3] which use a GA in the marketing context,
to select the customers likely to answer to a mailing request.


1.5 Our approach


In this paper, we argue that the opportunity of varying
and combining different quality criteria is an essential
advantage in a data mining process and we propose a evo-
lutionary multi-objective method to address this problem.
Our approach is experimental and based on the idea that
rule quality is a multi-criteria issue as detailed above. We
have chosen different interestingness measures and we
experimentally have shown that they may be not correlated
and even present trade-offs.







The paper is organized as follows. Section 2 presents a
review of existing measures of interestingness. In Section
3, measures are compared by pair. Then Section 4 is
devoted to the discovery of best compromises via a genetic
algorithm which implements a multi-objective optimiza-
tion. Section 5 summarizes and concludes the paper.


2 Interestingness Measures : positive correla-
tions and trade-offs


In this section, we detail measures of quality proposed in
the data mining literature. These measures may refer both
to global model quality and individual rule quality. Even
if they were defined for specific shapes like classifiers or
associations, they take all sense to evaluate dependencies
A → B as shown in [11] and [7].


2.1 Measures of interestingness


Classifier models expressed from tree induced from a
training set are evaluated according to their success rate
on a test set i.e. the rate of truly classified examples in
the test set. The accuracy of a rule A → B is defined in
terms of probability by p(A ∩ B) + p(¬A ∩ ¬B). The
sensitivity and specificity criteria were defined for a
classifier in order to give a more precise idea of its perfor-
mance. They specially take sense when class distribution
is unbalanced. For a rule A → B, sensitivity becomes
p(A∩B)/p(B) or p(A/B) and evaluates the coverage of B
by A while the specificity becomes p(¬A∩/¬B)/p(¬B)
or p(¬A/¬B) and evaluates the coverage of ¬B by ¬A.
The choice of a quality measure depends on the specific
facet of interestingness we want to favor. For instance, in
a classification task for a medical diagnostic test, the main
objective is to reduce the error which consists in predicting
a patient in class “healthy”. In this case, experts from
the domain may consider it is more essential to have best
results in the classification of examples of class “patient”
even if examples from class “healthy” are classified as
“patient”. This means to optimize sensitivity rather than
specificity. In other domains, one may want to optimize
both sensitivity and specificity simultaneously.
For association rules, maximizing support allows to select
frequent patterns, but confidence has proved its limits in
filtering them since it favors numerous rules which are most
often irrelevant. Indeed the weakness of the confidence
factor p(B/A) is to ignore p(B). Most interestingness
measures generally compare the a priori probability
p(B) and the a posteriori probability p(B/A). For
instance, the lift measure [12] defined as p(B/A)/p(B)
and the Rule Interest measure from G. Piatetsky-Shapiro
defined as |A| (p(B/A) − p(B)) measures the departure
from independence between A and B. As remarked by
[15], they measure the co-occurrence of A and B since
they are symmetric. The conviction [15] defined by
p(A)p(¬B)/p(A ∩ ¬B) is not symmetric and is related
to the logical implication A → B which means ¬A ∨ B.
M. Sebag and M. Schoenauer [16] defined the measure


p(A ∩ B)/p(A ∩ ¬B) which measures the ratio between
positive and negative examples. The JMeasure [10]
defined as p(A ∩ B)log(p(A ∩ B)/p(A)p(B)) + p(A ∩
¬B)log(p(A ∩ ¬B)/p(A)p(¬B)) by combining a factor
of generality and a factor of goodness-of-fit quantifies the
information content of the rule. The rule quality is not
reduced to one criterion only. Furthermore, the goodness
cannot be specified in an absolute way, it depends on
specific goals of the search process. For instance one
can search for large rules which cover a whole class. On
the contrary it may be useful to find small rules which
quality involves rarity and precision. Thus the questions
we address here are : how to combine multiple criteria
simultaneously ? Is there equivalence among measures ?
What is the best solution for finding the best rules according
to multi-criteria ?


