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Abstract. The aim of this work is to propose and validate a new multi-
objective optimization algorithm based on the emulation of the immune
system behavior. The rationale of this work is that the artificial im-
mune system has, in its elementary structure, the main features required
by other multiobjective evolutionary algorithms described in literature.
The proposed approach is compared with the NSGA2 algorithm, that
is representative of the state-of-the-art in multiobjective optimization.
Algorithms are tested versus three standard problems (unconstrained
and constrained), and comparisons are carried out using three different
metrics. Results show that the proposed approach have performances
similar or better than those produced by NSGA2, and it can become a
valid alternative to standard algorithms.

1 Introduction

Many real world applications involve the simultaneous optimization of various
and often conflicting objectives. Traditional approaches for solving the Multi-
objective Optimization Problem (MOP) aggregate all objectives into one func-
tion, then a single objective problem is solved by using standard optimization
techniques. Several optimization runs with different parameter settings are per-
formed, in order to achieve a set of solutions.

In the middle of the ’80s Schaffer published the first attempt to solve the
MOP by using evolutionary algorithms [1, 2]. The use of population-based tech-
niques is preferable with respect to aggregating approaches, because multiple
solutions can be found in one single run. From this work, several Multi Objective
Evolutionary Algorithms (MOEAs) have been proposed in the last two decades.
Coello Coello maintains an updated Evolutionary Multiobjective Optimization
repository (http://delta.cs.cinestav.mx/~ccoello/EMOO/) in which the ref-
erences of almost all the proposed algorithms can be found.

Despite the considerable efforts to extend Evolutionary Algorithms for solv-
ing MOPs, very few direct approaches to the MOP using the emulation of the
Immune System behavior have been proposed. Most of the work concerns the
use of Artificial Immune System (AIS) as a tool for maintaining diversity in the
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population of a Genetic Algorithm (see for example [3]) or for handling con-
straints in Evolutionary Algorithms [4]. In literature, one of the first reported
approaches which uses AIS for solving MOPs is proposed in [5], but also in this
case AIS is coupled with GA. Recently Coello Coello and Cruz Cortes develop
a MOEA directly based on the emulation of the immune system [6]. The result-
ing algorithm, called Multiobjective Immune System Algorithm (MISA), can be
considered the really first attempt to solve the general MOP directly with AIS.
The performances of MISA have been improved in a further work of the same
authors [6].

In this paper we propose a new approach for solving MOPs, based on the
multimodal AIS optimization algorithm proposed by De Castro and Timmis [7].
The aim is to show that AIS intrinsically include some common features required
by classical MOEAs, and that the extension to multiobjective optimization can
be done by introducing only few modifications into the standard algorithm.
The resulting algorithm is then tested on standard problems and results are
compared with the ones obtained by NSGA2 algorithm [8], universally considered
as representative of the state-of-the-art in multiobjective optimization.

2 Multi Objective Optimization Problem

Generally the MOP requires to optimize the vector function

f (x) = [f1 (x) , f2 (x) , . . . , fm (x)]
T

(1)

subject to inequality and equality constraints

gi (x) ≥ 0 i = 1, 2, . . . , k

hi (x) = 0 i = 1, 2, . . . , p
(2)

where x = [x1, x2, · · · , xn]
T
∈ Ω is the vector of decision variables and Ω is the

feasible region. Because of the presence of several objective functions, the aim of
a MOEA is to find compromise solutions rather than a single optimal point as
in scalar optimization problems. In this case the trade-off solutions are usually
called Pareto optimal solutions.

Considering, without loss of generality, a minimization problem for each ob-
jective, it is said that a decision vector xP dominates another vector xQ (denoted
by xP ≺ xQ) if

1. xP is no worse than xQ in all objectives, AND
2. xP is strictly better than xQ in at least one objective.

