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ABSTRACT
Although the regularisation increased the popularity of


inverse analysis due to its capability of deriving a stable
solution, the significant problem is that the solution depends
upon the regularisation parameters chosen.  This paper presents
a technique for deriving solutions without the use of the
parameters, and further an optimisation method, which can
work efficiently for problems of concern.  Numerical examples
show that the technique can efficiently search for appropriate
solutions.


INTRODUCTION
It often becomes difficult to solve inverse problems if


measurement data are not sufficiently available and/or if
measurement data and/or the direct model contains large errors
[1].  One of the approaches for overcoming this problem is to
introduce a regularisation term to a functional to be minimised
[2,3], which normally consists of a function multiplied with
weighting factors.  The term makes the functional smooth, so
that a conventional calculus-based optimisation can obtain an
appropriate parameter set without divergence or vibration.  The
problem of the regularisation is however the selection of its
weighting factors as the solution obtained depends upon the
selection.  Most of the research work thereby shows results
with a couple of selections and leaves the selection for further
studies.


Finding the best value of the weighting factors has not yet
been much studied and can been found only in several papers to
the best of the authors’ knowledge [4-6].  In some techniques,
the best weighting factors are found after a single solution is
obtained.  In this case, additional parameters are however
introduced to find it, and the solution is again dependent on
these parameters.  The other techniques find solutions each
with a different set of weighting factors by a step size before
finding a single solution by some criteria, thereby the solutions
not depending on the weighting factors.  Deriving a number of
solutions with a single optimisor is however time-consuming,
and, in addition, the solutions are governed by the step size of
each weighting factor.


On the other hand, multi-objective optimisation methods,
which optimise a vector functional thereby giving a set of
admissible solutions rather than a single solution, have been
proposed, mostly by the evolutionary computation community,
and have received remarkable attention [7-9].  The most
popular evolutionary algorithm (EA) is the genetic algorithm
(GA) [10], which incorporates binary strings and their
reproduction.  Despite, GA is too inefficient for the
minimisation of continuous functions with continuous
parameters, which is a typical inverse problem and the problem
of the authors’ concern.


In this paper, a technique for solving a regularised inverse
problem without weighting factors is first proposed.  In this
technique, regularisation terms are each formulated as another
objective function, and the multi-objective optimisation
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problem is solved by a multi-objective optimisation method.
Then, a multi-objective optimisation method termed Multi-
objective Continuous Evolutionary Algorithm (MCEA)
specifically formulated for this class of inverse problem, is
further proposed.  The next section deals with the overview of
the inverse analysis, and the proposed weightless regularised
identification technique and the multi-objective optimisation
method are presented in the third section.  Numerical results
showing its effectiveness and superiority to a conventional
technique are dealt with in the fourth section, and the final
section summarises conclusions.


INVERSE ANALYSIS


Problem formulation
Inverse analysis in industry is typically defined to identify


the continuous vector, nR∈x , given a set of continuous
experimental data.  In order to solve it, an inverse problem is
often converted to the minimisation of a functional:


x
x min)( →f , (1)


where RRf n →: .  The parameter set minimising such an
objective function is to be found within a search space:


maxmin xxx ≤≤ , (2)


where nR⊆],[ maxmin xx .
As an example for the objective function, consider the


popular method of least squares, the objective function of
which is represented as


2*))*,(ˆ()( vxuvKx −=f , (3)


where K  and *]*,[ ii vu  are the weighting matrix and the set of
measured data respectively, and v̂  is the computational model.
It is clearly seen that the objective function consists of the
model and the measured data, thus the shape of the objective
function depending upon them.  The difficulty of the inverse
analysis is therefore that the objective function can become
complex if the model and measured data contain considerable
errors.  It is more apparent when the number of measured data
is small.