2.2 Correlations and Trade-offs


Some measures are known to be strongly correlated partic-
ularly if the search space is reduced by fixing p(B). This is
the case when we search for classification rules on one given
class. For instance rule Interest and support rank rules
in the same order if p(B) is constant. The three measures
lift, conviction and sebag have the same property. For a
given class, sensitivity and specificity represent comple-
mentary indices of coverage. One can recall that these two
factors are plotted in ROC curves in order to evaluate the
performances of a classifier against positive and false nega-
tive examples.
Since trade-offs may exist, it is quite obvious that stan-
dard techniques which are not designed for multi-objective
optimization may ignore good compromises. In order to
make an experimental study, we have identified several
cases where trade-offs are apparent. To highlight correla-
tions among couples of measures, we have plotted sets of
points where each point maps a rule measured according to
two measures. We have studied randomly generated rules
which are expected to represent the search space. Result-
ing graphs below show three situations of trade-off. Thus a
multi-objective optimization method has been implemented
on these three cases to elicit best compromises. Thereafter
the presentation focuses on these cases. Case 1 is related
to criteria Sensibility (Se) and Specificity (Sp) which
characterize the precision and the non-coverage of negative
examples and are good indicators of rule quality in diagnos-
tic test and document retrieval. In case 2, we study two com-
mon factors which are Support (Supp) and Conviction
(Conv). Finally case 3 shows the relative behavior of the
Rule Interest (RI) and the Sebag coefficient.
Experiences have been built on data files from the UCI
repository [18]. Randomly generated rules are useful for
estimating the density of the rule search space according to
values of criteria but they obviously may not give a com-
plete vision of it. For each data file up to 105 rules were
generated.
In this paper, for simplicity reasons, we consider rules
A → B where B is one attribute-value term only.







On Figure 1, we can observe results for the couple
(Sensitivity, Specificity) on the Vote data set. This data
set contains 435 descriptions of politician candidates ac-
cording to 17 categorical attributes. These data were used
for classification. The class attribute politic class takes
value “democrat ′′ or “republican ′′. By observing Figure
1 it seems that there is not any optimal rule : not any rule is
plotted in the upper right corner. This graph suggests an ap-
parent trade-off between the two measures on this dataset.
A solution to obtain best compromises may be to optimize
the product on the rule set discovered by a standard algo-
rithm.


Figure 1: Random rules evaluated according to Sensitivity
and Specificity


Rule Interest as a symmetric criterion measuring the
departure from independence between A and B and Sebag
[16] which is sensitive to the negative examples, present an
apparent tradeoff too like we can see in Figure ??. The
graphical representation highlights the correlation between
the two measures when RI is negative. We can observe that
Sebag is closed to zero in that case ; indeed, in this situation
p(A ∩ B) tends to be small and thus it tends to be less than
p(A ∩ ¬B).
The Conviction index introduced in [15] to replace the
confidence is used in an extension of the two-steps
APriori algorithm as follows : first the frequent itemsets
of minimum support value are selected and then itemsets
with high conviction value are kept. However, we can
see on Figure 2, from a particular value of support, for
instance 0.3, some solution would be discovered because
of their relative high support value, but some others solu-
tions with high conviction value would be ignored by an
APriori − like algorithm. For instance, so called small
disjuncts which are rules covering a small number of ex-
amples, but may be good according to their conviction
value would not be discovered. This is a typical issue to
address with a multi-criteria optimization method.


The Rule Interest [14] as a symmetric criterion mea-
suring the departure from independence between A and B
and the Sebag coefficient [16] which is sensitive to the neg-
ative examples, presents the same aspect like we can see in
Figure 3. Indeed, for a particular value of Sebag, there


Figure 2: Random rules evaluated according to Support
and Conviction


exist several good solutions according to Rule Interest.


3 Multi-Criteria Selection Rule


This section presents the results we have obtained with
an evolutionary optimization method. We have applied
the NSGA (Non dominated Sorting Genetic Algorithm)[17]
which allows to get a good diversity into solutions.


Figure 3: Random rules evaluated according to Sebag fac-
tor and Rule Interest


3.1 Multiobjective optimization


The multiobjective optimization or Pareto optimization can
be defined mathematically as follows :
each solution Xi is associated with an evaluation vector
F = (F1(Xi), ..., FN (Xi)) where N is the number of ob-
jectives. One solution X1 is said to dominate another so-
lution X2 if ∀j : Fj(X1) ≥ Fj(X2) and ∃k : Fk(X1) >
Fk(X2), where Fj and Fk are respectively the j-th and k-
th objectives, i, j ∈ {1, ..., N}. Neither solution dominates
the other if ∃m1, m2 : Fm1


