
WCCM V
Fifth World Congress on

Computational Mechanics
July 7-12, 2002, Vienna, Austria

Eds.: H.A. Mang, F.G. Rammerstorfer,
J. Eberhardsteiner

Human-like Optimization – A Novel Technique for
Computational Design

Tomonari Furukawa*

School of Aerospace, Mechanical and Mechatronic Engineering, J04
University of Sydney, NSW 2006 Australia

e-mail: tomo@acfr.usyd.edu.au

Shinobu Yoshimura and Hiroshi Kawai

Institute of Environmental Studies
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

e-mail: yoshi@q.t.u-tokyo.ac.jp

Key words: Human-like optimization, computational design, multi-objective optimization method,
gradient search, center-of-gravity method

Abstract
In the design of many mechanical systems, the human designer knows its topology and shape.

The goal for computational design thus results in finding a parameter set that optimizes multiple
design goals. This paper presents a novel optimization method for such parametric design, the process
of which is based on the human design process, but the search algorithm of which is gradient-based for
efficient computation.

In sanction with the human design process, the proposed method first searches for multiple
solutions or Pareto-optimal solutions, which correspond to the solution space of the multi-objective
optimization problem, directly by minimizing multiple objective functions. The proposed method then
finds the final design by the center-of-gravity method proposed by the authors, where the closest to the
center-of-gravity of the solutions in parameter space becomes the final design.

There exist several evolutionary algorithms that can find Pareto-optimal solutions. The
performance of the proposed optimization was investigated with numerical examples and compared to
a multi-objective evolutionary algorithm. The numerical results first demonstrate that the proposed
method can search Pareto-optimal solutions only after 20 iterations, which could not be obtained by
the evolutionary algorithm even after 500 iterations. The final solution obtained also correlated well
with the exact robust solution of the problem.

mailto:tomo@acfr.usyd.edu.au
mailto:abc@xxx.yyy.zzz

 Tomonari Furukawa, Shinobu Yoshimura and Hiroshi Kawai

1 Introduction

Since the topology and the shape are often known, the design of a mechanical system corresponds
to the determination of a set of design parameters. The response of a system to a design parameter set
is in general given by an implicit non-linear mapping. In the determination, the designer therefore
makes full use of his knowledge and experience on the parameter set and its relationship with the
design objectives. This human design however fails when his knowledge and experience are not
enough. Computational design has received considerable attention with the advance of computer
hardware and software accordingly [1,2].

The goal of design is to find a parameter set that optimizes design objectives. In the
computational design, an optimization method is hence used to find a design parameter set on behalf
of the human designer. The majority of optimization methods developed so far can deal with only a
single-objective function [3]. Thus, the design objectives are first scalarized by introducing additional
parameters such as weighting factors, which are often unknown [4,5]. The design parameter set can be
therefore found with a single-objective optimization method, although the parameter set obtained may
not be the one that the designer looks for. This problem is rooted in the fact that the current
optimization methods are considerably different from the human design in process.

In this paper, human-like optimization, which adopts the human design process, and subsequent
techniques necessary for the optimization, are presented. In the optimization, search for designs that
satisfy the design objectives and the determination of the final design are conducted in a stepwise
manner, as human designers do. Thus, multi-objective optimization and the Pareto pooling technique
are adopted for finding well-distributed possible optimal designs, and the center-of-gravity method is
proposed to determine the final design in the optimization. As the forward analysis in the optimization
loop often consumes a significant amount of computation time, two multi-objective optimization
methods with conventional gradient search algorithms, Multi-objective Steepest Descent (MSD)
method and Multi-objective Quasi-Newton (MQN) method, are proposed. Particularly, MQN method
is expected as the most efficient multi-objective optimization method.

The next section presents the definition and the detailed algorithms of human-like optimization.
MQN and MSD methods are presented in the third section with a standard multi-objective
optimization method implementing evolutionary algorithms, Multi-objective Continuous Evolutionary
Algorithms (MCEA) [6]. The fourth section describes numerical examples, and conclusions are
summarized in the final section.

