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SUMMARY: A multiobjective optimization technique has been developed for free radical bulk polymeriza-
tion reactors using genetic algorithm. The polymerization of methyl methacrylate in a batch reactor has been
studied as an example. The two objective functions which are minimized are the total reaction time and the
polydispersity index of the polymer product. Simultaneously, end-point constraints are incorporated to attain
desired values of the monomer conversion (x,) and the number average chain length (z.). A nondominated
sorting genetic algorithm (NSGA) has been adapted to obtain the optimal control variable (temperature)
history. It has been shown that the optimal solution converges to a unique point and no Pareto set is obtained.
It has been observed that the optimal solution obtained using the NSGA for multiobjective function optimiza-
tion compares very well with the solution obtained using the ssmple genetic algorithm (SGA) for a single
objective function optimization problem, in which only the total reaction time is minimized and the two end-

point constraints on X, and u, are satisfied.

I ntroduction

The physical properties of any polymer depend largely on
its molecular weight distribution (MWD). From the point
of view of applications, it is desirable to have a high
molecular weight product, often with a narrow MWD (at
times, though, broad MWD products may be more desir-
able). Martin et a.? and Nunes et al.? showed that nar-
rowing the MWD improves the thermal properties, stress-
strain relationships, impact resistance, hardness and
strength of the polymer. In order to produce such materi-
as in industria polymerization reactors, we must have
appropriate (optimal) operating conditions. Several stu-
dies have been reported on the optimization of polymeri-
zation reactors, and these have been reviewed recently by
Farber®, Chakravarthy et a.? and Mitraet a.” A detailed
discussion is, therefore, not being provided here. The
thrust in the recent past has been on the optimization of
reactors using multiple objective functions, as well as
end-point (product) constraints. It is found that the oper-
ating variables for polymerization reactors influence the
properties of the product in conflicting ways, i.e., these
complex systems are such that any desirable change in
one objective function often leads to a detrimental change
in another objective function. A multi-criteria analysis for
optimization of the operating conditions is, therefore,
quite important for industrial reactors.

In the present study, we discuss the multiobjective opti-
mization of afree-radical bulk polymerization batch reac-
tor which produces a desired end-product. The example

system chosen is the polymerization of methyl methacryl-
ate (MMA). An important objective function for this sys-
tem is the minimization of the final reaction time, t;. This
leads to higher productivity. The other objective function
is the minimization of the polydispersity index (PDI or
Q) of the polymer product. This ensures good physical
properties of the polymer manufactured. Two end-point
constraints are also used. The first is to attain a desired
(high) value of the monomer conversion, X.. This ensures
low post-reactor processing costs. The other important
end-point constraint is to produce polymer having a
desired value of the number average chain length, un.
The temperature history, T(t), aone [rather than T(t) as
well as an initiator addition history] is used as the ‘con-
trol’ or operating variable. Sacks et al.9 studied a similar
optimization problem (but with a single objective func-
tion only involving a weighted average of these indivi-
dual objectives) over twenty five years ago, using the
early models for the Trommsdorff” effect and using rela-
tively elementary optimization techniques. With more
powerful and robust optimization techniques now avail-
able*®12 which can solve problems involving multiple
objectives and end-point constraints correctly, it is appro-
priate that these be applied to study such problems, and
seeif similar solutions are obtained or not.

This study accounts for the gel (or Trommsdorff)
effect” which is exhibited during the polymerization of
MMA. The free-volume theory of Vrentas and Duda'® is
used to model this manifestation of diffusional resistance.
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The detailed theory and the rate constants and parameters
required for describing the Trommsdorff? effect are given
in our previous papers**9, and are not being repeated
here. An adapted version® (known as Nondominated
Sorting Genetic Algorithm, NSGA) of genetic algo-
rithm®9, an artificial intelligence based technique, is used
for obtaining optimal temperature histories. Mitra et al.”
have used this technique for the optimization of an indus-
trial nylon 6 reactor. By formulating a multi-objective
optimization problem for the PMMA batch reactor we
intend to investigate quantitatively the trade offs among
individual objectives and try to generate a wider range of
alternative operating policies.