Regularisation
The complexity of the objective function in other words


means that even a small change of the parameters may lead to a
significant change to the functional to be minimised, and
stabilisation techniques are often termed as the regularisation.
In the Tikhonov regularisation [11], which is the most popular
regularisation technique, the objective function is transformed
into


x
xxx min)()()( →Λ+=Π αf , (4)


where α  controls the total weighting factor [12].  Assume that
the solution is known to be adjacent to *x , the regularisation
term may be given by


2*)()( xxKx −=Λ , (5)


where K  is a weighting matrix, which is normally set to the
unity matrix without information.  It is clear that the solution
relies on the selection of α  and K .


WEIGHTLESS REGULARISATION BY MCEA


Problem formulation
The only way for finding solutions which do not depend


upon the weighting factors is to remove them from the
formulation, and we hereby propose a multi-objective
formulation.  If weighting matrix K  is the unity matrix,
Tikhonov regularisation parameter α  is the only weighting
factor and the objective of the problem is thus expressed as


[ ]2*),()( xxxxf −= fT , (6)


where 2:)( RRn →xf .  If the matrix is diagonal,


[ ]22
11 *,...,*),()( nn xxxxf −−= xxf , (7)


where nn RR +→ 1:)(xf .  This formulation gives rise to the
necessity for defining multi-objective optimisation problems
and developing a method for solving such problems.


Multi-objective optimisation
While the single-objective optimisation tries to look for a


single solution, multi-objective optimisation derives a set
solutions, and this introduces the concept of Pareto-optimality.
Consider a problem where we have m  objective functions,


RRf n
k →: , mk ,...,1= :


[ ]
x


xxxf min)(),...,()( 1 →= m
T ff . (8)


A decision vector n
u R∈x  is said to be Pareto-optimal if and


only if there is no vector n
v R∈x  for which


( )nv vv ,...,)( 1== xfv  dominates ( )nu uu ,...,)( 1== xfu , i.e.,
there is no vector vx  such that


},...,1{,},...,1{, niuvniuv iiii ∈∃<∧∈∀≤ . (9)
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Fig. 1  Parato-optimal set


Figure 1 illustrates an example where 8x  and 12x  satisfy
Eq. (10).  The set of all Pareto-optimal decision vectors is
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called the Pareto-optimal, efficient, or admissible set of the
problem.  The corresponding set of objective vectors is called
the non-dominated set.  The Pareto-optimal can thus become
the set of solutions for a multi-objective optimisation problem.


Multi-objective evolutionary algorithm for continuous
problems


Capabilities of the method necessary for the multi-
objective optimisation are the multi-point search method, as the
multiple points can end up at a different set of solutions, and
the equal evaluation to Pareto-optimal set.  The characteristics
of multi-point direct search thus renders evolutionary
algorithms appropriate for multi-objective optimisation,
provided that they can evaluate Pareto-optimal set equally.


Figure 2 shows the fundamental structure of MCEA
proposed by the authors, which is efficient for problems with
continuous search space.  First, a population of individuals,
each represented by a continuous vector, is initially (generation
t  = 0) generated at random, i.e.,


λ
λ )(},...,{ 1


nttt RP ∈= xx , (10)


where λ  represents the population size of parental individuals
[13].  Each vector thus represents a search point, which
corresponds to the phenomenological representation of
individual, unlike GAs.


t  = 0;
In it ia lise P(t );
do{


Recombinate P(t );
Muta te P(t );
Evalua te P(t );
Group P(t );
Select  P (t );
t++;


}while(condit ion);


Fig. 2  Fundamental continuous evolutionary algorithms


The definition of the recombination and mutation becomes
the probabilistic distribution of the phenomenological measures
accordingly.  In the recombination, parental individuals breed
offspring individuals by combining part of the information from
the parental individuals, thereby creating new points inheriting
some information from the old points.  The recombination
operation is then defined as
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−+=
+−=


βαβ


βαα


µµ
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xxx
xxx


)1('
)1('


,
(11)


where parameter µ  may be defined by the normal distribution
with mean 0 and standard deviation σ :


),0( 2σµ N= (12)


or simply a uniform distribution:
),(rand maxmin µµµ = . (13)


The mutation can also be achieved simply by


),(rand" maxmin xxx = . (14)
Note that the mutation is not necessary for parameter µ  with
normal distribution since it can allow individuals to alter
largely with small possibility, when the coefficient µ  is large.