Mathematically:

∀i = 1, . . . ,m fi (xP ) ≤ fi (xQ) ∧ ∃i = 1, . . . ,m fi (xP ) < fi (xQ) (3)

If there is no solution xQ that dominates xP , then xP is a Pareto optimal

solution. The set P

P , {x ∈ Ω : ¬∃x∗ ∈ Ω,f (x∗) ≺ f (x)} (4)
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of all feasible Pareto optimal decision vectors is referred to as Pareto optimal

set, while the corresponding image PF

PF ,

{

f (x) = [f1 (x) , . . . fm (x)]
T

: x ∈ P
}

(5)

of objective vectors is called Pareto optimal front. Pareto optimal solutions are
also called noninferior or nondominated solutions.

In this work we distinguish between the actual Pareto front, termed PFtrue,
and the final set of nondominated solutions returned by a MOEA, termed
PFknown as defined in [9].

3 Algorithm

3.1 Artificial Immune system: brief overview

The main characteristic of the Immune System (IS) is that it must fight against
external intruders (nonself) but must be tolerant with body cells (self). The
main characters of IS are

– antigen (Ag): any substance capable of triggering an immune response;
– antibody (Ab): molecule (lymphocytes) that can match and counteract Ag.

Once a lymphocyte shows a high affinity toward an Ag, it is activated that
is it undergoes an affinity maturation, a process that is aimed at improving
the binding with Ag. New cells are clones of the older ones, diversity of new
cells is ensured by a somatic hypermutation where genes of new cells are pieced
together from widely scattered bits of DNA. This process is called clonal selection

principle. The higher the affinity of the new cells with Ag, the higher their
possibility to generate new clones. Despite its efficiency to increase affinity with
Ag, somatic hypermutation has the risk of generating autoimmune cells. IS must
inhibit new cells which are not self-tolerant (suppression of similar cells). Ag
recognition does not start every time from scratch; after being stimulated some
of the lymphocytes become memory cells of the system.

The behavior of the Immune System can be artificially emulated for opti-
mization or, more generally, for machine learning [10]. An algorithm based on
emulation of the IS behavior is referred to as Artificial Immune System (AIS).
A deep investigation of the AIS can be found in [11, 12].

In the optimization field, AIS has shown to have a great ability for searching
multiple optimal solutions [7]. In this case Ags are represented by the optimal
points of a function, while Abs are the test configurations. Basically, the opti-
mization algorithm is structured into two nested levels (Fig. 1). The inner one
takes into account the Ab-Ag affinity relations, stimulating most promising cells,
while the outer level manages the network of cells of the system, eliminating the
similar ones. Cardinality of the population can be fixed or dynamic, but new
cells are generated throughout the process in order to explore as much as possi-
ble the space of configurations. Deep details of the multimodal single objective
optimization algorithm are provided in [7].
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Fig. 1. AIS optimization algorithm flowchart

3.2 Multi Objective Algorithm

Following the structure of the AIS optimization algorithm, we propose a new
multiobjective optimization algorithm. The algorithm, called Vector Artificial
Immune System (VAIS) has the same structure as the one for the single objective
shown in Fig. 1.

1. Initially a random uniformly distributed population is created and the fitness
is assigned to each solutions, as it will be described in the next section. The
memory is initialized to be empty.

2. Each cell is reproduced in Nclones copies of the original one and each clone
is locally mutated by a random perturbation. The amplitude of mutation
decreases when the fitness of the original parent cell increases, according to
Eqs. (6)

xnew = xold + α xrandom

α = β exp(−f∗)
(6)

where xrandom is a vector of Gaussian random numbers of mean 0 and
standard deviation 1, f∗ is the normalized value of fitness from the val-
ues [fmin, fmax] into the range [0, 1]. The value of the parameter β is chosen
to set the maximum amplitude of mutation. xnew, xold and xrandom are real
valued vectors defined in a normalized parameter space.

3. For each clone the values of the objective functions and Pareto dominance
relations are evaluated. Because the fitness depends on the actual population,
its value is assigned to the clones and recalculated for the parent cells. The
nondominated individuals are copied into the memory.
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4. The best (with respect to the fitness value) mutated clone for each cell
replaces the original parent (clonal selection).