For mulation

The mathematical model for the present study is based on
the general free radical polymerization kinetic scheme
shown in Tab. 1. It consists mainly of four major steps:
initiation, propagation, termination and chain transfer.
The mass balance and moment equations for methyl
methacrylate (MMA) polymerization in a semi-batch
reactor can easily be written, based on the kinetic scheme,
and are reported elsewhere*2. These are not repro-
duced here for the sake of brevity. Similarly, the values of
the different parameters to integrate the model equations
are also extensively reported*'219. In general, the state
variable equations can be written in the form:

dx/dt = f(x, u); X (t=0)=xXo @

where X is the state variabl e vector given by

x=[l,M,R, ;uo,il,;uz.ﬂo,#l,ﬂz,Cm]T 2

and u isthe control variable vector (hereit isascalar)

Tab. 1. Kinetic scheme for addition polymerization

Initiation | k5 2R
R+M X5 p,
Propagation Pot M —X5 Py,

Termination by combination P, + Pn LN Dn+m

Termination by disproportionation P,+ P _kay D, + D,
Chain transfer to monomer P,+ M ks P; + D,
Chain transfer to monomer P,+S %> S+D,

S+M P, s+ p
or

via solvent
S+M X5 D, +P,

ke, ke and ks are taken as zero in the present study (bulk polymer-
ization of MMA)

u(®)=u® =T ©)

The initial value problem (IVP) given by the ordinary
differential equations (ODEs) in Eg. (1) can be integrated
using the DO2EJF subroutine of the NAG library for any
given T(t) and initial values of the state variables. This
subroutine uses Gear’s technique® for integrating a set of
stiff ODES. Provision was made in the algorithm for self-
adjustment of the error-tolerance (TOL in the code).

The monomer conversion in a semi-batch reactor at
any time, t, isdefined as

Xm = (1 = M/) 4
where {1 is the total monomer added till time t. The mul-

tiobjective function optimization problem studied in this
work is

Min I[T@®)] =11, 1" = [t:, Q" (59)
subject to

Xerf = Xma = TOL4 (5b)

Ut = fng = TOL, (5¢)

dx/dt = f(x,u) X (t=0)=Xo (5d)

Toin<T =< Trnax (5¢)

where X and ung are the desired values of the monomer
conversion and of the number average chain length at the
final (total reaction) time, t;. TOL, and TOL, are taken as
0.005 and 20.00, respectively. The constraints on the
values, X+ and iy, are incorporated in the first objective
function, I, in the form of penalty functions with the
(large) weightage factors, wy, and w;

2 2
1
|1:tf+w1<1%) +w2<1—f) 6)

Mg

Minimization of |; leads to an increase in the produc-
tion capacity through a reduction of t;, while simulta-
neously giving preference to solutions satisfying the end
requirements. The second objective function, |,, aso in-
corporates the violations of X+ and un from their desired
values with the same weightage factors, w; and w;

lz—Qf+wl<1—XK”‘j)+w2(1— ”“) )

Hng

Minimization of Q; ensures a narrow breadth of the
molecular weight distribution of the product, and, hence,
product with desired physical properties, while simultane-
oudly satisfying the end-point requirements on X, and u,.

The two objective functions are usually conflicting in
nature and, therefore, provide an excellent opportunity
for carrying out multiobjective function optimization.
The solution of the multiobjective optimization problem
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described in Eq. (5) is obtained using the nondominated
sorting genetic algorithm (NSGA®9) adapted by our
group so as to apply for control variables which are con-
tinuous functions of time. Details of this adapted NSGA
are given elsewhere®. The Appendix provides a short
introduction. The optimization technique usually (but not
aways) leads to severa feasible solutions which satisfy
the end-point constraints on Xy and u (within specified
values of the tolerances). These solutions form what is
referred to as a Pareto set. The latter comprises severd
non-inferior or nondominated (optimal) points which
have the characteristic that if we go from one point to
another on this set, one objective function improves but
the other worsens.

