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Abstract 
In the design of many mechanical systems, the human designer knows its topology and shape.  

The goal for computational design thus results in finding a parameter set that optimizes multiple 
design goals.  This paper presents a novel optimization method for such parametric design, the process 
of which is based on the human design process, but the search algorithm of which is gradient-based for 
efficient computation.   

In sanction with the human design process, the proposed method first searches for multiple 
solutions or Pareto-optimal solutions, which correspond to the solution space of the multi-objective 
optimization problem, directly by minimizing multiple objective functions.  The proposed method then 
finds the final design by the center-of-gravity method proposed by the authors, where the closest to the 
center-of-gravity of the solutions in parameter space becomes the final design.   

There exist several evolutionary algorithms that can find Pareto-optimal solutions.  The 
performance of the proposed optimization was investigated with numerical examples and compared to 
a multi-objective evolutionary algorithm.  The numerical results first demonstrate that the proposed 
method can search Pareto-optimal solutions only after 20 iterations, which could not be obtained by 
the evolutionary algorithm even after 500 iterations.  The final solution obtained also correlated well 
with the exact robust solution of the problem.   
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1 Introduction 

Since the topology and the shape are often known, the design of a mechanical system corresponds 
to the determination of a set of design parameters.  The response of a system to a design parameter set 
is in general given by an implicit non-linear mapping.  In the determination, the designer therefore 
makes full use of his knowledge and experience on the parameter set and its relationship with the 
design objectives.  This human design however fails when his knowledge and experience are not 
enough.  Computational design has received considerable attention with the advance of computer 
hardware and software accordingly [1,2].   

The goal of design is to find a parameter set that optimizes design objectives.  In the 
computational design, an optimization method is hence used to find a design parameter set on behalf 
of the human designer.  The majority of optimization methods developed so far can deal with only a 
single-objective function [3].  Thus, the design objectives are first scalarized by introducing additional 
parameters such as weighting factors, which are often unknown [4,5].  The design parameter set can be 
therefore found with a single-objective optimization method, although the parameter set obtained may 
not be the one that the designer looks for.  This problem is rooted in the fact that the current 
optimization methods are considerably different from the human design in process.   

In this paper, human-like optimization, which adopts the human design process, and subsequent 
techniques necessary for the optimization, are presented.  In the optimization, search for designs that 
satisfy the design objectives and the determination of the final design are conducted in a stepwise 
manner, as human designers do.  Thus, multi-objective optimization and the Pareto pooling technique 
are adopted for finding well-distributed possible optimal designs, and the center-of-gravity method is 
proposed to determine the final design in the optimization.  As the forward analysis in the optimization 
loop often consumes a significant amount of computation time, two multi-objective optimization 
methods with conventional gradient search algorithms, Multi-objective Steepest Descent (MSD) 
method and Multi-objective Quasi-Newton (MQN) method, are proposed.  Particularly, MQN method 
is expected as the most efficient multi-objective optimization method.   

The next section presents the definition and the detailed algorithms of human-like optimization.   
MQN and MSD methods are presented in the third section with a standard multi-objective 
optimization method implementing evolutionary algorithms, Multi-objective Continuous Evolutionary 
Algorithms (MCEA) [6].  The fourth section describes numerical examples, and conclusions are 
summarized in the final section.   

2 Human-like Design 

2.1 Overview 

As multiple objectives need to be satisfied in design, the corresponding optimization problem is 
typically defined to search for parameter set x x  in continuous space x x , 

such that objective functions  are minimized:   
min max≤ ≤ x

mR
min max, , nR∈x

( ) : nR →f x

 , (1) ( ) min→
x

f x

where configuration of the objective functions is often unknown [4].  Figures 1 and 2 compare the 
human design and the present optimization for computational design.  In human design, the designer 
makes full use of his knowledge and experience on the design parameters and their relationship with 
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design objectives.  The designer first finds several parameter sets by considering their relationship 
with each objective function.  The designer may try to find a single solution at the beginning, but 
consideration of multiple design objectives inevitably results in several sets because of the trade-off 
among design objectives.  The designer then decides a final design parameter set from the parameter 
sets using his knowledge on the parameters.  Meanwhile, the optimization starts with conversion of 
design objectives to a single-objective function by introducing weighting factors.  A single solution is 
then found with a single-objective optimizer.  The figures clearly show that the processes of the human 
design and the present optimization are quite different.   

