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SUMMAR
�

Y: A multiobjective optimization technique has been developed for free radical bulk polymeriza-
tion
�

reactors using genetic algorithm. The polymerization of methyl methacrylate in a batch reactor has been
studied� as an example. The two objective functions which are minimized are the total reaction time and the
polydispersity� index of the polymer product. Simultaneously, end-point constraints are incorporated to attain
desired
�

values of the monomer conversion (x	 m
 )
�

and the number average chain length (� n ).� A nondominated
sorting� genetic algorithm (NSGA) has been adapted to obtain the optimal control variable (temperature)
history
�

. It has been shown that the optimal solution converges to a unique point and no Pareto set is obtained.
It has been observed that the optimal solution obtained using the NSGA for multiobjective function optimiza-
tion
�

compares very well with the solution obtained using the simple genetic algorithm (SGA) for a single
objective� function optimization problem, in which only the total reaction time is minimized and the two end-
point� constraints on x	 m
 and� �

n are� satisfied.

Intr
�

oduction
The
�

physical properties of any polymer depend largely on
its
�

molecular weight distribution (MWD). From the point
of� view of applications, it is desirable to have a high
molecula� r weight product, often with a narrow MWD (at
times,
�

though, broad MWD products may be more desir-
able).� Martin et al.1) and� Nunes et al.2) showed� that nar-
rowing� the MWD improves the thermal properties, stress-
strain� relationships, impact resistance, hardness and
strength� of the polymer. In order to produce such materi-
als� in industrial polymerization reactors, we must have
appropria� te (optimal) operating conditions. Several stu-
dies
�

have been reported on the optimization of polymeri-
zation reactors, and these have been reviewed recently by
Farber
� 3)

�
, Chakravarthy et al.4)

�
and� Mitra et al.5)

�
A
 

detailed
discussion
�

is, therefore, not being provided here. The
thrust
�

in the recent past has been on the optimization of
reactors� using multiple objective functions, as well as
end-point! (product) constraints. It is found that the oper-
ating� variables for polymerization reactors influence the
properties" of the product in conflicting ways, i. e., these
complex# systems are such that any desirable change in
one� objective function often leads to a detrimental change
in another objective function. A multi-criteria analysis for
optimizati� on of the operating conditions is, therefore,
quite$ important for industrial reactors.

In the present study, we discuss the multiobjective opti-
mization� of a free-radical bulk polymerization batch reac-
tor
�

which produces a desired end-product. The example

system� chosen is the polymerization of methyl methacryl-
ate� (MMA). An important objective function for this sys-
tem
�

is the minimization of the final reaction time, t% f& . This
leads to higher productivity. The other objective function
is
�

the minimization of the polydispersity index (PDI or
Q)
'

of the polymer product. This ensures good physical
pr" operties of the polymer manufactured. Two end-point
con# straints are also used. The first is to attain a desired
(h
(

igh) value of the monomer conversion, x) m* . This ensures
low post-reactor processing costs. The other important
end! -point constraint is to produce polymer having a
desired
�

value of the number average chain length, + n, .
The temperature history, T(

(
t% ),' alone [rather than T(

(
t% ) a
'

s
wel- l as an initiator addition history] is used as the ‘con-
trol’
�

or operating variable. Sacks et al.6)
.

stud� ied a similar
opt� imization problem (but with a single objective func-
tio
�

n only involving a weighted average of these indivi-
dua
�

l objectives) over twenty five years ago, using the
earl! y models for the Trommsdorff7)

/
ef! fect and using rela-

tiv
�

ely elementary optimization techniques. With more
power" ful and robust optimization techniques now avail-
able� 4, 8–12) which- can solve problems involving multiple
obj� ectives and end-point constraints correctly, it is appro-
pr" iate that these be applied to study such problems, and
se� e if similar solutions are obtained or not.

This
�

study accounts for the gel (or Trommsdorff)
ef! fect7)

/
which- is exhibited during the polymerization of

MMA.
0

The free-volume theory of Vrentas and Duda13) is
�

used1 to model this manifestation of diffusional resistance.
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The
�

detailed
�

theo
�

ry� and� the
�

rate� consta# ntsD and� paramet" ers!
required for descr

�
ibing the

�
Trommsdorf

�
f7)
/

ef! fect are� givE en!
in
�

our� previous" papers" 4,
�

14, 15), and� are� notD being
F

repeated�
here.
G

An
 

adap� ted
�

versionH 5)
�

(know
(

nD as� Nondo
I

minated�
Sorting
J

Gene
K

tic
�

Algorithm,� NSGA
I

)
'

of� geneE tic
�

algo� -
rithm� 8,

L
9)
M

, an� artifi� cial# intelli
�

genceE based
F

techn
�

ique,
�

is
�

used1
for
N

obt� aining� optima� l
O

tempera
�

ture
�

histori
G

es.! Mit
0

ra� et! al.� 5)
�

have used1 this
�

techn
�

ique for the
�

opt� imization of� an� indus-
trial
�

nylD on� 6
P

react� or� . By
Q

formula
N

ting
�

a� mu� lti-objecti
O

veH
optimi� zation problem" for the

�
PMMA batch

F
reactor we-

intend to
�

investigate
�

quantit$ atively� the
�

trade
�

of� fs among�
individual
�

objectiv� es! and� try
�

to
�

generateE a� wider- ran� geE of�
alternati� veH operati� ng pol" icies.