Results and discussion

The adapted NSGA code for multiobjective optimization
was run for aPMMA batch reactor for the following case
(referred to as the reference case)

X = 0.94 (:0.005) (8a)
fing = 1850 (20) (8b)
60°C < T(t) < 90°C (8c)

These values are quite close to those used by Vaid and
Guptat”? and Chakravarthy et a.¥, and are identical to
those used by Garg et al.*? for single objective function
studies. The same values of X.y and ung are being used
here so that we can compare the results for the single and
the double objective function optimizations. The compu-
ter code developed herein was tested using standard
checks>'?, The CPU time required for running the pro-
gram for about 30 generations on a DECa 1000 was 69 s.
Tab. 2 gives the values of the several parameters used in
thiswork.

Fig. 1 shows all the feasible solutions (i.e., those satis-
fying the end-point constraints in Egs. (8a) and (8b) at
different values of Ny, the generation number. In the
initial generations, the feasible points move around in the
tr — Qr space, but as the generations evolve, the feasible

Tab. 2. Computational parameters used in this study?

Ny = 70 q=15

Ng = 10 TOL; = 0.005

Ng, max = 30 TOL, =20.00

Ne =100 T =+15.0°C; k=1, 2, ...., Nga
Nsm= 100 T =-150°C; k=1,2, ...., Nga
Ng =7 t, =4000s

p. =0.99 Wy =W, = 0.25 x 108

pm=0.0 =2

3 Parameters for NSGA described in the Appendix as well as
inref.®
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Fig. 1. Q vs. t; space showing convergence of the feasible
solutions over the generations. For Ny = 10 and 30, 61 fina
points were obtained (N, = 100), Xmq = 0.94, 1tnq = 1850
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Fig. 2. Feasible solutions over the generations with expanded
scales. Point A istaken as the optimal solution

points move towards a unique point. It may be added that
there are 61 feasible points in Fig. 1 (N, = 10 and 30),
several being duplicates or being almost indistinguishable
from the points shown. The points are shown for genera-
tions 15 to 30 in a highly expanded scale in Fig. 2. The
solution of our multiobjective function optimization pro-
blem with end-point constraints (Eqg. (5)), thus, is a
unique point (taken as point A in Fig. 2) with

Xu = 0.9396
Lt = 1850.58

tr = 1696.96 s
Qr=11.6275

9

Point A has been selected from among the severa
points in Fig. 2 such that the end-point values of x, and
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Tab. 3. Effect of different [I]o, Xma @nd e values on the opti-
mal solution

[I]O Xmd Mnd Xt Unt ti/s Qf
mol - m—3
15489 094 1850 0.9397 18506 1697 11.63
15.48 0.94 1900 0.8951 1900.8 1697 10.40
15.48 092 1850 09186 1860.3 1616 11.11
25.80 0.94 1800 0.9409 17986 2182 9.64
25.80 092 1800 0.9208 18014 2020 9.94
25.80 094 1850 09401 1848.0 2626 10.48

3 Reference case.

95

- — — SGA
—— NSGA

NSGA‘

SGA‘

65 1 1. 1 L i I
0 600 1200

1800
t, s

Fig. 3. Temperature history for the optimal solution (point A
in Fig. 2). The SGA history is aso shown for comparision

Un lie closest to the desired values. No Pareto set of non-
inferior solutions is obtained in this study. A similar con-
clusion (unique solution) is obtained for other combina-
tions of Xme @Nd g, &s observed from Tab. 3.

The optimal temperature history, Toy (t), for the optimal
solution described in Eq. (9) (reference case) is shown in
Fig. 3. It may be emphasized that in this study, a heat-bal -
ance equation is not used. Hence, the optimal temperature
histories, Top (t), in the well-stirred batch reactor must be
implemented using appropriate computer-control. This
may be relatively easy to achieve (using heating from a
jacket fluid), at least during the early stages of reaction,
when the temperature of the reaction mass goes up rela-
tively dowly. However, trying to maintain the tempera-
ture of the reaction mass at To(t) during the later stages
of reaction when the Trommsdorff effect manifests itself,
may not be astrivial, because of the excessive amounts of
the exothermic heat of reaction released in a relatively
short period of time. The focus of this study isto compute
Topt (t), and not the constraints associated with its indus-
trial implementation.