(X1) > Fm1
(X2), Fm2


(X2) >
Fm2


(X1). The Pareto front is defined as the set of non dom-
inated solutions. First, the goal is to approximate as best as
possible the Pareto front.
The objective functions represent in our case the measures







of extracted rules and the variables Xi represent the rules.
Genetic algorithms (GA) are related to the mechanisms of
natural evolution, that mainly is to say selection, reproduc-
tion and mutation. They describe the way individuals in a
population evolve in response to their environment over suc-
cessive generations and are selected according to the princi-
ple of the survival of the most fitted.
GAs belong to the metaheuristic family built to solve dif-
ficult optimization problems. From the data mining point
of view, they have mainly the advantage to allow evaluating
rules globally while other methods like decision tree induc-
tion are evaluating one term at a time. Furthermore, one of
the main difference of the GA compared to standard opti-
mization algorithms, is that these algorithms use a popula-
tion of solutions instead of a single solution. If a problem
has several optima, a GA is able to capture these different
local optima and this is done during a single run.
In the implementation we present in this paper, each indi-
vidual represents either the antecedent of a rule or the entire
rule. In the first case the dependency rule is simple : its
conclusion part is fixed at the beginning of the execution
and represents a goal attribute value. Thus, in that case to
discover several rules predicting different goal attribute val-
ues, it is necessary to run the GA several times, one for each
value. In the second case, the GA is searching for solutions
in the whole search space of dependency rules.


The algorithm we present here is based on the NSGA
(Non dominated Sorting Genetic Algorithm) algorithm pre-
viously described in [17] . It uses the Pareto dominance to
determine the fitness of an individual as follows : each indi-
vidual has a rank which represents the number of individu-
als in the current population which dominate it. This rank is
defined as follows for an individual i : rank(i) = 1 + p(i)
where p(i) is the number of individuals which dominate the
i individual. Non dominated individuals are assigned the
rank 1 and dominated individuals have a greater rank. The
individuals of same rank belong to a same category which is
assigned to a virtual fitness value equals to 1/P with P the
Pareto rank of this category. To obtain a diversity of indi-
viduals in this category (or ecologic niche), the fitness value
of individuals is modified in fitness/mi where the bias mi


is equal to
∑K


j=1 P (d(i, j) and P (d(i, j)) = 1 − d(i,j)
disInf


if d(i, j) < disInf and 0 otherwise. K is the number
of individuals in the considered category and d(i, j) is the
Euclidian distance (based on the two measures considered)
between individuals i and j. The distance disInf is the
distance of influence and defines the radius of the ecologic
niche.


The GA aims at finding the best approximation of the
Pareto set of solutions. Ideally, this set must be contained
in the final population. Nevertheless, this result is not
guaranteed. Indeed, the stochastic nature of the GA via
mutation operator may lead non dominated individuals
to disappear. On the other hand, the extent of the Pareto
front is not necessary known a priori and, therefore, the
population dimension in consequence cannot be determined
precisely. These two phenomena suggest archiving non
dominated solutions found during the GA execution. When


a non dominated solution is met by the GA due to a
crossover or a mutation, it is stored into the archive. Finally
solutions presented to the user are those which are present
in the archive, they give an approximation of the Pareto
front but they may not be solutions contained in the final
population as usually.


3.2 Rule Extraction with the multi-objective GA


This section presents our approach towards the individuals
encoding, the genetic operators and the fitness function. It
shows the results we have obtained by the implementation
of this method and its application on several databases.


3.2.1 Individuals representation


For rule extraction we have chosen the Michigan approach
of GA : an individual codes a single rule. An individual
genome represents the conjunction of attribute-value terms
corresponding to the rule antecedent. The coding is a po-
sition coding consisting in a sequence of genes ranked in
the same order than corresponding attributes in the data
set. Each condition is coded by a gene and consists in an
attribute-value Att op a where Att is an attribute, op is one
of the operators =, <, >, ≤ or ≥ and a is a value of Att.
Each gene is composed with a Boolean field which indicates
if the gene is active or not, that is to say if the condition is
present in the rule. So, while individuals have the same
genotype length, associated rules are length-variable. The
algorithm can handle integer, real or categorical variables.
For a categorical attribute, the only operator is = and for
integers and reals available operators are =, <, >, ≤ and
≥.