Formulation
The
�

mathem� atical� mo� del
�

for
N

the
�

present" study� is
�

based
F

on�
the
�

geneE ral free radical pol" ymerizatioR n kinetic sc� heme
shown� in

�
T
�

ab.� 1. It
S

consist# s� mai� nlyD of� four
N

major� steps:�
initiation,
�

propaga" tion,
�

terminatio
�

nD and� chain# transfer
�

.
The mass balan

F
ce# and� moment

�
equa! tions

�
for methyl

methacr� ylateR (MM
(

A)
 

polym" erization! in
�

a� semi-bat� ch#
reactor� can# easily! be

F
wr- itten,

�
based
F

on� the
�

kinetic
T

schem� e,!
and� are� reported� elsew! here4,

�
12, 14). These

�
are� notD repro� -

duced
�

here for the
�

sake� of� br
F

evity! . Si
J

milarly, the
�

valuH es! of�
the
�

dif
�

ferent
N

paramete" rs� to
�

integrate
�

the
�

mo� del
�

equations!
are� also� exten! sively� reported� 4, 12, 14). In

S
genE eral,! the

�
state�

variableH equat! ions can# be
F

written- in the
�

form:

d
�

xU /d
V

tW = f
X

(
�
xU ,Y uZ );

�
xU (
�
tW = 0)

[
= xU 0

\ (1)
�

where- x] is
�

the
�

state� variablH e! vectH or� givenE by
F

xU = [I,Y M,Y R,Y ^ 0
\ ,Y _ 1 ,Y ` 2

a ,Y b 0
\ ,Y c 1 ,Y d 2

a ,Y e m
 1]
f T
g

(2)
�

and� uh is the
�

control# varH iable vectorH (here
(

it is a� scalar)�

uZ (
�
tW )� = ui (

�
tW )� = T(

�
tW )� (3)

�
The
�

initial
�

valueH proble" m� (IVP)
(

givenE by
F

the
�

or� dinary
�

dif
�

ferent
N

ial
�

equ! ations� (O
(

DEs)
j

in
�

Eq.
k

(1)
(

can# be
F

integrated
�

usin1 gE the
�

D02EJF subrout� ine of� the
�

NAG
I

library for any�
givE en! T(

(
t% )' and� initial

�
valueH s� of� the

�
state� varH iables.

�
This
�

subro� utine1 uses1 Gear
K

’s� techn
�

ique
� 16) fo

N
r� integratin
�

gE a� set� of�
stif� f OD

l
Es. Provision was- made! in the

�
algo� rithm for se� lf-

adju� stment� of� the
�

error! -tolerance� (
(
TOL in the

�
code).#

The
�

monomer� conversi# on� in
�

a� semi-bat� ch# react� or� at�
any� time,

�
t% , is defined

�
as�

x	 m
 = (1
�

– M
m

/
V n

m
 1)
�

(4)
�

wh- ere! o
m* 1 is

�
the
�

total
�

monomer� added� till
�

time
�

t% . The
�

mul-�
tio
�

bjective
F

function� optimizatio� n pr" oblem� studied� in this
�

wo- rk is

Min I[T(
�
tW )]� p

[I1 ,Y I2]
f T = [tW fq ,Y Q

r
f
q ]f T (5a)

�
subj� ect! to

�
x	 mf
 = x	 md
 s T

t
OL
u

1 (5b)
�

v
nfw = x ndw y T

t
OL
u

2
a (5c)

�
d
�

xU /d
V

tW = f
X

(
�
xU ,Y uZ )

�
xU (
�
tW = 0)

[
= xU 0

\ (5d)
�

T
t

min
 z T
t {

T
t

max
 (5e)
�

wh- ere! x) md* and� |
nd} are� the

�
desired
�

valuH es! of� the
�

mo� nomerD
con# versionH and� of� the

�
number aver� age� chain# length

�
at� the

�
final
N

(total
(

reac� tion)
�

time,
�

t% f& . TOL1 and� TOL2 are� taken
�

as�
0.
~

005
~

and� 20.00
�

, respective� ly
O

. The
�

const# raints� on� the
�

valuH es,! x) mf* and� �
nf, , are� incorporated� in the

�
first obj� ective!

fu
N

nction,D I
�

1, in
�

the
�

form
N

of� pen" alty� functi
N

ons� with- the
�

(la
(

r� ge)E weightag- e! factors,
N

w� 1 and� w� 2
�

I1 � tW fq � w� 1 1 � x	 mf

x	 md


2
a �

w� 2
a 1 � �

nf�
nd

2
a �

6
� �

Minimization of� I1 leads to
�

an� increase in the
�

produc-"
tio
�

nD capacit# yR through
�

a� reduction� of� t% f& , wh- ile
�

simulta� -
neously1 givingE preference" to

�
solution� s� satisf� yingR the

�
end!

requirements.1 The second� objective� function, I2 , also� in-
cor# porates" the

�
violationsH of� x) mf* and� �

nf, from
N

their
�

desired
�

valuH es! with- the
�

same� weightag- e! factors, w� 1 and� w� 2
�

I
�

2
a � Q

r
f
q � w� 1 1 � x	 mf


x	 md

2 �

w� 2
a 1 � � nf�

nd
2 �

7
� �

Minimization of� Qf
& ensures! a� narrow brea

F
dth
�

of� the
�

mo� lecular
O

weight- distrib
�

ution1 of� the
�

produ" ct,# and� , hence
G

,
pr" oduct� with- desired

�
phy" sical� propertie" s,� wh- ile simultan� e-!

ousl� yR satisfyin� gE the
�

end-point! requirements! on� x) m* and� �
n, .