The optimal temperature history corresponding to our
previous? optimization study using a single objective
function only, and described by

Minl [T(H)] =t (10a)
subject to

X = Xma = 0.94 (10b)

Mg = ftng = 1850 (10c)

dx/dt =f(x, T) X ({t=0)=xo (10d)

60°C=T=<90°C (10e)

is also shown in Fig. 3. The (unique) optimal solution for
Eg. (10) was found using the ssimple GA (SGA)® 9, as

ti = 1656.56 s
Qr=11.2323

Yot = 0.9354
Lo = 1854.99

(11)

The end-point values of X+ and s in EQ. (11) are quite
similar to thosein Eq. (9). It is observed that the two tem-
perature histories in Fig. 3 are more or less the same,
except for some deviation in the early stages of reaction.
Fig. 4—6 show the variations of Xm, un and Q with time
for the optimal solutions for both the single and multiob-
jective cases (Egs. (5) and (7)). Again, the variations for
the two optimization problems are not too significant. It
may be noted that the value of Q shoots up from about
2.0 to about 11.6 in an extremely short period of time dur-
ing which the Trommsdorff effect manifests itself. The
high value of Q is because of the production of material
having very high molecular weights (instantaneous
values) during this short interval of time (essentially, a
bimodal molecular weight distribution is expected for the
final product).
The two interesting results from the present study, thus,
are
(i) the uniqueness of the optimal solution of the multiob-
jective optimization problem (Eg. (5)), and

(ii) the fact that the single optimal solution obtained for
the two-objective-function problem is similar to that
obtained in the single objective function problem
(Eq. (10)).

In the latter problem, the polydispersity index of the
product is not considered. A considerable amount of con-
troversy has existed in the open literature on the effect of
incorporating the PDI in the optimization problem using
somewhat indirect approaches® in which an objective
function is used which incorporates several objectives
with questionable values of weightage factors. These
approaches suffer from a drawback®29 that certain opti-
mal solutions can be missed, irrespective of the values of
the weightage factors associated with the several indivi-
dual objectives. This happens if the non-convexity of the
objective function gives rise to a duality gap. To the best
of our knowledge, thisisthe first time that a formally cor-
rect procedure has been used to solve a problem incorpor-
ating objective functions involving the minimization of t;
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Fig. 4. Variation of monomer conversion with time for the
optimal temperature histories shown in Fig. 3
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Fig. 5. Variation of the number average chain length with time
for the temperature histories shown in Fig. 3

and Qr, while ensuring desired vaues of Xy and g It
may be pointed out that Chakravarthy et al.? had found
some indications in their study that minimization of t
alone possibly ensures the minimization of Q in the pre-
sence of end-point constraints on X+ and uy. They had
not, however, actually solved the problem involving the
minimization of both t; and Q.

Conclusions

A unique solution has been obtained for the multiobjec-
tive optimization problem described in Eq. (5). No Pareto
set has been obtained. Temperature history has been used
as the control variable while minimizing Qr as well as t;,
while constraining X and u to lie at desired values. An
adapted NSGA technique has been used to obtain the
optimal solution. This is the first time in the open litera
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Fig. 6. Variation of the polydispersity index with time for the
temperature histories shownin Fig. 3

ture that a rigorously correct procedure has been used to
study this interesting multiobjective optimization pro-
blem in polymer reaction engineering.

Nomenclature

vector of objective functions
moles of initiator at any time't (in mal)
objective functions

Dn dead polymer molecule having n repeat units
I
|

Ka, Ko, ki rate constants for initiation, propagation and
termination in presence of the gel and glass
effects (ins®, or m®*- mol* - s?)