The grouping process of the individuals is illustrated in
Fig. 3.  First, all the points are concerned and the points
satisfying Eq. (8) are grouped No. 1.  The points in group No. 1
is then eliminated, and the points in No. 2 and later are grouped
in the same fashion [8].
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Fig. 3  Grouping of individuals.  Shadowed areas represent
search areas of the points in group No. 3.


With the understanding of the grouping, let the set of
points in group No. k  be )(kG  for further convenience:


{ }},...,1{,)group(|)( nikkG ii ∈∀== xx . (15)
Figure 5 illustrates the evaluation of the fitness of each
individual.  The evaluation can be conducted with a linear
scaling:


)()( bestworst
t
i


t
i ff xx −=Φ , (16)


where worstf   is given by


=
=


m


j
jff


1
worstworst ,


(17)


{ }},...,1{|)(maxworst niff ijj ∈∀= x , (18)
and


�
�
�


��


�
�
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∈= )(|)(min)(best kGff i
j


iji xxx .
(19)
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Fig. 4  Evaluation of individuals.  Shadowed areas each
represent search areas of the points in group No. 3.
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The selection operator favourably selects individuals of
higher fitness to produce more often than those of lower fitness.
As 0)( ≥Φ t


ix  is satisfied by this equation, the proportional
selection [7], which is the most popular selection operation, can
also be directly used in the proposed algorithm.  In this
selection, the reproduction probabilities of individuals are given
by their relative fitness:


=
Φ


Φ
= λ


1
)(


)(
)(


j
t
j


t
it


isP
x


x
x .


(20)


These reproductive operations form one generation of the
evolutionary process, which corresponds to one iteration in the
algorithm, and the iteration is repeated until a given terminal
criterion is satisfied.


System configuration
Figure 5 depicts the multi-objective optimisation system,


named MCEA, developed based on the algorithms in the last
subsection.  The system requires three input files, optimisation
file, search space file, and objective function file, and returns
one output file.


Opt imisat ion
file


Objective
funct ion  file


MCEA


Search  space
file


Outpu t  file


Inpu t  files


Fig. 5  Overview of MCEA


#include "../genetic/lib/genetic.h"


size_t geneSize = 5;
size_t perfSize = 2;


static double z[5] = {0.3, 0.4, 0.5, 0.6, 0.7};


status Target(size_t geneSize, size_t perfSize, Point *value)
{


size_t i;


value->performance[0] = 0.0;
for(i = 0; i < geneSize; i++)


value->performance[0] += value->gene[i] * value->gene[i];
value->performance[0] /= 3.0;  


value->performance[1] = 0.0;
for(i = 0; i < geneSize; i++)


value->performance[1] += (value->gene[i] - z[i]) * (value->gene[i] - z[i]);
value->performance[1] /= 3.0;


return Ok;
}


Fig. 6  Function file


Parameter s = 5
Parameter  No.1
min  = -5
max = 5
Parameter  No.2
min  = -5
max = 5
Parameter  No.3


Fig. 7  Search space file


PointNum = 10
MaxHold = 500
Iteration = 500
ErrorRate = 0.02
Resolution = 0.000001
PerfResolution = 0.000001
IsFIFO = 1
RankingBestRecord = 1
Selection = p
Display = 1
DisplayFreq = 100
MaxWrite = 100
RandomSeed = 1
RankingBestRecord = 1