Design objectives 

Several parameter sets 

Single parameter set 

Use knowledge and experience 
on relationship 

Use knowledge and experience 
on parameters 

 

Design objectives 

Single-objective 
function 

Single solution 

Define weighting factors 

Use single-objective optimiser 

 
Figure 1: Human design process. Figure 2: Present optimization process. 

 
Figure 3 shows the proposed optimization for computational design.  The multi-objective 

optimization problem results in a solution space rather than a single solution, so that a multi-objective 
optimization method first finds multiple solutions, which are equivalent to the solution space.  The 
final solution is then found by considering distribution of the solutions in parameter space.  It is easily 
seen that the process of the proposed optimization is considerably similar to that of human design.  
Similarities are summarized that 

Multiple design parameter sets are directly obtained by considering multiple design 
objectives.   

• 

• 

• 
• 

A final design parameter set is chosen by considering design parameter sets in parameter 
space.   

Furthermore, the superiority of the proposed optimization to the human design is the optimality.  The 
optimality is yielded by the facts that 

More optimal multiple design parameter sets are obtained.   
More information is available in the selection of a final design parameter set, as the number 
of design parameter sets is larger.   

Design objectives 

Multiple solutions 

Single solution 

Use multi-objective optimiser 

Use a technique considering 
parameter space 

 
Figure 3: Proposed optimization process. 

 
To achieve the proposed optimization, necessary computational techniques to be developed are 

A multi-objective optimization method that can derive solutions equivalent to the solution 
space of the multi-objective optimization problem.   

• 

• The multi-objective optimization method has to be efficient as the computation of forward 
analysis, such as finite element analysis, is heavy.   
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• 

]m

]m

k

)

A technique to determine a robust single solution from solutions by considering their 
distribution in parameter space.   

The next section will describe the computational techniques that satisfy the requirements.   

2.2 Search for Multiple Solutions 

The discussion of the multi-objective optimization method must start with the definition of 
solutions to search for.  The solutions taking into account the trade-off of multiple design objectives 
are the so-called Pareto-optimal solutions [7,8].  By definition, parameter set x  is said to be 

Pareto-optimal if and only if there is no vector x  for which  dominates 

, i.e., there is no vector  such that 

n
u R∈

[ 1,...,v vn
v R∈

vx

( ) v= =v f x

[ 1( ) ,...,u u u= =u f x

 .   (2) , {1,..., } , {1,..., }i i i iv u i m v u i m≤ ∀ ∈ ∧ < ∃ ∈

Figure 4 shows the flowchart of the proposed framework of the multi-objective optimization 
method.  In order to find multiple solutions, the multi-objective optimization method searches with λ  
multiple points, i.e., X k  where  is the th search point at k th iteration.  

The initial generation of population  is conducted randomly within the range [ ]  unless 

good search points are known.  Each objective function value  is then calculated with each 

parameter set x , finally yielding F k .  The population of vector functions 

 is used to further evaluate two independent scalar criteria of each search point.  One is the rank 

in Pareto-optimality Θ ≡  ( ), and the other is a corresponding 

scalar objective function Φ ≡  (φ ).  The rank is evaluated using the 

Pareto-optimality rule (2), and search points ranked No. 1 are considered as Pareto-optimal solutions 
in the current population.  On the other hand, the scalar function is used to create the next search point 

, and the creation depends upon the search algorithms to be used.  The next population in 
canonical form is thus written as 