M moles of monomer in the liquid phase (in mol)

Nenr total number of binary digitsin chromosome

Ny generation number

Nga number of u values which GA generates

N, number of chromosomes

Nsim number of u values after interpolation

Nar number of binary digits representing each of
the control variable values

P, growing polymer radical having n repeat units

Pe crossover probability

Pm mutation probability

Q polydispersity index |= (%2 +:112)(/uo t'u")

(A1 +4y)

q desired number (approx.) of Pareto points
required to be generated

R moles of primary radical; universal gas constant
(inatm - m?- mol- K7

T temperature of the reaction mixture at timet
(inK)

TOL,, TOL, allowed tolerances on Xy and ¢, respectively

t time (in s)

t final reactiontime (in s)

u control vector (scaar, u, in thiswork)

Wi, W weightage factors
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X vector representing state variables
Xm monomer conversion (molar) at timet
Greek letters
a exponent controlling the sharing effect
Ak kth(k=0, 1, 2, ...) moment of live polymer
radicals (Pn)
= n"Pn] (in mol)
n=1
Lk kth (k=0, 1, 2, ...) moment of dead (D) poly-
mer chains
= Z nan] (in mol)
n=1
Un number average chain length at time t
Cm net monomer added till timet

Subscripts/Superscripts

d desired values

f final values (at t = t;)
max maximum value

min minimum value

0 initial value (at timet =0)

Appendix: Details of the nondominated sorting
genetic algorithm®

Fig. 7 shows a flowchart of the algorithm (NSGA) used
in this work. More details are provided in ref.?

1. At generation number, Ny = 0, a population having
N, members (called chromosomes) is generated (initialize
population in Fig. 7). Each chromosome in the population
carries the information of one digitized control variable
history [digitized set of values of the temperature, u(t) =
T(t)]. We discretize our control variable history, T(t), in
terms of Ny, equispaced pointsin 0 <t < t;o (to, an initial
estimate of t;, is to be supplied). Thus, each of the N,
chromosomes (called strings) comprises of a sequence of
Nga numbers (called substrings). Each of these substrings,
in turn, comprises a set of Ng binary numbers (O or 1).
Each chromosome, therefore, has Neyw = Nga x Ng, binary
digits. The Ny individual binaries in each of the N, chro-
mosomes are generated using a random number genera-
tion subroutine.

The complete binary string (sequence of N, binaries)
of the i"" chromosome, when decoded into real numbers,
u(F',fk, and interpolated (mapped) between the upper (U <
u™) and lower (u= u™") bounds of the control variables,
u, at that location, gives a digitized ul-history (a set of
Nga real values), [uph, U, ..., ub\,.], representing a T(t)
history. Thus, there is a set of N, chromosomes in the
initial population, each representing a digitized up(t)
[=T(1)] history, and each appropriately coded in the form
of astring of N, binaries.

Start

1. inttialize population
gen=0

front =1

is population classified 7 2. identify nondominated individuals

I

I 3. assign dummy fitness

=
—

No

7. reproduction according to
dummy fitness values

8. crossover

il

4.6. sharing in current front

. mutation l

ﬂ

5. front = front + 1

is gen < maxgen?

gen=gen+ 1 r—-—

l%
o
z
S

Fig. 7. A flowchart of the adapted NSGA. The numbers in
some of the boxes correspond to the sections in the Appendix

The decoded and adaptively mapped discretized
values, ug?k, are curve-fitted piece-wise (splines) to obtain
a continuous function, US'(t). A piece-wise cubic Her-
mite subroutine (EOLBFF from the NAG library) is used
to do this. This continuous function is again digitized to
give Ngm (=Nga) values of the control variable, [UJ}; | =
1, 2,..., Nen].

These more closely spaced, discretized values of U (t)
are fed to the simulation package, DO2EJF (of NAG
library) which integrates the state variable equations (EQ.
(1) starting with the given initial conditions and termi-
nating at the stopping condition, X, = Xm. The vaues of
the two objective functions, 1\ and 1" [at the final reac-
tiontimet = t;, see Egs. (6) and (7)], are computed for al
the N, chromosomes.

One additiona point needs to be emphasized. The com-
puter codes involving GA usualy maximize a fithess
function, F{), rather than minimize objective functions,
1), m =1, 2. Hence, we define fitness functions to con-
vert the minimization problem to an equivalent maximi-
zation problem as follows:

F)=1/@+1)

P =1/ 1)) (2

All the feasible points from among the N, chromo-
somes are identified (for plotting) at this stage. The feasi-
ble points or chromosomes are those satisfying Egs. (5b)
and (5c).
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2. A chromosome, i;, is said to be dominated by
another chromosome, i, (for the present problem of mini-
mization of | or maximization of F), if

R < F{? @
aswell as
R < R (b)

then

i1 isdominated by i, (o) (13)

We test each of the N chromosomes in the population
against all othersto sort out all dominated chromosomes.
As soon as a chromosome is found to be dominated, it is
not checked for dominance with any other chromosome
in the population. When all chromosomes have been
checked for dominance, and all dominated chromosomes
have been identified, the rest of the chromosomes are
given a front number, FRONT = 1. These chromosomes
having FRONT = 1 are caled nondominated chromo-
somes.