2 Human-like Design

2.1 Overview

As multiple objectives need to be satisfied in design, the corresponding optimization problem is
typically defined to search for parameter set x x in continuous space x x ,

such that objective functions are minimized:
min max≤ ≤ x

mR
min max, , nR∈x

() : nR →f x

 , (1) () min→
x

f x

where configuration of the objective functions is often unknown [4]. Figures 1 and 2 compare the
human design and the present optimization for computational design. In human design, the designer
makes full use of his knowledge and experience on the design parameters and their relationship with

 2

 WCCM V, July 7-12, 2002, Vienna, Austria

design objectives. The designer first finds several parameter sets by considering their relationship
with each objective function. The designer may try to find a single solution at the beginning, but
consideration of multiple design objectives inevitably results in several sets because of the trade-off
among design objectives. The designer then decides a final design parameter set from the parameter
sets using his knowledge on the parameters. Meanwhile, the optimization starts with conversion of
design objectives to a single-objective function by introducing weighting factors. A single solution is
then found with a single-objective optimizer. The figures clearly show that the processes of the human
design and the present optimization are quite different.

Design objectives

Several parameter sets

Single parameter set

Use knowledge and experience
on relationship

Use knowledge and experience
on parameters

Design objectives

Single-objective
function

Single solution

Define weighting factors

Use single-objective optimiser

Figure 1: Human design process. Figure 2: Present optimization process.

Figure 3 shows the proposed optimization for computational design. The multi-objective

optimization problem results in a solution space rather than a single solution, so that a multi-objective
optimization method first finds multiple solutions, which are equivalent to the solution space. The
final solution is then found by considering distribution of the solutions in parameter space. It is easily
seen that the process of the proposed optimization is considerably similar to that of human design.
Similarities are summarized that

Multiple design parameter sets are directly obtained by considering multiple design
objectives.

•

•

•
•

A final design parameter set is chosen by considering design parameter sets in parameter
space.

Furthermore, the superiority of the proposed optimization to the human design is the optimality. The
optimality is yielded by the facts that

More optimal multiple design parameter sets are obtained.
More information is available in the selection of a final design parameter set, as the number
of design parameter sets is larger.

Design objectives

Multiple solutions

Single solution

Use multi-objective optimiser

Use a technique considering
parameter space

Figure 3: Proposed optimization process.

To achieve the proposed optimization, necessary computational techniques to be developed are

A multi-objective optimization method that can derive solutions equivalent to the solution
space of the multi-objective optimization problem.

•

• The multi-objective optimization method has to be efficient as the computation of forward
analysis, such as finite element analysis, is heavy.

 3

 Tomonari Furukawa, Shinobu Yoshimura and Hiroshi Kawai

•

]m

]m

k

)

A technique to determine a robust single solution from solutions by considering their
distribution in parameter space.

The next section will describe the computational techniques that satisfy the requirements.

2.2 Search for Multiple Solutions

The discussion of the multi-objective optimization method must start with the definition of
solutions to search for. The solutions taking into account the trade-off of multiple design objectives
are the so-called Pareto-optimal solutions [7,8]. By definition, parameter set x is said to be

Pareto-optimal if and only if there is no vector x for which dominates

, i.e., there is no vector such that

n
u R∈

[1,...,v vn
v R∈

vx

() v= =v f x

[1() ,...,u u u= =u f x

 . (2) , {1,..., } , {1,..., }i i i iv u i m v u i m≤ ∀ ∈ ∧ < ∃ ∈

Figure 4 shows the flowchart of the proposed framework of the multi-objective optimization
method. In order to find multiple solutions, the multi-objective optimization method searches with λ
multiple points, i.e., X k where is the th search point at k th iteration.

The initial generation of population is conducted randomly within the range [] unless

good search points are known. Each objective function value is then calculated with each

parameter set x , finally yielding F k . The population of vector functions

 is used to further evaluate two independent scalar criteria of each search point. One is the rank

in Pareto-optimality Θ ≡ (), and the other is a corresponding

scalar objective function Φ ≡ (φ). The rank is evaluated using the

Pareto-optimality rule (2), and search points ranked No. 1 are considered as Pareto-optimal solutions
in the current population. On the other hand, the scalar function is used to create the next search point

, and the creation depends upon the search algorithms to be used. The next population in
canonical form is thus written as