5. Steps 2-4 (which represent the inner loop) are repeated for Nin times.
6. The affinity operator is applied to the memory: the Euclidean distance be-

tween memory cells is measured; despite of the traditional AIS algorithm, the
distance is evaluated in the objective space, in order to obtain an uniformly
distributed Pareto front.

7. All but the highest fitness cells whose distances are less than a threshold are
suppressed. The threshold value must be related to the number of solutions
desired on the PFknown (Nmemory); if the objectives are normalized into

the range [0, 1], the value of
√

m

Nmemory
(m: number of objectives) represents

the distance among solutions uniformly distributed on a straight continuous
Pareto front. We choose this value as threshold for suppression.

8. The memory is copied into the original population. New randomly generated
cells fill the remaining population, in order to maintain the diversity of solu-
tions. A minimum percentage of newcomers is guaranteed at each iteration
to obtain a good exploration of the solution space.

9. The process is repeated Nout times from step 2.

The rationale of this work is that AIS has, in its elementary structure, the
main characteristics required by MOEAs described in literature. One of the
main characteristic of classical MOEAs is that they present selection pressure
(genetic drift) phenomenon [13] and some tricks must be adopted for enhancing
diversity in solutions and space exploration. Instead, AIS makes parallel searches
of optimal solutions, leaving the management of the network of cells to the
suppression operator in the upper level of the algorithm. This operator gives
another advantage: when defining the fitness assignment, several MOEAs require
information about crowding (density) of solutions [14], while AIS does not need
them because similar solutions are suppressed. There are at least two other
characteristics intrinsically defined in AIS which are usually needed by other
multiobjective algorithms. AIS do not need an additional memory for storing
nondominated solutions (like, for example, the MultiObjective Particle Swarm
Optimization, MOPSO, algorithm [15]), because this feature is already defined.
Finally the clonal selection is always elitist, so AIS does not present backward

effects during the iteration [16].

Fitness Assignment In literature there are several Pareto-based fitness assign-
ment strategies for MOPs. All non-aggregating techniques require the evaluation
of the Pareto dominance among the individuals of the population [17]. This ap-
proach has the advantage that it is insensitive to the nonconvexity of the Pareto
Optimal Set [18]. In their famous algorithm NSGA2 [19, 8], Deb et al. apply a
pure Pareto ranking for assigning the fitness value to the population. At each
iteration all the nondominated solutions are assigned rank 1 and they are tem-
porary removed from the assignment. Then rank 2 is assigned to the new set
of nondminated solutions and so on. In SPEA [17] algorithm and in its evolu-
tion SPEA2 [14], instead of calculating the standard Pareto ranking, Zitzler et
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al. assign to the population a fitness value which incorporates both dominance
and density information. In particular all nondominated solutions have a fitness,
called strength, proportional to the number of individuals dominated by each of
them: let Ni denote the number of individuals dominated by the nondominated
i-th cell and Ndom the total number of dominated solutions, then the strength
of i is

si =
Ni

1 + Ndom

(7)

The fitness of a dominated solution j is calculated from the strength of the
solutions i which dominate it

fj =
∑

i:i≺j

si (8)

The NSGA2 fitness assignment approach does not distinguish among non-
dominated solutions and the hierarchical classification of solution can become
computationally intensive if the population is large. On the other side, the
SPEA2 approach includes density information that are not required by the VAIS
algorithm described in the previous section, because AIS has in itself opera-
tors which preserve diversity (such as affinity and suppression) and prevent the
crowding of solutions. For these reasons we have adopted a simpler fitness assign-
ment, which overcome these problems called Simple Strength Approach, SiSA.
For each nondominated individual the fitness is equal to the strength, as defined
in SPEA2, while for a dominated cell, the fitness is the number of individuals
which dominate it. The resulting fitness guarantees a partial ranking, because
all nondominated solutions have fitness values lower than 1, while the dominated
ones always greater than 1.