3. All nondominated chromosomes are then assigned a
dummy fitness value, F;, equal to Np.

4. Thereafter these dummy fitness values are modified
according to the sharing procedure described in item 6
below, to assign a shared fitness value. Sharing is done to
maintain diversity in the nondominated chromosomes.

5. In order to identify chromosomes for other fronts,
we temporarily discard all nondominated chromosomes.
The remaining chromosomes are again checked for domi-
nance using Eq. (13) and new nondominated chromo-
somes are sorted and given a front number, FRONT = 2.
Again, the new nondominated chromosomes (in FRONT
2) are given adummy fitness value, F;, which is dightly
smaller than the lowest of the shared fitness values of the
previous front. The sharing of the dummy fitness values
is performed again, and a shared fitness value is assigned
to each nondominated chromosome. This procedure is
continued until all N» chromosomes have been given a
front number.

6. Sharing: Sharing is performed among the members
of the i front (having n; members) using the following
procedure:

(a) For each chromosome, j, in front i, the dimension-
less distance, dy, of this chromosome from any other
chromosome, k, (including j) in the (same) front is calcu-
lated using

Nga 12
Ay = { [(ud; - U(Pkl))/(ugl?( - ug‘,iin)}z} (14)

(b) We calculate the niche count, m, using

S. Garg, S. K. Gupta

m = Z Sh(di) (15)
k=1
where
djk ¢ .
S(dh) = 1- < Teme ) y I O < Ogare (16)
0, otherwise
Osnare IS given by
: (a7

Oshare = 20/ (Nga+1)

In Eq. (17), g is the number of Pareto optima points
desired (we have used g = 15 in our study). The para-
meter, a, is an exponent which controls the sharing effect
(we have used a = 2 in the present study).

(c) The dummy fitness, F;, of each chromosome, j, in
front i, is modified by dividing F; by the chromosome’'s
niche count, ny, to calculate the shared fitness value, F’,
asfollows:

F-*
F' = a (18)

7. The stochastic remainder roulette wheel selection
procedure is used on the shared fitness values, and a mat-
ing pool of Nr chromosomes is generated. This procedure
involves proportionate selection, where first the number
of copies made of each chromosome is equal to the inte-
ger part of the value of F;’/F’. Here, F/ is the average
of the shared fitness values of all the N chromosomes in
the population. Additional copies of the j™ chromosome
in the i™ front (to make a total of N in the mating pool)
are made thereafter, using a roulette wheel with probabil-
ity proportional to the fractional part of F;j"/Fa’.

8. After the mating pool is created, crossover takes
place to produce the new population (next generation).
This operation takes place at the chromosome (binary)
level. Two chromosomes are randomly selected from the
mating pool, a crossing site is selected (randomly again),
and portions of the chromosomes before and after the
crossing site are exchanged. For example, for seven-bit
chromosomes with crossing site after the third binary, the
crossover is described by the following:

1001111 100 0100
—
1100100 110 1111 (19)

(old generation)  (new generation)

While performing crossovers, only p.Ne chromosomes
are crossed, the remaining being left untouched (p. is
referred to as the crossover probahility).

9. Another operation, called mutation, is also used to
improve the next generation. The mutation operator
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changes a binary number from 1 to O or vice versa, with a
probahility pm,. This operation is carried out for each of
the bits in the popul ation, again using appropriate random
numbers. The need for mutation leads to a loca search
around the current solution and helps maintain the diver-
sity of the population.

This completes one generation of NSGA. These sets of
operations are carried out from one generation to the next
until the number of generations equals the maximum
number, Maxgen, specified at the starting of the program
asan input parameter.
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