1() { ,..., } ()n
k k Rλ λ≡ ∈x x

)(kX

()1() ≡ f x

() (){ 1() ,...,k kk λθ θx x

() ({ 1() ,...,k kk λφ φx x

i
kx

(λf x

} nR

: n

i

j x

R

mi maxn ,x x

()i
kf

}

N

→

i
k){ ,...,k

:θ →

)} R

()F k

1
i
k +x

 (3) (2(1) (), (), (), ()X k s X k k k k+ = Φ ∇Φ ∇ Φ

in a general sense where is the search operator. s
Once the iterative computation and Pareto-optimality judgment of become possible, we want

to find effective Pareto-optimal solutions as many as possible such that a solution space can be
configured. Another technique proposed here to do so is a Pareto pooling strategy where the Pareto-
optimal solutions created historically are pooled besides the iterative search of a new population of
search points.

i
k 1+x

The process of the Pareto pooling technique is as follows. The whole Pareto-optimal solutions
obtained in the first generation are saved in this storage. From the second generation, the newly
created Pareto-optimal solutions in the optimization loop are compared to the stored Pareto-optimal
solutions, and the new set of Pareto-optimal solutions is saved in the storage as illustrated in Figure 5.
Some Pareto-optimal solutions may be identical or very close to an existing point. The storage of such
solutions is simply a waste of memory, so that they are discarded if they are closer than the resolution
we set a priori. The creations of the new population and the Pareto-optimal solutions are repeated
until a terminal condition is satisfied.

 4

 WCCM V, July 7-12, 2002, Vienna, Austria

This technique allows the Pareto-optimal solutions created in the past to be kept as solutions and
yields a good chance to increase the number of Pareto-optimal solutions, thus making the solution
space easier to see. The storage of the solutions independent of the current population also may
contribute to the good distribution of the resultant solutions.

Initialise X(k)

Create X(k+1)

k=0

Evaluate X(k)

Pareto pool

k=k+1

Evaluate X(k+1)

Start

End

Quit?

Search Pareto

Current Pareto-optimal set

New Pareto -optimal set

1+= kk

Filter Pareto -optimal set

Search next search points

1+= kk

},...,{)(1 λ
kkkX xx≡

},...,{)1(1
1

1
λ

++≡+ kkkX xx

Figure 4: Flowchart of proposed processes. Figure 5: Creation of Pareto-optimal solutions.

2.3 Determination of a Single Solution

Figure 6 illustrates Pareto-optimal solutions where two objective functions f are

minimized to identify three parameters x . As two-dimensional function space and three-
dimensional parameter space are still easy to visualize, one may incorporate human knowledge into
computational knowledge-based techniques such as expert systems and fuzzy logic for automatic
selection of a single solution. However, if the numbers of objective functions and parameters are
considerably large, the knowledge to be constructed to be immense, and such techniques are no longer
possible practically. In this case, one prominent way is to select the solution residing in the center of
solution space since this solution is robust. The authors here propose a technique where the closest
solution to the center-of-gravity is chosen as the solution. Let the Pareto-optimal solutions finally
obtained be , i . If each solution is evaluated in a scalar manner, i.e., ϕ , the center-of-
gravity is in general given by

[]1 2,f f=

)i

[1 2 3, ,x x x=]

rˆ ix 1,...,= ˆ(x

 1

1

ˆ ˆ()
ˆ

ˆ()

r i i
ii

i
i

ϕ

ϕ
=

=

∑
∑

x x

xr=x . (4)

As the Pareto-optimal solutions must be evaluated equally, we can consider all the Pareto-optimal
solutions possess the same scalar value, i.e., ϕ ϕ . No matter what the value is,
the center-of-gravity results in the form:

1 2ˆ ˆ() () ... ()rϕ= = =x x x̂

 1
ˆ

ˆ
r i
i

r
== ∑ x

x . (5)

The effectiveness of the center-of-gravity method cannot be proved theoretically, but it is highly
acceptable, as it has been commonly used in fuzzy logic [9] to find a solution from the solution space
described by fuzzy sets.

 5

 Tomonari Furukawa, Shinobu Yoshimura and Hiroshi Kawai

2x

1x

0
3x

2x

0
3x

1x

0

1f

2f
0

(a) Parameter space (b) Function space
Figure 6: Process of deriving a single solution.