Fig. 8 Optimisation file


generation = 1001, best = 37 Points, left 0 Points
no gen :p0 :p1 :g0 :g1 :g2 :g3 :g4
1: 72 9.49e-01 7.22e-02 3.32e-01 3.11e-01 5.38e-01 4.40e-01 5.10e-01
2: 163 4.50e-01 2.53e-01 1.47e-01 2.32e-01 3.40e-01 2.89e-01 4.18e-01
3: 173 9.01e-01 8.58e-02 8.29e-02 2.98e-01 4.67e-01 4.60e-01 6.13e-01
4: 174 5.97e-01 1.88e-01 1.06e-01 1.67e-01 4.02e-01 3.93e-01 4.92e-01
5: 213 3.50e-01 3.91e-01 5.83e-02 9.80e-02 3.41e-01 3.60e-01 3.02e-01
6: 214 3.80e-01 3.37e-01 1.03e-01 2.07e-01 2.98e-01 2.09e-01 4.40e-01
7: 252 5.63e-01 1.93e-01 2.83e-01 2.95e-01 3.39e-01 3.71e-01 3.79e-01
8: 254 4.14e-01 3.31e-01 2.43e-01 6.45e-02 2.30e-01 3.38e-01 4.29e-01
9: 301 1.60e-01 6.27e-01 1.35e-01 1.30e-01 5.47e-02 2.39e-01 2.55e-01
10: 329 1.52e-01 6.38e-01 8.04e-02 2.09e-01 1.92e-01 2.06e-01 1.50e-01
11: 353 1.07e-01 8.56e-01 2.16e-01 9.29e-02 1.95e-01 3.75e-02 1.13e-01
12: 376 5.58e-01 2.02e-01 8.88e-02 2.86e-01 2.74e-01 3.56e-01 5.16e-01
13: 377 2.48e-01 5.03e-01 1.87e-01 1.48e-01 1.27e-01 3.55e-01 2.23e-01
14: 410 3.17e-01 3.92e-01 1.08e-01 9.01e-02 2.26e-01 2.95e-01 3.98e-01
15: 424 9.80e-01 4.38e-02 2.30e-01 2.59e-01 4.92e-01 5.28e-01 5.83e-01
16: 443 8.40e-01 8.60e-02 1.64e-01 4.03e-01 3.54e-01 4.12e-01 5.97e-01
17: 452 4.90e-01 2.42e-01 2.14e-01 2.81e-01 2.57e-01 4.32e-01 3.36e-01


Fig. 9  Ouput file


Figures 6-8 shows examples for the input files whilst a
typical output file is shown in Fig. 9.  The function file has to
be written with small knowledge of C language, but other input
files require one to input the values mostly explained in the last
subsection.  The user can get therefore accustomed to them
very easily.


NUMERICAL EXAMPLE


Optimisation with quadrilateral functions
First, the capability of MCEA was investigated with a


simple multi-objective problem with quadrilateral objective
functions
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2
1 )( xx =f , (21)


where 5R∈x  is subject to inequality constraint (4) with
]5,5,5,5,5[min −−−−−=Tx  and ]5,5,5,5,5[max =Tx , and we assume


that some information is known on its solution, and add a
Tikhonov regularisation term as another objective function:


2
2 )( zxx −=f (22)


where 5]7.0,6.0,5.0,4.0,3.0[ RT ∈=z .  The problem therefore
becomes to minimise functions (21) and (22).  The efficient set
in this problem can be determined analytically and it is given
by


{ }]1,0[,| ∈== rrX zxx (23)
and we can thus investigate the performance of  the proposed
technique with the exact set of solutions.  Values of major
parameters for MCEA are listed in Table 1.


Figures 10-12 show the Pareto-optimal set in 42 xx −  space
at 50, 500 and 2500 generations respectively.  In accordance
with Eq. (23), the exact Pareto-optimal solutions are known to
be on the lines shown in the figures.  It is easily seen that the
computed solutions at larger generations are closer to the exact
solutions, and this indicates that the proposed method is
appropriately finding the exact solutions.  In addition, the
number of computed solutions increases with respect to the
number of generations as shown in Fig. 13, and this helps one
to imagine the shape of the solution space.
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Fig. 10  Pareto-optimal set at 50th generation
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Fig. 11  Pareto-optimal set at 500th generations
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Fig. 12  Pareto-optimal set at 2500th generations