The
�

two
�

obj� ective! functi
N

ons� are� usua� lly
�

confli# cting# in
�

natuD re� and,� therefore
�

, pr" ovide� an� excel! lent
O

opp� ortunity�
for carrying# out� multiobjective

F
function optimizatio� n.

The solution� of� the
�

multiobjective opt� imization problem"

Tab.; 1. Kinetic scheme� for addition; polymerization

Initiation I
�  ¡ ¡ £¢k

¤
d 2

¥
R
¦

R + M §¡§¡§£¨k
¤

i P1

Propagation Pn© + M ª¡ª¡ª£«k
¤

p¬ Pn© +1
Termin® ation; by

=
combinaA tion Pn© + Pm¯ °¡°¡°£±k

¤
tc D

²
n+m©

Termin® ation; by
=

disprop
³

ortionation: Pn© + Pm¯ ´¡´¡´£µk
¤

td D
²

n© +¶ D
²

m¯
Chain transfer

·
to monomer Pn© + M ¸¡¸¡¸£¹k

¤
f
º

P1 + Dn©
Chain transfer

·
to monomer Pn© + S »¡»¡»£¼k

¤
s½ S

¾
+ Dn©

via¿ solvent S + M
À Á¡Á¡Á¡Á£Âfast

Ã
S + P

Ä
1

or

S + M Å¡Å¡Å£Æk
¤

s½ Dn© + P1

ktc
Ç ,È k

É
f
Ê and; ksË are; taken

·
as; zero in

B
the
·

presen> t study� (bulk polymer-
ization of: MMA)
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described
�

in
�

Eq.
k

(5)
(

is
�

obtained� using1 the
�

nondomiD natedD
sorting� genetE ic algo� rithm (NSGA

( 8–10)
L

)
'

adapted� by
F

our�
groupE so� as� to

�
apply� for

N
control# variablH es! wh- ich

�
are� con-#

tinuous
�

functions
N

of� time.
�

Detai
j

ls
O

of� this
�

adapte� d
�

NSGA
I

are� givenE elsew! here5)
�

. The Appendix provi" des
�

a� short�
introducti
�

on.� The
�

optim� ization
�

tech
�

niqueD usually1 (but
(

notD
always)� leads

O
to
�

several� feasi
N

ble
F

solution� s� whi- ch# satisf� yR
the
�

end! -point const# raints on� x) mf* and� Î
nf, (w
(

ithin specified�
valuesH of� the

�
toleran
�

ces).# These
�

solu� tions
�

fo
N

rm� what- is
�

referred to
�

as� a� Pareto set.� The latter compris# es! se� veralH
non-inferior or� nondomina

�
ted
�

(opti
(

mal) poi" nts whi- ch#
have
G

the
�

character# istic
�

that
�

if
�

we- goE from
N

one� point" to
�

another� on� this
�

set,� one� obj� ective! function improves but
F

the
�

oth� er! worsen- s.�

Results
Ï

andÐ discussion
Ñ

The adapt� ed! NSGA
I

code# for multiobjective optimizatio� n
was- run� for

N
a� PM
Ò

MA
0

batch
F

react� or� fo
N

r� the
�

followin
N

gE case#
(referred
(

to
�

as� the
�

reference case)#
x	 md
 = 0.94

[
(
� Ó

0.005)
[

(8a)
�

Ô
nd = 1850

Õ
(
� Ö

20) (8b)
�

60
� ×

C
Ø Ù

T
t

(
�
tW )� Ú 90

Û Ü
C
Ø

(8c)
�

These
�

valuH es! are� quite$ close# to
�

those
�

used1 by
F

V
Ý

aid� and�
Gupta
K 17) and� Chak

Þ
ravarthy et! al.� 4)

�
, and� are� identical

�
to
�

those
�

used1 by
F

Gar
K

gE et! al.� 12) for
N

single� objectiv� e! function
N

studies.� The
�

same� valuH es! of� x) md* and� ß
nd, are� bein

F
gE used1

here so� that
�

we- can# com# pare" the
�

results for the
�

sing� le and�
the
�

dou
�

ble
F

objec� tive
�

fu
N

nctionD opt� imizatio
�

ns.D The
�

com# pu-"
ter
�

cod# e! deve
�

loped
O

here
G

in
�

was- tested
�

usin1 gE standard�
checks# 5,

�
12). The CPU

Þ
time
�

required for running the
�

pro-"
gramE for about� 30

à
generatE ions on� a� DECá 1000

~
was- 69

P
s.�

T
�

ab.� 2
�

givesE the
�

valuesH of� the
�

several� para" meters� used1 in
�

this
�

wo- rk.
Fig. 1 show� s� all� the

�
feasible

F
solution� s� (i.