1( ) { ,..., } ( )n
k k Rλ λ≡ ∈x x

)(kX

( )1( ) ≡ f x

( ) ( ){ 1( ) ,...,k kk λθ θx x

( ) ({ 1( ) ,...,k kk λφ φx x

i
kx

( λf x

} nR

: n

i

j x

R

mi maxn ,x x

( )i
kf

}

N

→

i
k ){ ,...,k

:θ →

)} R

( )F k

1
i
k +x

  (3) ( 2( 1) ( ), ( ), ( ), ( )X k s X k k k k+ = Φ ∇Φ ∇ Φ

in a general sense where  is the search operator.   s
Once the iterative computation and Pareto-optimality judgment of  become possible, we want 

to find effective Pareto-optimal solutions as many as possible such that a solution space can be 
configured.  Another technique proposed here to do so is a Pareto pooling strategy where the Pareto-
optimal solutions created historically are pooled besides the iterative search of a new population of 
search points.   

i
k 1+x

The process of the Pareto pooling technique is as follows.  The whole Pareto-optimal solutions 
obtained in the first generation are saved in this storage.  From the second generation, the newly 
created Pareto-optimal solutions in the optimization loop are compared to the stored Pareto-optimal 
solutions, and the new set of Pareto-optimal solutions is saved in the storage as illustrated in Figure 5.  
Some Pareto-optimal solutions may be identical or very close to an existing point.  The storage of such 
solutions is simply a waste of memory, so that they are discarded if they are closer than the resolution 
we set a priori.  The creations of the new population and the Pareto-optimal solutions are repeated 
until a terminal condition is satisfied.   
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This technique allows the Pareto-optimal solutions created in the past to be kept as solutions and 
yields a good chance to increase the number of Pareto-optimal solutions, thus making the solution 
space easier to see.  The storage of the solutions independent of the current population also may 
contribute to the good distribution of the resultant solutions.   

 

Initialise X(k) 

Create X(k+1) 

k=0 

Evaluate X(k) 

Pareto pool 

k=k+1 

Evaluate X(k+1) 

Start 

End 

Quit? 

Search Pareto 

 

 
 

Current Pareto-optimal set 

New Pareto -optimal set 

1+= kk

Filter Pareto -optimal set 

Search next  search points 

1+= kk

},...,{)( 1 λ
kkkX xx≡

},...,{)1( 1
1

1
λ

++≡+ kkkX xx

 

Figure 4: Flowchart of proposed processes. Figure 5: Creation of Pareto-optimal solutions.   
 

2.3 Determination of a Single Solution 

Figure 6 illustrates Pareto-optimal solutions where two objective functions f  are 

minimized to identify three parameters x .  As two-dimensional function space and three-
dimensional parameter space are still easy to visualize, one may incorporate human knowledge into 
computational knowledge-based techniques such as expert systems and fuzzy logic for automatic 
selection of a single solution.  However, if the numbers of objective functions and parameters are 
considerably large, the knowledge to be constructed to be immense, and such techniques are no longer 
possible practically.  In this case, one prominent way is to select the solution residing in the center of 
solution space since this solution is robust.  The authors here propose a technique where the closest 
solution to the center-of-gravity is chosen as the solution.  Let the Pareto-optimal solutions finally 
obtained be , i .  If each solution is evaluated in a scalar manner, i.e., ϕ , the center-of-
gravity is in general given by 

[ ]1 2,f f=

)i

[ 1 2 3, ,x x x= ]

rˆ ix 1,...,= ˆ(x

  1

1

ˆ ˆ( )
ˆ

ˆ( )

r i i
ii

i
i

ϕ

ϕ
=

=

∑
∑

x x

xr=x .   (4) 

As the Pareto-optimal solutions must be evaluated equally, we can consider all the Pareto-optimal 
solutions possess the same scalar value, i.e., ϕ ϕ .  No matter what the value is, 
the center-of-gravity results in the form:   

1 2ˆ ˆ( ) ( ) ... ( )rϕ= = =x x x̂

 1
ˆ

ˆ
r i
i

r
== ∑ x

x .  (5) 

The effectiveness of the center-of-gravity method cannot be proved theoretically, but it is highly 
acceptable, as it has been commonly used in fuzzy logic [9] to find a solution from the solution space 
described by fuzzy sets.   
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(a) Parameter space (b) Function space 
Figure 6: Process of deriving a single solution. 