Constraint Handling Constraints can be classified into two different types:

– constraints on objectives;
– constraints on variables.

This classification comes from the consideration that in real world problems the
evaluation of objectives is the most time consuming operation in the optimization
process (think, for example, to objective functions evaluated by Finite Element
Analisys software) so constraints on objectives must be carefully treated in order
to avoid wasting time and resources. Constraints on decision variables can be
treated more easily because they can be managed before evaluating the objective
functions.

In literature constraints are usually handled by using penalty functions tech-
niques. Reference [20] gives a good survey of these strategies. Another approach,
based on the definition of constrained dominance is developed by Deb et al. [8].
This technique does not require the definition of penalty functions, but simply
modify the definition of dominance given in Eq. (3) including infeasible solutions.

In this work we propose a technique for handling inequality constraints on
variables preserving the feasibility of solution [21]. For what concerns equality
constraints on variables, these can be often rearranged decreasing the dimension
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of the search space. Sometimes equality constraints can be transformed into
inequality one [22]. The VAIS algorithm can generate infeasible solutions in
two cases. The first one is when a new random individual is generated. In this
case any infeasible solution is simply discarded. An infeasible solution can also
occur after applying the mutation operator to a cell close to the constraint. In
this case the feasibility of the solution is maintained by progressively reducing
the mutation amplitude with the bisection rule. This process stops when the
mutated clone becomes feasible (Fig. 2). This technique can be applied without
any hypothesis on the type of constraints (linearity, convexity, . . . ).

Fig. 2. Constraint handling: from a parent cell P, three clones are generated and mu-
tated. Clones A0 and B0 are in the feasible region. Given that clone C0 falls in the
infeasible region, the amplitude of mutation is progressively reduced with a bisection
rule, until a feasible clone, C2, is obtained.

4 Experiments

The proposed algorithm, called Vector Artificial Immune System (VAIS) is com-
pared versus NSGA2. This algorithm has achieved the largest attention in the
multiobjective optimization literature and has been used as reference algorithm
in various studies. For all tests NSGA2 has been run using a population size of
100; other parameters are set according to the values suggested by the devel-
opers in [8]. The results of VAIS are obtained using the following parameters:
population size = 100, number of clones for each cell = 4, number of inner iter-
ation = 5, percentage of random cells at each outer iteration = 20%, β = 0.05.
These values have been determined after an intensive preliminary test phase of
the algorithm on different test functions. The number of generations for both
algorithms is set depending on the maximum number of function evaluations
allowed in the test.
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Three different measures have been used for numerical comparisons of the
trade-off fronts produced by the algorithms, each of them takes into account a
particular desired characteristic of the PFknown.

1. Spacing (S): first introduced by Schott [23], this metric measures how well
the solutions throughout the PFknown are distributed. This metric is math-
ematically defined as

S ,

√

√

√

√

1

Nknown − 1

Nknown
∑

i=1

(

d̄ − di

)2
(9)

where, for each i in the set of Nknown solutions of the PFknown,

di , minj

m
∑

k=1

∣

∣

∣
f i

k(x) − f
j
k(x)

∣

∣

∣
(10)

and d̄ is the mean value of all di. A value of 0 for this metric states that the
solutions on the PFknown are equally spaced and the representation of the
front is as smooth and uniform as possible.

2. Reverse Generational Distance (RGD): one of the main issue for mea-
suring the performance of a MOEA is the ability to produce solutions on the
PFknown as near as possible to the PFtrue. In order to evaluate this charac-
teristic, Van Veldhuizen and Lamont [24] have introduced a particular metric
called Generational Distance (GD). It is defined as

GD ,
1

Nknown

√

√

√

√

Nknown
∑

i=1

d2
i (11)

where Nknown is the number of nondominated vectors in the PFknown and
di is the Euclidean distance measured in the objective space between each
of them and the nearest member of the PFtrue. Obviously GD = 0 means
PFknown ≡ PFtrue. As noted by Bosman and Thierens [25] a PFknown con-
sisting on only a single solution can have a low value for this indicator. In
order to include the goal of diversity, they propose to compute for each j

solution in the PFtrue the distance d̃j to the closest solution in the PFknown

set

RGD ,
1

Ntrue

√

√

√

√

Ntrue
∑

j=1

d̃2
j (12)

where Ntrue is the cardinality of the PFtrue set. We refer to this metric as
Reverse Generational Distance.