(
e.,! those

�
satis-�

fying
N

the
�

end-po! int
�

const# raints� in
�

Eqs.
k

(8a)
(

and� (8b)
(

at�
dif
�

ferent
�

valuH es! of� N
â

gã , the
�

genE eration! number. In the
�

initial genE erations,! the
�

feasible poi" nts move around� in the
�

t% f& – Qf
& space,� but

F
as� the

�
geneE rations� evol! ve,H the

�
feasible
N poi" ntsD mo� veH tow

�
ards� a� unique1 point." It

S
may� be

F
adde� d

�
that
�

there
�

are� 61
P

feasible points" in Fig. 1 (
(
N
â

gã = 10 and� 30),
à

se� veralH being
F

dup
�

licates or� being
F

almost� indistinguishable�
from
N

the
�

points" shown.� The
�

points" are� shown� for
N

genE era-!
tio
�

ns 15 to
�

30
à

in a� highly expande! d
�

sca� le in Fig. 2. The
solu� tion

�
of� our� mu� ltiobject

O
ive
�

function
N

optimi� zationä pro-"
blem
F

with- end-po! int
�

const# raints� (Eq.
(

(5))
(

, thus,
�

is
�

a�
uni1 que$ point" (ta

(
ken as� poi" nt A in Fig. 2) with-

tW fq = 1696.96 s� x	 mf
 = 0.9396
[

Q
r

f
q = 11.6275 å nf = 1850.58

(9)
�

Point
Ò

A
 

has
G

been
F

selected� from
N

amo� ngD the
�

sever� al�
poi" nts in Fig. 2 such� that

�
the
�

end! -point valueH s� of� x) m* and�

Tab.; 2. Computational parameters> used in this study� a)æ
N
ç

chrè = 70 qé = 15
N
ç

gaê = 10 TOL
ë

1 = 0.005
ì

N
ç

g,ê max¯ = 30 T
í

OL
ë

2 = 20.00
¥

N
ç

P = 100 Tk
î max = + 15.0 ï C; k = 1, 2, ...., N

ç
gaê

N
ç

simð = 100 T
í

k
î min = –15.0 ñ C; k

ò
= 1, 2, ....,ó N

ç
gaê

N
ç

strð = 7
ô

tõ fö 0 = 4000 s
p÷ cè = 0.

ì
99 wø 1 = w2 = 0.25

ì ù
106
ú

p÷ m¯ = 0.0 û = 2

a)æ Param
ü

eters® for
<

NSGA described
³

in
B

the Appendix as; well as
in ref.5)

ý

Fig. 1. Q
þ

f
ö vs.¿ tõ fö space showing conveA r? gence@ of: the

·
feasible
<

solutions over: the
·

genera@ tions.
·

For
ÿ

N
ç

gê = 10 and; 30,
�

61
�

final
points were obtaine: d

³
(
�
N
ç

p� = 100), x� md¯ = 0.94, � nd© = 1850

Fig. 2. Feasible® solutions� over: the
·

generations@ with� expanded®
scales. Point A is taken

·
as; the

·
optimal: solution
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�
n, lie
O

closest# to
�

the
�

desired
�

valuH es.! No
I

Pareto
Ò

se� t
�

of� nonD -
inferior solution� s� is obtained� in thi

�
s� study� . A similar� con-#

clusion# (uniq
(

ue1 solution� )
'

is obta� ined for oth� er! combin# a-�
tions
�

of� x) md* and� �
nd, , as� observe� d

�
from
N

T
�

ab.� 3.
à

The opt� imal tem
�

perature" history, Topt	 (
(
t% ),' for the

�
opt� imal

solution� descr
�

ibed
�

in
�

Eq.
k

(9)
(

(ref
(

erence! case)# is
�

show� nD in
�

Fig.
�

3.
à

It
S

may� be
F

emp! hasized
G

that
�

in
�

thi
�

s� study� , a� heat-bal
G

-
ance� equation! is not used.1 Hence, the

�
optim� al� temper

�
ature�

histories,
G

Topt	 (
(
t% ),' in

�
the
�

well- -stirred batch
F

reactor� mu� st� be
F

implemented



using1 appropria� te
�

com# puter" -control. This
�

may be
F

relativelyR easy! to
�

achiev� e! (u
(

sing� heating from a�
jacket
�

fluid
N

),
'

at� least
O

durin
�

gE the
�

earl! yR stages� of� reaction� ,
when- the

�
temper
�

ature� of� the
�

reaction
�

mass goesE up1 rela-�
tively
�

slowly� . However, tryin
�

gE to
�

maintain the
�

temper
�

a-�
ture
�

of� the
�

reaction� mass� at� Topt	 (
(
t% )' durin
�

gE the
�

later stages�
of� reaction� when- the

�
T
�

rommsdorf� f
N

ef! fect
N

manife� sts� itself,
�

may not be
F

as� trivial
�

, becau
F

se� of� the
�

excessiv! e! amount� s� of�
the
�

exothermic! heat of� reaction
�

released� in a� relativelyR
short� per" iod

�
of� time.

�
The
�

foc
N

us1 of� thi
�

s� study� is
�

to
�

comput# e!
Topt	 (

(
t% ),' and� not the

�
const# raints as� sociated� with- its indus-

trial
�

implemen
�

tation.
�

The
�

optimal� tempera
�

ture
�

hist
G

ory� cor# responding� to
�

our�
previous" 12) optimizatio� n stud� yR using1 a� single� objective
function
�

onl y� , and� described
�

by
F

Min I [T(
�
tW )]� �

tW fq (10a)
�

subj� ect! to
�

x	 mf
 = x	 md
 = 0.94
[

(10b)
�

�
nf = � nd = 1850

Õ
(10c)
�

d
�

xU /d
V

tW = f
X

(
�
xU ,Y T)

�
xU (
�
tW = 0)

[
= xU 0

\ (10d)
�

60
� �

C
Ø �

T
t �

90
Û �

C
Ø

(10e)
�

is
�

also� show� nD in
�

Fig.
�

3.
à

The
�

(unique)
(

optimal� solutio� nD fo
N

r�
Eq. (1

(
0)
~

was- found using1 the
�

simple� GA
K

(SGA)
( 8,

L
9)
M

, as�
tW fq = 1656.56

�
s� x	 mf
 = 0.9354

[
Q
r

f
q = 11.2323 � nf = 1854.99

(1
�

1)