 

3 Search Algorithms for Multi-objective Optimization Method 

3.1 Multi-objective Gradient-based Methods 

The greatest advantage of introducing Φ  independent of  is that any conventional 
search algorithm that is formulated in the form (3) can be implemented [10].  Scalar function  in 
gradient-based methods proposed by the authors is defined with  

( )k ( )kΘ
( )kΦ

 ,  (6) ( ) ( )
1

m
i k
k j j

j
w fφ

=

= ∑x xi
k

i
kx

)i
k

)i
k

i
k

)

where  contributes to the wide distribution of resultant Pareto-optimal solutions.  The 

notation  means a uniform random number between 0 and 1.  With this Φ , the next state 
of a search point is given by  

rand(0,1)k
jw =
rand(0,1) ( )k

 ,  (7) 1
i i
k k+ = + ∆x x

where the step of the search point is determined by 

 .   (8) ( 2, ( ), ( ), ( )i i i i
k k k kα φ φ φ∆ = ∇ ∇x d x x x x

In the equation, α  is the search step length iteratively searched as a subproblem by Wolfe’s 
algorithms [11], whereas mapping  outputs represents the direction of the search step.   d

In the MSD method, the mapping d  is based on the Steepest Descent (SD) method:   SD

 .   (9) ( )( ) (SD ,i i
k kφ φ∇ = −∇d x x x

The mapping of MQN method adopts the Quasi-Newton (QN) method, which is most commonly 
used due to its fast convergence, and is described as 

 ,  (10) ( )( ) ( )1
QN ,i i

k k kφ φ−∇ = − ∇d x x A x

where .   (2 i
k kφ≅ ∇A x
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3.2 Multi-Objective Continuous Evolutionary Algorithms 

The definition of Φ  in MCEA is given as follows.  First, the scalar function value of search point 
 for each objective function is temporarily defined as 

( )k
i
kx

 worst

worst best

( )
' ( )

k i
j j ki

j k k k
j j

f f
f f

φ
−

=
−

x
x , ∀ ∈ ,  (11) { }1,...,j m

where  and  are the best and the worst values of each objective function:   best
k

jf worst
k

jf

 .  (12) 
{ }
{ }

best

worst

min ( ) | {1,..., }

max ( ) | {1,..., }

k i
j j k

k i
j j k

f f i

f f i

λ

λ

 = ∀ ∈


= ∀ ∈

x

x

As the scalar function values of search points of the same rank should coincide, the scalar function 
value of search point  for each objective function is calculated as i

kx

 .   (13) { }{ }( ) max ' ( ) | ( ) ( ), , 1,...,i l l i
j k j k k k l i lφ φ θ θ= = ≠ ∀ ∈x x x x λ

)

k

' j
kx

}

i
k

The scalar function value of each search point, φ ,  ( i
kx

 ,  (14) 
1

( ) ( )
m

i i
k j

j
φ φ

=

= ∑x x

With this Φ , the search algorithms are in canonical form represented as ( )k

 .  (15) ( )EA( 1) ( ), ( )X k s X k k+ = Φ

The first process in the optimization is the recombination where the temporary search point x  is 
created by 

'ik

 , (16) ( )' 1 'i i
k kµ µ= − +x x

In the equation, , , and µ .  The mutation is then conducted to create a 

further temporary search point  with the process 

j i≠ {1,...,j λ∀ ∈

''ikx

),0( 2σN=

 .   (17) min max'' rand( , )i
k =x x x

The next search point is copied as  with the probability given by  1 ''i
k + =x x

