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Abstract. After 20 years of development of multiobjective metaheuris-
tics the procedures for solving multiple objective combinatorial opti-
mization problems are generally the result of a blend of evolutionary,
neighborhood search, and problem dependent components. Indeed, even
though the first procedures were direct adaptations of single objective
metaheuristics inspired by evolutionary algorithms or neighborhood search
algorithms, hybrid procedures have been introduced very quickly. This
paper discusses hybridations found in the literature and mentions re-
cently introduced metaheuristic principles.

1 Multiobjective Optimization

A multiobjective optimization problem is defined as

min(zl (.’L’), s ,Zp(IL')), (MOP)
zeX
where X C R” is a feasible set in the decision space, and z : R* — RP is a
vector valued objective function. By Z = 2(X) C RP we denote the image of the
feasible set in the objective space. We consider optimal solutions of (MOP) in
the sense of efficiency (or Pareto optimality), that is, a feasible solution z € X
is called efficient if there does not exist ' € X such that z(z') < z(z), i.e.,
zp(x') < zp(x) for all k =1,...,p and z;(z') < 2;(x) for some j. In other words,
no solution is at least as good as z for all objectives, and strictly better for at
least one.
Efficiency refers to solutions z in decision space. In terms of the objective
space, with objective vectors z(z) € RP we use the notion of non-dominance: If z
is an efficient solution then z(z) = (21(2), ..., 2p(x)) is a non-dominated vector



(or point). The set of efficient solutions is X g, the set of non-dominated vectors
is Zn. We may also refer to Zx as the non-dominated frontier or the trade-off
surface or the Pareto front. For z',z? € X we shall use the notation z! > 2?2 if
z! dominates z2, i.e., if z(z!) < z(z?).

In case of multiple feasible solutions z,z’ € X mapping to the same non-
dominated point z(z) = z(2'), the solutions are said to be equivalent [24]. A
complete set X [24] is a set of efficient solutions such that all x € X \ X are
either dominated or equivalent to at least one x € Xg. lLe., for each nondom-
inated point z € Zy there exists at least one x € Xg such that z(x) = z. To
solve a multiobjective optimization problem often means to find a complete set
of efficient solutions. The computation of a set of efficient solutions is a major
challenge of multiobjective optimization. But to precisely characterize the abil-
ity of an algorithm to solve an MOP the definition of complete set is refined as
follows:

— [24] A minimal complete set X, is a complete set without equivalent solu-
tions. Any complete set contains a minimal complete set.

— [36] The mazimal complete set Xg,, is a complete set including all equivalent
solutions, i.e., all x € X \ Xg,, are dominated.

Multiobjective combinatorial optimization problems form a particular class
of MOPs, which can be formulated as follows:

min {Cz : Az > b,z € Z"} . (MOCO)

Here C' is a p x n objective function matrix, where c;, denotes the k-th row
of C. A is an m x n matrix of constraint coefficients and b € R™. Usually the
entries of C, A and b are integers. The feasible set X = {Az > b,z € Z"} may
describe a combinatorial structure such as, e.g., spanning trees of a graph, paths,
matchings etc. We shall assume that X is a finite set. By Z = CX we denote
the image of X under C in RP.

2 Approximation Methods for MOCO

As in the single objective case, reasonable alternatives to exact methods for
solving difficult MOCOs are approximation methods. An approrimation method
in a multiobjective optimization context is a method which finds either sets
of locally potentially efficient solutions that are later merged to form a set of
potentially efficient solutions — the approximation denoted by Xpg — or globally
potentially efficient solutions according to the current approximation Xpg.