3.2.2 Genetic operators


The crossover we used consists first in randomly choosing
a site. Then it exchanges the genetic material located after
this site in both individuals. The site is chosen to avoid
the generation of empty individuals. The mutation operator
modifies the rule length. Either, it specializes a rule by the
adjunction of a condition if at least one gene is not active,
or it generalizes it by deleting a condition. The adjunction
of a condition is made by randomly generating an operator
and a value belonging for the mutated gene. The selection
we used is the tournament selection with two individuals.


3.3 Experimental results


We have chosen to apply the multi-objective GA on
(Sensibility, Specificity), (Sebag, Rule Interest) and
(Support, Conviction) couples. The GA has been tested
on the V ote dataset presented in section 2.2. The GA
parameters have been widely tested according to data sets
characteristics. For instance, on the V ote dataset, we
have retained : 200 individuals in the population, 100
generations, and a distance of influence equal to 0.05. The
crossover probability is 0.8 and the mutation probability is
0.05.







In the following graphs are representing a rule space.
Each graph contains three types of information: we have
generated 105 random rules for a representation of the
search space and we have plotted rules discovered by the
multi-objective GA and rules discovered by a tree induction
algorithm. The following parameters have been used in
the GA for each graph : population size : 200 individuals,
number of generations : 50, crossover rate : 0.8, mutation
rate : 0.0625 and distance of infl uence : 0.05.


The figure 4 shows resulting rules obtained with the
multi-objective GA. In this first example, we can observe
discovered rules on the Pareto frontier for the Sensitivity
and Specificity measures. For instance, the following rule
with (Se = 0.87, Sp = 0.96) is on this frontier:


IF (physician-fee-freeze=y) AND (el-salvador-aid=y) AND
(duty-free-exports=n) THEN Class=republican


We can observe on this graph too that a tree induction algo-
rithm is not able to find the same compromises since it only
optimize one criterion.
Figures 5 and 6 present respectively the results obtained
with the multi-objective GA for the (Sebagfactor, Rule
Interest) and (Support, Conviction).


Figure 4: Sensitivity against Specificity. Cross : random
method - Triangles : GA - Rhombus : Tree induction


Most rules obtained by the multi-objective GA are
not discovered by the tree induction algorithm. Here
are specific rules among these ones. The first one with
(Se = 0.89286, Sp = 0.96255) generalizes several rules
resulting from tree induction. The second one whose
coordinates are (Se = 0.95833, Sp = 0.95131) does not
share any common term with tree induction resulting rules.


IF (physician-fee-freeze=y) AND (duty-free-exports=n)
THEN class=republican


IF (physician-fee-freeze=y) AND (crime=y) THEN
class=republican


The rules found by tree induction have a Specificity
index equal to 1. They have also a very low Sensitivity
while rules found with the GA are compromises. For in-
stance, if we consider the context of the medical domain
and particularly the diagnostic of diseases, the rules found
by tree induction are not the best..


Figure 5: Sebagfactor against Rule Interest. Cross :
random method - Triangles : GA - Rhombus : Tree induc-
tion


Figure 6: Support against Conviction. Cross : random
method - Triangles : GA - Rhombus : Tree induction


4 Conclusion


In this paper, we have proposed a multi-criteria approach
for extracting rules according to different criteria of
goodness. Indeed, in order to answer to the main objective
of data mining, it becomes essential to be able to select
useful information. Usefulness means not only interesting-
ness, surprisingness but precision, comprehensibility and
domain-dependent qualities too. Even only one of these
qualities, interestingness, may be appreciated differently
according final objectives. Numerous criteria and measures
have been defined and implicitly considered as sufficient.
Some of them are known to be equivalent and others







are complementary. The comparative study we have led
on different measures has shown several phenomena of
tradeoffs between them. According to these observations
we have addressed the problem of selecting interesting rules
as a multi-criteria optimization problem. A multi-objective
evolutionary algorithm has been chosen since this kind of
stochastic methods is able to explore large search spaces
and allows defining easily different evaluation functions.
Thus this approach emphasizes the idea that interestingness
cannot be defined in an absolute way. It allows to easily
parameterize the rule search process and to make varying
the parameter values according to different and multiple
goals. Next steps on this work will focus on combining
this preliminary multi-objective approach which provides a
selection of objectively interesting patterns with subjective
interestingness filters.
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