The
�

end-po! int
�

valuesH of� x) mf* and� �
nf, in
�

Eq.
k

(1
(

1) are� qui$ te
�

sim� ilar to
�

tho
�

se� in Eq. (9
(

).
'

It is observed� that
�

the
�

two
�

tem
�

-
per" ature� histories! in Fig. 3

à
are� more or� less the

�
same,�

excep! t
�

fo
N

r� som� e! devia
�

tion
�

in
�

the
�

earl! yR stages� of� reaction� .
Fi
�

g.E 4
C

–6
P

show� the
�

varH iations
�

of� x) m* , � n, and� Q with- time
�

for the
�

optimal� solutio� ns for both
F

the
�

single� and� multiob-
jecti
�

veH cas# es! (Eqs.
(

(5)
(

and� (7)).
(

Again,
 

the
�

varH iations
�

fo
N

r�
the
�

two
�

optim� ization
�

probl" ems! are� notD too
�

sign� ificant.
�

It
S

may be
F

noted that
�

the
�

valueH of� Q shoots� up1 from about�
2.
�

0
~

to
�

about� 11.6 in
�

an� extremely! short� per" iod
�

of� time
�

dur
�

-
ing which- the

�
Trommsdorf

�
f ef! fect manifests� itself. The

high valuH e! of� Q is because
F

of� the
�

produ" ction# of� material
hav
G

ing
�

veryH high
G

mo� lecular
O

weights- (instanta
(

neousD
valuH es)! during

�
this
�

short� interval! of� time
�

(essent
(

ially, a�
bimo
F

dal
�

molecular weight- distributi
�

on� is expect! ed! for the
�

final
N

produ" ct).#
The two

�
interesting results from the

�
present" study� , thu

�
s,�

are�
(i)
(

the
�

uniquen1 ess! of� the
�

opt� imal
�

solution� of� the
�

mu� ltiob-
O

jective
�

opt� imization problem" (Eq.
(

(5
(

)),
'

and�
(ii)
(

the
�

fact
N

that
�

the
�

single� optim� al� solution� obtained� fo
N

r�
the
�

two-o
�

bjective-fu
F

nction problem" is sim� ilar to
�

that
�

obtained� in the
�

sing� le objec� tive
�

function problem"
(Eq.
(

(10)).
(

In the
�

latter! probl" em,! the
�

polydisper" sity� index! of� the
�

pr" oduct� is not con# sidered.� A con# siderable� amo� unt1 of� con# -
trove
�

rsy� has
G

exist! ed! in
�

the
�

open� lite
O

rature� on� the
�

ef! fect
N

of�
incorporatingE the

�
PDI in the

�
optimi� zation probl" em! usin1 gE

som� ewhat! indirect
�

app� roaches� 18) in wh- ich an� obje� ctive#
function is used1 which- incorporates severa� l obj� ectives!
wit- h

G
question$ able� valuesH of� weightag- e! factors.

N
These
�

app� roaches suf� fer from a� dra
�

wback- 19, 20)
�

that
�

certain# opti-�
mal� solution� s� can# be

F
missed� , irrespect

�
ive
�

of� the
�

valuesH of�
the
�

weighta- geE factors
N

as� sociated� with- the
�

several� indivi
�

-
dua
�

l objectiv� es.! This happens if the
�

non-convexity of� the
�

obj� ective! functi
N

on� givE es! rise� to
�

a� dual
�

ity
�

gap.E T
�

o� the
�

best
F

of� our� knowledge,
T

this
�

is
�

the
�

first
N

time
�

that
�

a� formally
�

cor# -
rect proced" ure1 has been

F
used1 to

�
solv� e! a� problem" incorpor-

atin� gE obj� ective! functi
N

ons� involving
�

the
�

mi� nimizatiD on� of� t% f&

Tab.; 3. Effect of different [I ]0
� , x� md¯ and � nd© values on the opti-:

mal solution�
�
I
� �

0
�

mol � m� 3
 x� md¯ ! nd© x� mf¯ " nf© tõ fö /s# Q

þ
f
ö

15.48a)æ 0.94 1850 0.9397 1850.6 1697 11.63
15.48 0.94 1900 0.8951 1900.8 1697 10.40
15.48 0.92 1850 0.9186 1860.3

$
1616
�

11.11
25.80 0.94 1800 0.9409 1798.6

ô
2182 9.64

%
25.80 0.92 1800

$
0
ì

.9208ó 1801.4
$

2020
ì

9.94
%

25.80 0.94
ì

1850
$

0
ì

.9401ó 1848.0
$

2
¥

626
�

10.48

a)æ Reference& case.A

Fig. 3. T
'

emperature history for the optimal: solution (point
�

A
in Fig.
ÿ

2).
¥

The
'

SGA history is also; shown� for
<

comparision
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and� Qf
& , wh- ile ensurin! gE desired

�
valuesH of� x) mf* and� )

nf, . It
may be

F
poi" nted out� that

�
Chak
Þ

ravarthy et! al.� 4) had found
some� indication



s� in
�

their
�

study� that
�

mi� nimizatiD on� of� t% f&
alone� possib* ly

�
ensu! res� the

�
minim� ization

�
of� Qf

& in
�

the
�

pr" e-!
sence� of� end-po! int const# raints on� x) mf* and� +

nf, . They had
not, , however

G
, actua� lly

O
solved� the

�
proble" m� inv

�
olving� the

�
minim� ization

�
of� bot

F
h
G

t% f& and� Qf
& .