2.1 The Question of Quality of an Approximation

The quality of a solution of a combinatorial optimization problem can be es-
timated by comparing lower and upper bounds on the optimal objective function



value. In multiobjective optimization the concept of bounds is not well devel-
oped. The best possible lower and upper bounds on values of all non-dominated
points are given by the ideal and nadir point 2’ and 2V defined by

I .
2;, = min 2 (x k=1,...
k seX k( )7 ) »P
and
N
2;, = max zp(x k=1,...
k 2€Xn ( )7 ) D,

respectively. We sometimes refer to a utopian point 2V = 2! — €1, where 1 is a
vector of all ones and € is a small positive number. However, the ideal and nadir
points are usually far away from non-dominated points and do not provide a
good estimate of the non-dominated set. In addition, the nadir point is hard to
compute for problems with more than two objectives, see [13].

To better capture the multiobjective nature of the problems and the fact
that we are looking for a set of efficient solutions it is natural to generalize the
notion of bounds to bound sets. Ehrgott and Gandibleux report first results
on lower and upper bound sets in for the biobjective assignment, knapsack,
traveling salesman, set covering, and set packing problems [11,14]. Ferndndez
and Puerto [15] use bound sets in their exact and heuristic methods to solve the
multiobjective uncapacitated facility location problem.

There are a few other ideas in the literature. Kim et al. [30] propose a new
measure, the integrated convex preference (ICP), to compare the quality of algo-
rithms for MOCO problems with two objectives. Sayin [37] proposes the criteria
of coverage, uniformity, and cardinality as quality measures. Although devel-
oped for continuous problems the ideas may be interesting for MOCO problems.
However, the methods proposed in [37] can be efficiently implemented for lin-
ear problems only. Other authors propose distance based measures [44] and vi-
sual comparisons of the generated approximations. The latter are restricted to
bi-objective problems. Jaszkiewicz [28] also distinguishes between cardinal and
geometric quality measures. He gives further references and suggests preference-
based evaluation of approximations of the non-dominated set using outperfor-
mance relations. Tenfelde-Podehl [42] proposes volume based measures.

None of these measures have been universally adopted in the multiobjective
optimization literature, and further research is clearly needed.

2.2 Multiobjective Heuristics and Metaheuristics for MOP

Multiple objective heuristics (MOH) and multiple objective metaheuristics
(MOMH) are methods that aim to provide a good tradeoff between an approx-
imation of the set of efficient solutions and the time and memory requirements
to obtain it. These methods may manipulate a complete or incomplete single
solution or a collection of solutions at each iteration.

Heuristics are generally problem-specific, so that a method which works for
one problem cannot be used to solve a different one. In contrast, metaheuristics



are universal methods applicable to a large number of problems. A metaheuris-
tic is a solution concept. The adaptation to a specific problem uses heuristics as
solution methods. The family of metaheuristics includes, but is not limited to,
constraint logic programming, genetic algorithms, evolutionary methods, neural
networks, simulated annealing, tabu search, non-monotonic search strategies,
greedy randomized adaptive search, ant colony systems, particle swarm opti-
mization, noising methods, variable neighborhood search, scatter search, etc.

From a historical perspective, the pioneer approximation methods for multi-
objective problems have appeared since 1984, in the following order: Genetic Al-
gorithms (GA, Schaffer 1984 [38]), Artificial Neural Networks (ANN, Malakooti
1990 [32]), Simulated Annealing (SA, Serafini 1992 [39]), and Tabu Search (TS,
Gandibleux 1996 [16]). The pioneer methods have three characteristics. First,
they are inspired either by Fwvolutionary Algorithms (EA) or by Neighborhood
Search Algorithms (NSA). Second, the early methods are direct derivations of
single objective optimization metaheuristics, incorporating small adaptations to
integrate the concept of efficient solution for optimizing multiple objectives.
Third, almost all methods were designed as a solution concept according to
the principle of metaheuristics.

2.3 Evolutionary Algorithms versus Neighborhood Search
Algorithms

Evolutionary Algorithms manage a solution population P rather than a single
feasible solution. In general, they start with an initial population and combine
principles of self adaptation, i.e., independent evolution (such as the mutation
strategy in genetic algorithms), and cooperation, i.e., the exchange of informa-
tion between individuals (such as the “pheromone” used in ant colony systems),
to improve approximation quality. The usual components of an evolutionnary
algorithm are:

- a population of solutions

- evolutionary operators (crossover, mutation)

- an archive of elite solutions

- a ranking method

- a guiding method

- a clustering method

- a fitness measure

- a penalty strategy for infeasible solutions, etc.