3. Error ratio (ER): presented by Van Veldhuizen in [26] this metric measures
the number of nondominated vectors of the PFknown that are not member
of the PFtrue

ER ,

∑Nknown

i=1 ei

Nknown

(13)

where ei = 1 if solution i is not on the PFtrue, ei = 0 otherwise.
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In their analysis, Knowles and Corne [27] have noted that the use of these
metrics can not draw final conclusions on outperformances among MOEAs. How-
ever these indicators are commonly used in standard evolutionary multiobjective
optimization literature [22].

The MOEA community has developed several test functions, that have be-
come a standard reference for testing new algorithms. We choose three represen-
tative problems which point out some difficulties for the optimization algorithms.
The following results are evaluated after having performed 20 independent runs
of both algorithms.

4.1 Test Function 1

The first test is performed using the problem proposed by Tanaka [28]:
Minimize

f1(x) = x1

f2(x) = x2
(14)

subject to

g1(x) = x2
1 + x2

2 − 1 − 0.1 cos

(

16 arctan
x1

x2

)

≥ 0

g2(x) =

(

x1 −
1

2

)2

+

(

x2 −
1

2

)2

≤
1

2

(15)

and x1, x2 ∈ [0, π]. The final number of fitness function evaluations in this case
has been set to 12000. The function presents a discontinuous and concave Pareto
front which entirely lies on the first constraint. It has been proved that some
MOEAs can have difficulties in finding Pareto optimal solutions with discontin-
uous and concave segments [29]. Fig. 3 shows the PFtrue (continuous line) and
the PFknown (circles) found by VAIS and NSGA2. The solutions shown corre-
spond to the median result with respect to the RGD metric. It can be seen that
the the average performances of VAIS are better than NSGA2 with respect to the
spacing and the reverse generational distance (Table 1); the opposite happens
with respect to the error ratio. It must be noticed that in this case differences
are very small and not statistically significant.

Table 1. Results of the metrics for the Tanaka test function.

S RGD ER

VAIS NSGA2 VAIS NSGA2 VAIS NSGA2

Best 0.00144 0.00479 1.82779E-4 4.56689E-4 0.00552 0.00000
Worst 0.00260 0.00857 3.82790E-4 7.29166E-4 0.03191 0.05000

Average 0.00201 0.00640 2.56854E-4 5.65629E-4 0.02009 0.01700
Median 0.00204 0.00642 2.54257E-4 5.30819E-4 0.02139 5.30819E-4

Std. Dev. 2.77208E-4 8.40962E-4 8.28494E-5 4.25030E-5 0.00640 8.28494E-5
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Fig. 3. Pareto Front produced by VAIS (left) and NSGA2 (right) for the Tanaka test
function.

4.2 Test Function 2

The second function has been proposed by Viennet [30]:
Minimize

f1(x) =
1

2

(

x2
1 + x2

2

)

+ sin
(

x2
1 + x2

2

)

f2(x) =
(3x1 − 2x2 + 4)

2

8
+

(x1 − x2 + 1)
2

27
+ 15

f3(x) =
1

(x2
1 + x2

2 + 1)
− 1.1 exp

(

−x2 − y2
)

(16)

with x1, x2 ∈ [−3, 3]. The final number of fitness function evaluations in this case
has been set to 6000. This function presents several challenging characteristics,
such as a high dimensional objective space, discontinuous Pareto optimal set and
several local minima in objective functions. Because of the PFtrue has not an
analytical expression, in this case it is obtained by enumeration of all possible
solutions. By looking at the Pareto fronts produced in this case (Fig. 4), it can be
seen that VAIS has a better representation of the PFtrue. This fact is confirmed
by the analisys of the numerical results presented in Table 2 which shows a better
behavior of VAIS for all metrics.