Conclusions
A uni1 que$ solution� has been

F
obtained� for the

�
multiobjec-

tive
�

optimi� zationä probl" em! descr
�

ibed
�

in
�

Eq.
k

(5).
(

No
I

Pareto
Ò

set� has been
F

obt� ained.� Temperatur! e! historyR has been
F

used1
as� the

�
contro# l varH iable while- minimizing Qf

& as� well- as� t% f& ,
while- const# raining� x) mf* and� -

nf, to
�

lie
O

at� desired
�

valuH es.! An
 

adapte� d
�

NSGA
I

techniqu
�

e! has
G

been
F

used1 to
�

obtain� the
�

optimal� solution� . This is the
�

first time
�

in the
�

open� litera-

ture
�

that
�

a� rigorously� correct# procedu" re has been
F

used1 to
�

stud� yR this
�

interesti
�

ngD mu� ltiobject
O

ive
�

opt� imizatio
�

nD pro-"
blem
F

in
�

pol" ymerR reaction� engi! neering.D

Nomenclatur
.

e/

Dn dead
�

polymer� molecule having n0 repeat units1
I
2

vector3 of� objective� functions
4

I
�

moles5 of� initiator
6

at� any� time
�

tW (in
�

mol)5
I
�

1,Y I
�

2 objective� functions
4

k
7

d
8 ,Y k
7

p9 ,Y k
7

t: rate constants; for initiation, propagation� and�
termination
�

in
6

presence� of� the
�

gel< and� glass<
ef= fects (in

�
s� –1,Y or� m3

> ?
mol–1 @ s� –1)

�
M
m

moles5 of� monomer5 in
6

the
�

liquid
A

phase� (in
�

mol)5
N
B

chrC total
�

number of� binary
D

digits
�

in chromosome;
N
B

gE generation< numberF
N
B

gaE number of� ui values3 whichG GA
H

generates<
N
B

p9 numberF of� chromosomes;
N
B

simI number of� ui values3 after� interpolation
N
B

strI number of� binary
D

digits
�

representing each= of�
the
�

control; variable3 values3
P
J

n growing< polymer� radicalK having
�

n0 repeatK units1
pL cC crossover; probability�
pL m
 mutation5 probability�
Q
r

polydispersity� index
6 M NPO 2 QSR 2 TVUPW 0

\ XSY
0
\ Z[]\

1 ^`_ 1 a 2
a

qb desired
�

numberF (approx.)
�

of� Pareto
c

points�
requiredK to

�
be
D

generated<
R
d

moles5 of� primary� radical;K universal1 gas< constant;
(in
�

atm� e m5 3
> f

mol5 –1 g K
h –1)

�
T
t

temperature
�

of� the
�

reactionK mixture5 at� time
�

tW
(in
�

K)
h

TOL
u

1,Y TOL
u

2
a allowed� tolerances

�
on� x	 mf
 and� i

nf ,Y respectively
tW time

�
(in
�

s)�
tW fq final reaction time

�
(in
�

s)�
uZ control; vector3 (scalar

�
,Y ui ,Y in this

�
work)G

w� 1,Y w� 2
a weightageG factors

Fig. 4. V
j

ariation; of monomer conveA rsion with time
·

for th
·

e
optimal temperature

·
histories
k

shown� in Fig.
ÿ

3

Fig. 5. V
j

ariation; of the number average chain length with time
·

for the tempe
·

rature histories shown� in Fig. 3
�

Fig. 6. V
j

ariation; of the
·

polydispersity index with time for th
·

e
temperature? histories shown in

B
Fig. 3

�
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xU vector3 representing state� variables3
x	 m
 monomer conversion; (molar)

�
at� time
�

tW
Gr
l

eekm letters
n

o exponent= controlling; the
�

sharing� ef= fectp
k
q k

7
th
�

(
�
k
7

= 0,
[

1, 2,
r

...) moment5 of� live
A

polymer�
radicals (

�
Pn )�

s t
n u 1

n0 k
q
Pn (in

�
mol)

v
k
q k

7
th
�

(
�
k
7

= 0,
[

1, 2,
r

...) moment5 of� dead
�

(
�
D
w

n )� poly-�
mer5 chains;
x y

n z 1

n0 k
q
D
w

n (in
�

mol)5
{

n numberF average� chain; length
A

at� time
�

tW|
m
 1 net monomer added� till

�
time
�

tW
Subscripts/Superscripts
}
d
~

desired
�

values3
f
�

final values3 (at
�

tW = tW fq )�
max� maximum value3
min� minimum5 value3
0
[

initial value3 (at
�

time
�

tW = 0)
[

Appendix: Details of� the
�

nondominated sorting�
genetic� algorithmÐ 5)

�
Fig.
�

7
�

shows� a� flowch
N

art� of� the
�

algo� rithm� (NSGA)
(

used1
in
�

this
�

work.- More
0

detai
�

ls
O

are� provi" ded
�

in
�

ref.� 5)
�

1. At genE eration! number, N
â

gã = 0,
~

a� popula* tion% having
N
â

p� members (called
(

chrom# osomes� )
'

is generatedE (initialize
(

population" in
�

Fig.
�

7).
�

Each
k

chr# omosome� in
�

the
�

pop" ulation1
carries# the

�
information� of� one� digitiz

�
ed! contro# l variableH

history
�

[digitized set� of� valuH es! of� the
�

temper
�

ature,� u� (
(
t% )' �

T(
(
t% )].'