Because the whole population contributes to the evolutionary process, the gen-
eration mechanism is parallel along the frontier, and thus these methods are also
called global convergence-based methods. This characteristic makes population-
based methods very attractive for solving multiobjective problems.

In Neighborhood Search Algorithms, the generation of solutions relies upon
one individual, a current solution z,, and its neighbors {z} C N (z,). Using
a local aggregation mechanism for the objectives (often based on a weighted



sum), a weight vector A € A, and an initial solution zg, the procedure itera-
tively projects the neighbors into the objective space in a search direction A
by optimizing the corresponding parametric single objective problem. A local
approximation of the non-dominated frontier is obtained using archives of the
successive potentially efficient solutions detected. This generation mechanism is
sequential along the frontier, producing a local convergence to the non-dominated
frontier, and so such methods are called local convergence-based methods. The
principle is repeated for diverse search directions to completely approximate the
non-dominated frontier. The elementary components of a neighborhood search
algorithm are:

- a neighborhood structure (moves)

- an exploration strategy (partial, exhaustive)

- an acceptation rule (SA principle, TS principle)
- a list of candidates

- a scalarizing function

- an oscillation strategy

- a greedy (randomized) strategy

- a path-relinking strategy, etc.

NSAs are well-known for their ability to locate the non-dominated frontier, but
they require more effort in diversification than EA in order to cover the efficient
frontier completely.

While the first adaptation of metaheuristic techniques for the solution of mul-
tiobjective optimization problems has been introduced 20 years ago, the MOMH
field has clearly mushroomed over the last ten years. The first approximation
methods proposed for MOCO problems were “pure” NSA strategies and were
straightforward extensions of well-known metaheuristics for dealing with the no-
tion of non-dominated points. Simulated annealing (the MOSA method [43]),
tabu search (the MOTS method [16], the method of Sun [41]), or GRASP (the
VO-GRASP method [18]) are examples.

2.4 Hybrid Algorithms and Problem-dependent Algorithms

The methods that followed the pioneer ones, designed to be more efficient algo-
rithms in the MOCO context, have been influenced by two important observa-
tions.

The first observation is that one the one hand, NSAs focus on convergence
to efficient solutions, but must be guided along the non-dominated frontier. On
the other hand, EAs are very well able to maintain a population of solutions
along the non-dominated frontier (in terms of diversity, coverage, etc.), but often
converge too slowly to the non-dominated frontier. Naturally, methods have been
proposed that try to take advantage of both EA and NSA features by combining
components of both approaches, introducing hybrid algorithms for MOPs.

The second observation is that MOCO problems contain information de-
riving from their specific combinatorial structure, which can be advantageously



exploited by the approximation process. Single objective combinatorial optimiza-
tion is a very active field of research. Many combinatorial structures are very
well understood. Thus combinatorial optimization represents a useful source of
knowledge to be used in multiobjective optimization. This knowledge (e.g., cuts
for reducing the search space) are more and more taken into account when de-
signing a very efficient approximation method for a particular MOCO. It is not
surprising to see an evolutionary algorithm — for global convergence — coupled
with a tabu search algorithm — for the exploitation of the combinatorial structure
— within one approximation method.

Problem dependent components which can be advantageously used are, for
example:

- specific crossover operators (like in [31] for the bi-objective CARP)
- specific neighborhood structures

- bound sets on the non-dominated frontier

- handling constraints in a relaxation strategy

- numerical properties of the objective functions

- properties of subsets of exact solutions (easily computed), etc.