3 Search Algorithms for Multi-objective Optimization Method

3.1 Multi-objective Gradient-based Methods

The greatest advantage of introducing Φ independent of is that any conventional
search algorithm that is formulated in the form (3) can be implemented [10]. Scalar function in
gradient-based methods proposed by the authors is defined with

()k ()kΘ
()kΦ

 , (6) () ()
1

m
i k
k j j

j
w fφ

=

= ∑x xi
k

i
kx

)i
k

)i
k

i
k

)

where contributes to the wide distribution of resultant Pareto-optimal solutions. The

notation means a uniform random number between 0 and 1. With this Φ , the next state
of a search point is given by

rand(0,1)k
jw =
rand(0,1) ()k

 , (7) 1
i i
k k+ = + ∆x x

where the step of the search point is determined by

 . (8) (2, (), (), ()i i i i
k k k kα φ φ φ∆ = ∇ ∇x d x x x x

In the equation, α is the search step length iteratively searched as a subproblem by Wolfe’s
algorithms [11], whereas mapping outputs represents the direction of the search step. d

In the MSD method, the mapping d is based on the Steepest Descent (SD) method: SD

 . (9) ()() (SD ,i i
k kφ φ∇ = −∇d x x x

The mapping of MQN method adopts the Quasi-Newton (QN) method, which is most commonly
used due to its fast convergence, and is described as

 , (10) ()() ()1
QN ,i i

k k kφ φ−∇ = − ∇d x x A x

where . (2 i
k kφ≅ ∇A x

 6

 WCCM V, July 7-12, 2002, Vienna, Austria

3.2 Multi-Objective Continuous Evolutionary Algorithms

The definition of Φ in MCEA is given as follows. First, the scalar function value of search point
 for each objective function is temporarily defined as

()k
i
kx

 worst

worst best

()
' ()

k i
j j ki

j k k k
j j

f f
f f

φ
−

=
−

x
x , ∀ ∈ , (11) { }1,...,j m

where and are the best and the worst values of each objective function: best
k

jf worst
k

jf

 . (12)
{ }
{ }

best

worst

min () | {1,..., }

max () | {1,..., }

k i
j j k

k i
j j k

f f i

f f i

λ

λ

 = ∀ ∈


= ∀ ∈

x

x

As the scalar function values of search points of the same rank should coincide, the scalar function
value of search point for each objective function is calculated as i

kx

 . (13) { }{ }() max ' () | () (), , 1,...,i l l i
j k j k k k l i lφ φ θ θ= = ≠ ∀ ∈x x x x λ

)

k

' j
kx

}

i
k

The scalar function value of each search point, φ , (i
kx

 , (14)
1

() ()
m

i i
k j

j
φ φ

=

= ∑x x

With this Φ , the search algorithms are in canonical form represented as ()k

 . (15) ()EA(1) (), ()X k s X k k+ = Φ

The first process in the optimization is the recombination where the temporary search point x is
created by

'ik

 , (16) ()' 1 'i i
k kµ µ= − +x x

In the equation, , , and µ . The mutation is then conducted to create a

further temporary search point with the process

j i≠ {1,...,j λ∀ ∈

''ikx

),0(2σN=

 . (17) min max'' rand(,)i
k =x x x

The next search point is copied as with the probability given by 1 ''i
k + =x x

1

('')('')
('')

i
i k

s k i
kj

P λ

φ

φ
=

=
∑

xx
x

. (18)

4 Numerical Examples

The optimization problem to find two parameters by minimizing the two objective functions:

 7

 Tomonari Furukawa, Shinobu Yoshimura and Hiroshi Kawai

 , (19)
2

2
1

1
() i

i
f x

=

= ∑x (
2

2
2

1
() 1i

i
f x

=

= −∑x)

]

1

]]

was solved with four cases described in Table 1. The number of search points was 10, and each point
was created randomly within the range [= [in all the cases. The solution of the
problem is known to be

] 5,5−min max,x x

 , (20) { }* | 0r rχ = ≤ ≤z

where z . The most robust solution is thus , which is located in the center of the
solution space. The average distance of Pareto-optimal solutions from the solution space, derived as

[1,1= [* 0.5,0.5=x

 () ()total 1 2
1

1 ˆ ˆ
2

r
i i

i
e x

n =

= −∑ x , (21)

was used to evaluate the Pareto-optimal solutions obtained. Meanwhile, the distance of the computed
single solution from , i.e., x̂ *x

 single ˆ *e = −x x (22)

was used to evaluate the final computed solution.
Table 2 lists the numerical results, while the final solutions in parameter and function spaces are

shown in Figures 7-10. Results of Cases 1-3 first show that MQN method performs best, creating all
the Pareto-optimal solutions almost on the solution line. In addition, the final solution by MQN
method is closest to the exact robust solution, indicating that MQN method is most effective in search.
The computation time taken by MCEA for 20 iterations is however only 11.8 % of that by MQN.
Thus, the result by MCEA with 110 iterations, which consumed more time than the computation time
of MQN, is also provided. The Pareto-optimal solutions of this case are still not as accurate as those
by MQN, although improvement can be seen from the result after 20 iterations. The bottleneck of
evolutionary algorithms is however the premature convergence. Search points are hard to get closer to
the solution space when they are close enough. The result equivalent to the performance of MQN
method was not achieved even after 500 iterations.