Table 1  Parameters for MCEA
Parameter Value
No. of generations 2500
Population 10
Mutation rate 0.02
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Fig. 13  No. of solutions with respect to no. of generations


Figure 14 shows the resultant Pareto-optimal solutions in
function space.  One can easily see that the solution space is
settling down to a smooth curve with the increase of the
number of generations.  The final solution can be chosen
subjectively from the Pareto-solutions, by considering how
much the regularisation term should be taken into account.
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Fig. 14  Pareto-optimal set in function space


In order to investigate its efficiency of the proposed multi-
objective formulation with MCEA compared to others, only
objective function (22) was minimised with a single-objective
optimisation method.  MCEA can be used as a single-objective
optimiser simply by implementing only one function in the
function file, so that MCEA was used for this optimisation.  All
the algorithms at the programming level are therefore the same,


and the direct comparison is hence possible.  Note that the use
of MCEA for single-objective optimisation results in
Continuous Evolutionary Algorithm (CEA) proposed by
Furukawa and Dissanayake [14], which was reported to be ten
times faster than conventional GAs in convergence [15].


Figure 15 shows the minimal value of objective function
(22) of both the multi- and single-objective optimisation.  The
figure clearly indicates that there is only small difference
between both the optimisations.  This may be caused by the fact
that the individuals having the same best fitness often occupies
in single-objective optimisation while multi-objective
optimisation keeps variety over generations.  In addition to
finding the best value of objective function (22) comparable to
single-objective optimisation, multi-objective optimisation
searches other Pareto-optimal solutions with various states of
Tikhonov regularisation, and we may conclude that the multi-
objective optimisation is superior to single-objective
optimisation.
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Fig. 15  Multi- and single-optimisation


Optimisation with complex function
With the understanding of the appropriate performance of the
proposed technique for identification with a simple objective,
the identification with a complext function, which is more
realistic to engineering problems, has been investigated.  The
set of objective functions has an additional term to Eq. (22) and
is given by


=
−+=


5


1


2
1 )cos(1050)(


i
ixf ωxx


(24)


Again, Eq. (23) was used as the Tikhonov regularisation term,
and Table 1 as MCEA parameters.


Figure 16-18 show the resultant Pareto-optimal solutions in
42 xx −  space at 50, 500 and 2500 generations respectively.


Three groups of solution are seen at 50th generations where one
group consists of only one solution, and then converge to two
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of them.  The solution space is getting clear with the increase of
the number of Pareto-optimal solutions over generations.
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Fig. 16  Parato-optimal set at 50th generations
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Fig. 17  Pareto-optimal set at 500th generations
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Fig. 18  Pareto-optimal set at 2500th generations


The resultant Pareto-optimal set each at 50th, 500th and
2500th generations are shown in Fig. 19.  It is again seen that
the function is becoming smoother as the number of
generations increases.
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Fig. 19  Objective function values


Finally, the searching capability of MCEA was compared
to that of CEA for single optimisation in the same manner, and
the result of the comparison is shown in Fig. 20.  There is also
little difference between both the optimisations.
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Fig. 20  Multi- and single-optimisation


CONCLUSIONS
A weightless regularised identification technique and


further a multi-objective optimisation method of MCEA, which
can search solutions efficiently for this class of problems have
been proposed.  The proposed technique was applied to two
regularised identification problems as numerical examples, and
the technique could find appropriate solutions in both the
examples.  Moreover, the searching capability of the technique
was compared to the result of identification without
regularisation solved by a single-objective optimisation
method, and the comparison showed that a solution comparable
to the solution by the single-objective optimisation was
included in the set of solutions by the proposed technique.
Conclusively, the effectiveness of the proposed technique has
been confirmed.


Further studies include the application of the technique to
actual engineering problems.  The author is currently
implementing the technique to the parameter identification of
inelastic constitutive models [15,16].  The models contain 5-30
parameters, and its determination is above the human ability.
The result of the identification will be reported in further
papers.
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