Modern approximation methods for MOCO problems appear more and more as
a problem-oriented techniques, i.e., selections of components that are advanta-
geously combined to create an algorithm which can tackle the problem in the
most efficient way. By nature the algorithm is hybrid, including evolutionary
components, neighborhood search components, and problem dependent compo-
nents.

3 Steps in Hybridation Schemes

The hybridations introduced in multiobjective approximation methods are:

1. EA components integrated in NSA.

The use of a population of individuals allows to have global information
about the current approximation and to let that information drive local
search processes in order to “guarantee” a good coverage of the non-dominated
frontier. Using, for example, mechanisms based on notions of repulsion be-
tween non-dominated points, the search is guided toward subareas of the
frontier containing (i) a high density of solutions or (ii) areas not yet ex-
plored. This is the principle of the PSA method [7] and the TAMOCO
method [10] (see Figure 1).

2. EA as master strategy, NSA as secondary strategy.
EA is the pilot of the search procedure, and activates an NSA. The main
idea here is to make the evolutionary algorithm very aggressive in improving
as far as possible good solutions resulting from the evolutionary operators.
The NSA can be a depth first search method, a basic (or truncated) tabu
search, etc. This is the principle behind the memetic version of MOGA [35],
MOGLS [27], MGK [17], GTSMOKP [1] (see Figure 2).
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Fig. 1. The positions of four solutions A, B, C and D in objective space are shown.
Solution A should be improved to move towards the nondominated frontier but at the
same time it should move away from other current solutions, which are non-dominated
with respect to A (solutions B and C). Solution B pushes solution A away and this is
shown by an optimization influence in the direction of vector b. Likewise does solution
C influence solution A to move away from it in direction c¢. The final optimization
direction for solution A is found by adding these weighted influence vectors. (From

[10])
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Fig. 2. The approximations obtained with NSGA, MOGLS and GTSMOKP for a bi-
objective binary knapsack problem with two constraints and 750 items. (From [3])



3. Alternating schemes based on EA and NSA as a blackbox.
Ben Abdelaziz et al. [5] propose a hybrid algorithm using both EA and
NSA independently. The goal of the EA (a genetic algorithm) is to produce
a first diversified approximation, which is then improved by the NSA (a
tabu search algorithm). Results have been reported on the multiobjective
knapsack problem.
Delorme et al. [8] design a scheme based on an NSA interfaced with an
EA for solving the bi-objective set packing problem. The idea is to take
advantage of an efficient heuristic known for the single objective problem in
order to compute an initial set of very good solutions Py in a first phase.
The heuristic (a GRASP algorithm) is encapsulated in a basic generation
procedure, for example using a convex combination of the objectives: A-
GRASP. The second phase works on a population of individuals P O Py
derived from the initial set and performs an EA (a modified version of SPEA
dealing with all potential efficient solutions and integrating a local search:
A-SPEA) in order to consolidate the approximation of the non-dominated
frontier (see Figure 3).
In Target Aiming Pareto Search (TAPaS) [29], the search directions of the
procedure are given by the current set X pg, similar to the principle of almost
all the tabu search adaptations for MOP [16,25,41]. A series of goals is
deduced from Xpp and a scalarizing function is used for guiding an NSA,
defining a two phase strategy. This scheme has been applied to two vehicle
routing problems. For one problem (the covering tour problem), TAPas is
coupled with a EA plus a branch and cut algorithm specifically designed for
the single objective version of the problem.

4. EA + NSA -+ problem dependent components.

The most recent hybrid procedures integrate EA and NSA components as
well as problem-dependent components in order to design a powerful approx-
imation method for a MOCO problem. Gandibleux et al. [20,21] propose a
population based method where a crossover uses a “genetic” map of the pop-
ulation, and that includes a path-relinking operator. Path-relinking generates
new solutions by exploring the trajectories that connect elite solutions. Start-
ing from one solution — the initiating solution — a path is generated through
the neighborhood space that leads to the other solution — the guiding solution
[22] (see Figure 4). Only potentially efficient solutions compose the popula-
tion at any time and bound sets limit the triggering of a local search. This
procedure has been applied for approximating the non-dominated frontier of
assignment and knapsack problems with two objectives.