W
�

e! discretize
�

our� con# trol
�

variableH history
G

, T(
(
t% ),' in

�
terms
�

of� N
â

gaã equispaced! poi" nts in 0
~ �

t% � t% f& 0
� (
(
t% f
&

0
� , an� initial

estima! te
�

of� t% f
& , is

�
to
�

be
F

supplied).� Thus,
�

each! of� the
�

N
â

p�
chromosom# es! (called

(
strings)� compris# es! of� a� se� quence$ of�

N
â

gaã numbers! (called
(

substrin� gs).E Each of� these
�

subst� rings,
in
�

turn,
�

comprise# s� a� set� of� N
â

str� binary
F

numbersD (0
(

or� 1).
Each chr# omosome,� therefore,

�
has N

â
chr� = N

â
gaã � N

â
str� binary

F
digits.
�

The N
â

chr� individual
�

binarie
F

s� in each! of� the
�

N
â

p� chro-#
mosomes� are� generateE d

�
usin1 gE a� random� numbeD r� genE era-!

tion
�

subrou� tine.
�

The
�

complet# e! bin
F

ary� stri� ngD (sequenc
(

e! of� N
â

chr� bina
F

ries)�
of� the

�
i

 th
�

chromosom# e,! whe- nD deco
�

ded
�

into
�

real� numbD ers,!
u� � i� �P
� �

k
� , and� interpolated� (mapped)

(
between
F

the
�

upp1 er! (
(
u� �

u� max)
'

and� lower! (
(
u� � u� min* )

'
bou
F

nds of� the
�

con# trol
�

variablH es,!
u� , at� that

�
location
O

, giveE s� a� digiti
�

zedä u� � i� �P
� -history

�
(a
(

set� of�
N
â

gaã r� eal� valuH es),! � u� � i�  P
� ¡

1 ¢ u� £ i� ¤P
� ¥

2
� ¦¨§©§ª§©¦ u� « i� ¬P N® ga¯ ° , rep� resenting� a� T(

(
t% )'

history. Thus, there
�

is a� set� of� N
â

p� chr# omosomes� in the
�

initial
�

population" , each! represent� ing
�

a� digitized
�

u� P(
(
t% )'

[± T(
(
t% )]' histor

G
yR , and� each! app� ropriately� coded# in

�
the
�

form
N

of� a� stri� ng of� N
â

chr� bina
F

ries.

The
�

decoded
�

and� adap� tively
�

mapped� discretiz
�

ed!
valuH es,! u� ² i� ³P

� ´
k
� , are� curve-fit# ted

�
piece" -wise (splines)

(
to
�

obtain�
a� continu# ous� functio

�
n, , U µ i� ¶P

� · t% ¸ . A piec" e-wise! cubic# Her-
mi� te

�
subrou� tine

�
(E01BF
(

F
�

from
N

the
�

NA
I

G
K

librar
O

y)R is
�

used1
to
�

do
�

this.
�

This con# tinuous
�

function� is again� digitiz
�

ed! to
�

givE e! N
â

sim� (
( ¹

N
â

gaã )
'

valuesH of� the
�

control# varH iable,
�

[U º i� »P
� ¼

1 ; l
�

=
1, 2,

�
..., N

â
sim� ].
½

These more closely# spaced,� discretiz
�

ed! valuH es! of� U ¾ i� ¿P
� À t% Á

are� fed
N

to
�

the
�

simulati� on� pack" age,� D02E
j

JF
Â

(of
(

NA
I

G
K

lib
O

rary)� wh- ich
�

integrates
�

the
�

state� varH iable
�

equa! tions
�

(Eq
(

.
(1
(

))
'

starting� with- the
�

givE en! initial conditi# ons� and� termi-
�

natiD ngD at� the
�

stop� ping" conditi# on,� x) mf* = x) md* . The
�

valuesH of�
the
�

two
�

obj� ective! functions, I Ã i� Ä1 and� I Å i� Æ2 [at the
�

final reac-
tio
�

n time
�

t% = t% f& , se� e! Eqs. (6)
(

and� (7
(

)],
'

are� comput# ed! for all�
the
�

N
â

p� chromosom# es.!
One
l

add� itional
�

poi" ntD needsD to
�

be
F

emphasize! d.
�

The
�

com# -
put" er! codes# involving GA

K
usual1 ly maximiÇ zeÈ a� fitness

function, F É i� Êm* , rather than
�

minimize obj� ective! functions,
I
� Ë i� Ì

m* , mÇ = 1, 2.
�

Hence
Í

, we- define
�

fitness
N

fu
N

nctionsD to
�

con-#
verH t

�
the
�

minimization� probl" em! to
�

an� equivalen! t
�

maximi-
zatioä nD probl" em! as� follows

N
:

F Î iÏ Ð1 Ñ 1 ÒÔÓ 1 Õ I Ö iÏ ×1 Ø
F
Ù Ú iÏ Û

2
a Ü 1 ÝÔÞ 1 ß I

� à iÏ á
2
a â ã 12 ä

All the
�

feasi
�

ble
å

points" from amo� ng the
�

N
â

p� chr# omo-�
som� es! are� identif

�
ied
�

(for
(

plottin" g)E at� this
�

stage.� The
�

feasi
N

-
ble
F

points" or� chromosom# es! are� tho
�

se� satisf� yingR Eqs
k

. (5b)
(

and� (5c
(

).
'

Fig. 7. A
æ

flowchart
<

of: the
·

adapte; d NSGA
ç

.ó The
'

numbers in
some of the boxes

=
corA respond? to the

·
sections in

B
the Appendix

æ
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2.
�

A
 

chrom# osome,� i



1, is
�

said� to
�

be
F

domi
�

natedD by
F

another� chr# omosome,� i


2
� , (for
(

the
�

present" probl" em! of� mini-
mization� of� I

è
or� maximizati� on� of� F

é
),
'

if
�

F ê iÏ 1 ë1 ì F í iÏ 2 î1 ï a� ð
as� wel- l

O
as�

F ñ iÏ 1 ò2
a ó F ô iÏ 2 õ2

a ö bD ÷
then
�

i
ø
1 is
6

dominated
�

by
D

i
ø
2 (c)

�
(13)
�

W
�

e! test
�

each! of� the
�

N
â

P chrom# osomes� in
�

the
�

pop" ulation1
against� all� oth� ers! to

�
sor� t

�
out� allù domi

�
nated chrom# osomes� .