5 Conclusions

Human-like optimization has been presented as a novel technique for parametric computational
design. MQN method has then been proposed as the most efficient multi-objective optimization
method. Numerical results first indicate that MQN method is superior to MSD method and a
conventional multi-objective optimization method implementing evolutionary algorithms (MCEA) by
observing the distances of Pareto-optimal solutions from the exact solution space. Good approximate
Pareto-optimal solutions, which could not be found by the conventional method even after 500
iterations was obtained only after 20 iterations. The robustness of the final solution derived by MQN
method has been also confirmed through its comparison to the exact robust solution of the problem.
As the proposed method is probabilistic, the results described in this paper may not be obtained
consistently. However, the results at least indicate that the proposed method is a breakthrough to the
multi-objective optimization and computational design. Further studies include more investigations of
the proposed method as well as the application of the proposed optimization to the design of practical
mechanical systems.

 8

 WCCM V, July 7-12, 2002, Vienna, Austria

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

(a) Parameter space (b) Function space

Figure 7: MSD after 20 iterations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2
Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

(a) Parameter space (b) Function space

Figure 8: MQN after 20 iterations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

(a) Parameter space (b) Function space

Figure 9: MCEA after 20 iterations

 9

 Tomonari Furukawa, Shinobu Yoshimura and Hiroshi Kawai

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f1

f2

Exact solution space
Pareto-optimal solutions
Center-of-gravity
Final solution

(a) Parameter space (b) Function space

Figure 10: MCEA after 110 iterations

Table 1: Input parameters.

Case Method

Iterations

1 MSD 20
2 MQN 20
3 MCEA 20
4 MCEA 20

Table 2: Numerical results.
Case Comp.

time [sec]
r totale singlee

1 79.93 9 0.0381 0.1125
2 82.70 10 0.0046 0.0108
3 9.73 10 0.1796 0.3067
4 86.83 12 0.0428 0.0737

References

[1] S. Yoshimura, T. Kowalcyzk, T. Furukawa, G. Yagawa, An Automated CAE System for
Multidisciplinary Structural Design and Its Application to Micromachines, Advances in Comp.
Eng. Sci., (1997), 520-525.

[2] J. Oda, S. Kundu, Study of Structural Optimization Technique Using Evolutionary Cellular
Automata, JSME Int. J., Vol. 42, (1999), 348-354.

[3] G.L. Lemhauser, A.H.G. Rinnooy Kan, M.J. Todd, Handbooks in Operations Research and
Management Science Vol. 1: Optimization, Elsevier Science (1989).

[4] Y. Bard, Nonlinear Parameter Estimation, Academic Press (1974).
[5] C. Dixon, Nonlinear Optimisation, The English Universities Press (1972).
[6] T. Furukawa, Parameter Identification with Weightless Regularization, Int. J. Num. Meth. Eng.,

52, (2001), 219-238.
[7] C.A. Coello, A Comprehensive Servey of Evolutionary-based Multi-objective Optimization

Techniques, I. J. Knowl. Inf. Sys. 1(3), (1999), 269-308.
[8] C.M. Fonseca, P.J. Fleming, An Overview of Evolutionary Algorithms in Multi-objective

Optimization, I. J. Evol. Comp., 3(1), (1995), 1-16.
[9] L.A. Zadeh, Fuzzy Sets, Inform. Cont., 8, (1965), 338-353.
[10] T. Furukawa, S. Yoshimura, G. Dissanayake, General Optimiser for Continuous Inverse Analysis,

Inv. Prob. Eng. Mech. III (Eds: Tanaka and Dulikravich), Elsevier Science (2001), 281-290.
[11] P. Wolfe, The Symplex Method for Quadratic Programming, Econometrica, 27, (1959), 382-398.

 10