5. Approximation method and exact procedure in a hybrid method.
The combination of EA and NSA can be more accurately integrated than
by a “simple” switch between the two mechanisms. Gandibleux and Fréville
[19] propose a procedure for the biobjective knapsack problem combining an
exact procedure for reducing the search space with a tabu search process
for identifying the potentially efficient solutions. The reduction principle is
based on cuts which eliminate parts of the decision space where (provably) no
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Fig. 3. The figure illustrates the average percentage of exact solutions found using
A-GRASP, A-SPEA, and the hybrid for the set packing problem with two objectives,
when all three methods are allowed the same computational effort. (From Delorme et
al. [8])
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Fig. 4. Illustration of a possible path construction (see [21]). I4 and Ip are two indi-
viduals randomly selected from the current elite population (small bullets). I4 is the
initiating solution, and I is the guiding solution. A/ (I4) is the feasible neighborhood
according to the move defined. I4 — Iy — I — Is — I4 — I is the path that is built



UB=105 UB~ =104

@: proposition 1 Vé : proposition 2

100%

90%:

80%:
| ayers

elimnated
70%:

-—

| ayers
to visit

layers
el i m nat ed

KP450 KP500

LB=44 LB*=78

Fig. 5. A decision space reduction technique for the bi-objective knapsack problem
uses an additional constraint on the cardinality of an optimal solution for computing a
utopian reference point and an approximation set for verifying if the reference point is
dominated. As output a strategic map is established eliminating all parts of the seach
space where no efficient solution exists. A heuristic (a tabu search for example) can
then be triggered inside the reduced decision space [19].
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Fig. 6. CPU time used by an exact method for solving the assigment problem with two
objectives without (the upper curve) and with (the lower curves) the use of approximate
solutions for the pruning test inside the method [36].



exact efficient solution exists (see Figure 5). The tabu search is triggered on
the reduced space and dynamically updates the bounds in order to guarantee
the tightest value at any time.

This category also applies if in an exact method for generating the non-
dominated points the exact method needs bounds of good quality. For ex-
ample in the seek and cut method for solving the assignment problem [36] the
“seek” computes a local approximation of the non-dominated frontier (i.e.,
bounds are computed by a population-based algorithm coupled with path-
relinking) which is then used for “cutting” the search space of an implicit
enumeration scheme (see Figure 6).

Other well-known principles of metaheuristics using have also been applied
to MOP problems, but few concern MOCO problems:

1. The ant colony optimization principle, based on the behavior or real ants, is
another EA principle (see [9, 23, 26,40] for examples).

2. The scatter search principle is based on a linear combination of solutions
selected from a candidate list, i.e., it uses a population of solutions [4, 33].

3. The particle swarm principle is based on the elementary moves of particles,
i.e., a population of solutions [6, 34].

4. Constraint programming (CP) techniques have been introduced in the solu-
tion procedure of MOP problems with the PICPA method [2]. The main goal
of CP in PICPA is to build a sharp bound in the the decision space around
the efficient frontier using value propagation mechanisms over variables.

4 Conclusion

To be efficient, an approximation method for solving an MOP seems to be
necessarily a hybrid algorithm, i.e., a combination of EA, NSA, and problem
specific components. This is in particular true for MOCO, where the adapation
of a universal method to a problem cannot compete with a method specifically
designed for this problem. Because one main challenge is the scalability problem
— the efficient solution of large scale problem instances — the future methods
will be specifically designed methods, “recycling” the 50 years of knowledge of
(single objective) optimization.

We are convinced that questions like how to reduce of the search space will
become even more important than they are today. Constraint programming,
cuts, and bounds appear to be possible answers as do the adaptation of in-
tensification components identified as efficient for combinatorial problems, like
path-relinking.

These challenges promise many future papers.
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