 
1

( '' )( '' )
( '' )

i
i k

s k i
kj

P λ

φ

φ
=

=
∑

xx
x

.   (18) 

4 Numerical Examples 

The optimization problem to find two parameters by minimizing the two objective functions:  
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 ,  (19) 
2

2
1

1
( ) i

i
f x

=

= ∑x (
2

2
2

1
( ) 1i

i
f x

=

= −∑x )

]

1

] ]

was solved with four cases described in Table 1.  The number of search points was 10, and each point 
was created randomly within the range [ = [  in all the cases.  The solution of the 
problem is known to be  

] 5,5−min max,x x

 ,  (20) { }* | 0r rχ = ≤ ≤z

where z .  The most robust solution is thus , which is located in the center of the 
solution space.  The average distance of Pareto-optimal solutions from the solution space, derived as 

[1,1= [* 0.5,0.5=x

 ( ) ( )total 1 2
1

1 ˆ ˆ
2

r
i i

i
e x

n =

= −∑ x ,  (21) 

was used to evaluate the Pareto-optimal solutions obtained.  Meanwhile, the distance of the computed 
single solution  from , i.e., x̂ *x

 single ˆ *e = −x x  (22) 

was used to evaluate the final computed solution.   
Table 2 lists the numerical results, while the final solutions in parameter and function spaces are 

shown in Figures 7-10.  Results of Cases 1-3 first show that MQN method performs best, creating all 
the Pareto-optimal solutions almost on the solution line.  In addition, the final solution by MQN 
method is closest to the exact robust solution, indicating that MQN method is most effective in search.  
The computation time taken by MCEA for 20 iterations is however only 11.8 % of that by MQN.  
Thus, the result by MCEA with 110 iterations, which consumed more time than the computation time 
of MQN, is also provided.  The Pareto-optimal solutions of this case are still not as accurate as those 
by MQN, although improvement can be seen from the result after 20 iterations.  The bottleneck of 
evolutionary algorithms is however the premature convergence.  Search points are hard to get closer to 
the solution space when they are close enough.  The result equivalent to the performance of MQN 
method was not achieved even after 500 iterations.   

5 Conclusions 

Human-like optimization has been presented as a novel technique for parametric computational 
design.  MQN method has then been proposed as the most efficient multi-objective optimization 
method.  Numerical results first indicate that MQN method is superior to MSD method and a 
conventional multi-objective optimization method implementing evolutionary algorithms (MCEA) by 
observing the distances of Pareto-optimal solutions from the exact solution space.  Good approximate 
Pareto-optimal solutions, which could not be found by the conventional method even after 500 
iterations was obtained only after 20 iterations.  The robustness of the final solution derived by MQN 
method has been also confirmed through its comparison to the exact robust solution of the problem.  
As the proposed method is probabilistic, the results described in this paper may not be obtained 
consistently.  However, the results at least indicate that the proposed method is a breakthrough to the 
multi-objective optimization and computational design.  Further studies include more investigations of 
the proposed method as well as the application of the proposed optimization to the design of practical 
mechanical systems.   
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(a) Parameter space (b) Function space 

Figure 7: MSD after 20 iterations 
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(a) Parameter space (b) Function space 

Figure 8: MQN after 20 iterations 
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Figure 9: MCEA after 20 iterations 
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(a) Parameter space (b) Function space 

Figure 10: MCEA after 110 iterations 
 
Table 1: Input parameters. 

Case Method 
 

Iterations 

1 MSD 20 
2 MQN 20 
3 MCEA 20 
4 MCEA 20  

Table 2: Numerical results. 
Case Comp. 

time [sec] 
r totale singlee   

1 79.93 9 0.0381 0.1125 
2 82.70 10 0.0046 0.0108 
3 9.73 10 0.1796 0.3067 
4 86.83 12 0.0428 0.0737  
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