Table 2. Results of the metrics for the Viennet test function.

S RGD ER

VAIS NSGA2 VAIS NSGA2 VAIS NSGA2

Best 0.01150 0.03009 5.06375E-4 0.00172 0.00000 0.00000
Worst 0.03868 0.04599 0.00388 0.01022 0.01765 0.04000

Average 0.01526 0.04028 8.67047E-4 0.00308 0.00345 0.01650
Median 0.01284 0.04098 5.84390E-4 0.00190 0.00217 0.01000

Std. Dev. 0.00640 0.00408 7.76958E-4 0.00287 0.00406 0.01226
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Fig. 4. Pareto Front produced by VAIS (left) and NSGA2 (right) for the Viennet test
function.

4.3 Test Function 3

The last test is performed on a function proposed by Zitzler [31] and character-
ized by a high dimensional decision space and local Pareto fronts in the objective
space. The problem is defined as:
Minimize

f1(x) = 1 − exp(−4x1) sin6(6πx1)

f2(x) = w(x)

(

1 −
f1(x)

w(x)

)2 (17)

where

w(x) = 1 + 9

(

∑5

i=2 xi

4

)0.25

(18)

with xi ∈ [0, 1] and i = 1, . . . , 5. The true Pareto front is obtained when
w(x) = 0, that is with x1 ∈ [0, 1] and x2 = · · · = x5 = 0. Another challenging
characteristic of this function is that the Pareto optimal front is not uniformly
represented because the function f1 is non linear (for more details in problem
difficulties for MOP see [32]). For this test function both algorithms stop after
40000 fitness function evaluations. The comparison between the algorithms with
respect to the spacing measure shows that NSGA2 has a more uniform spread of
solutions than VAIS. But VAIS has better performance with respect to the other
two metrics (Table 3). This result can be explained looking at Fig. 5: NSGA2
has difficulties in finding the global Pareto front, getting stuck at a local one.

5 Conclusion and Further Work

In this paper it has been shown that AIS has in its elementary structure the
main characteristics of MOEA described in literature. Following this idea, a
new MOEA based on the clonal selection principle, has been developed. First
comparisons with another state-of-the-art algorithm show that performances
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Fig. 5. Pareto Front produced by VAIS (left) and NSGA2 (right) for the Zitzler test
function.

Table 3. Results of the metrics for the Zitzler test function.

S RGD ER

VAIS NSGA2 VAIS NSGA2 VAIS NSGA2

Best 0.03140 0.00570 8.58313E-5 1.48321E-4 0.06818 0.10000
Worst 0.55028 0.00712 0.00935 0.00613 0.41463 1.00000

Average 0.21017 0.00651 0.00186 0.00473 0.14747 0.95500
Median 0.16552 0.00669 8.11857E-4 0.00493 0.12162 1.00000

Std. Dev. 0.16224 4.24203E-4 0.00227 0.00137 0.07991 0.20125

of VAIS are similar or better than those produced by NSGA2. These results
encourage the authors to continue the research and tests on the algorithm.

Some improvements will be done in order to produce a competitive, general
purpose algorithm for MOPs, that can become a valid alternative to standard
MOEAs:

– some other strategies for constraint handling will be tested, especially for
managing constraints on objectives;

– the possibility of including problems with integer and mixed-integer decision
variables will be added;

– other tests will be performed with other multiobjective optimization algo-
rithms which represent the state-of-the-art in evolutionary multiobjective
optimization; in this study other performance measures will be implemented;

– finally the algorithm will be tested on some high dimensional real world
problems, especially in the field of electromagnetism.
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