As soon� as� a� chrom# osome� is found to
�

be
F

domi
�

nated, it is
notD checked# for

N
dominance
�

with- any� other� chromosom# e!
in the

�
pop" ulation.1 When

�
all� chr# omosomes� have been

F
checked# for domin

�
ance,� and� all� domin

�
ated� chrom# osomes�

have
G

been
F

identif
�

ied,
�

the
�

r� est� of the% chrú omos omes are�
givenE a� front number, FRONT = 1. These chrom# osomes�
having
G

FRONT
û

= 1 are� called# nonD domin
�

ated� chromo-#
somes.�

3.
à

All nondominated
�

chromosom# es! are� then
�

assigned� a�
dummy
ü

fitness
N

valuH e,! F
û ý

1 , equal! to
�

N
â

P.
4. Thereafter! these

�
dummy
ü

fitness valuH es! are� modified
accordin� gE to

�
the
�

sharin� gþ pr" ocedure� descr
�

ibed in item 6
P

below
F

, to
�

as� sign� a� shar� ed� fitnes
�

s� valuH e.! Sh
J

aring� is
�

don
�

e! to
�

maintain diversity
�

in the
�

nondominated� chromosom# es.!
5.
(

In or� der
�

to
�

identifyR chromosom# es! for oth� er! fronts,
we- temporar

�
ily
�

discard
�

all� nonD dominated
�

chrom# osomes� .
The remainin� gþ chr# omosomes� are� again� checked# for domi-

�
nanceD using1 Eq.

k
(13)
(

and� newD nondominD ated� chr# omo-�
somes� are� sorted� and� giveE nD a� front

N
numberD , FRONT

û
= 2.
�

Again, the
�

new nondominated
�

chr# omosomes� (in
(

FRONT
2) are� givE en! a� dumm

�
yR fitness valuH e,! F ÿ2� , which- is slightly�

smalle� r� than
�

the
�

low
O

est! of� the
�

shar� ed� fitness
N

valuH es! of� the
�

previous" fron
N

t.
�

The
�

sharing� of� the
�

dumm
�

yR fitness
N

valuesH
is perfo" rmed again� , and� a� shared� fitness valuH e! is as� signed�
to
�

each! nondomiD natedD chrom# osome.� This
�

pr" ocedure� is
�

continue# d
�

until1 all� N
â

P
� chromosom# es! have been

F
givenE a�

front number.
6.
P

Sharing
�

: Sha
J

ring� is
�

perform" ed! among� the
�

memb� ers!
of� the

�
i

 th
�

front (ha
(

vingH n, i
� members)

'
using1 the

�
followingE

procedu" re:
(a)
(

Fo
�

r� each! chrom# osome,� j
�
, in
�

front
N

i


, the
�

dimensi
�

on-�
less distance,

�
d
ü

jk
� , of� this

�
chrom# osome� from any� oth� er!

chromosom# e,! k
�
, (including
(

j
�
)
'

in
�

the
�

(same)
(

front
N

is
�

calcu# -
lated
O

using1

d
~

jk
� � N

�
ga

i
Ï �

1

�	�
ui 
 j� �P
� 

i
Ï � ui � kq �P

� �
i
Ï ����� ui max

P � iÏ � ui min
P � iÏ ��� 2

1 � 2 �
14 �

(b)
(

W
�

e! calcul# ate� the
�

niche, countú , mÇ j
� , usin1 gE

m� j
�  n i

k
q !

1

Sh
} "

d
~

jk
� # $ 15 %

wh- ere!

Sh
} &

d
~

jk
� ')( 1 * d

~
jk
�+

shareI
, - if d

~
jk
� .0/

shareI
0
[ 1

otherwise�
2
16 3

4
shar� e5 is

�
givenE by

F
6

shareI 7 1
2
r

qb 1 8:9 N� ga ; 1< = 17 >
In Eq. (17),

(
q? is the

�
number! of� Pareto optimal� points"

desired
�

(w
(

e! have
G

used1 q? = 15 in
�

our� study)� . The
�

para-"
met� er! , @ , is

�
an� expone! ntD which- controls# the

�
sharing� ef! fect

N
(w
(

e! have used1 A = 2 in the
�

pre" sent� study)� .
(c)
(

The
�

dummy
�

fitness,
N

F
û B

i
� , of� each! chrom# osome,� j

�
, in

fron
N

t
�

i


, is
�

mo� dified
�

by
F

div
�

iding
�

F
û C

i
� by
F

the
�

chr# omosome’� s�
nichD e! count,# mÇ j

� , to
�

calcu# late
O

the
�

shared� fitness
N

valuH e,! F
û D

ij
� E ,

as� follows:-
F FijÏ GIH F JiÏ

m� j
� K 18 L

7.
�

The
�

stoch� astic� remain� der
�

roulet� te
�

wheel- selection�
pr" ocedure� is used1 on� the

�
shared� fitness values,H and� a� mat-

ing pool" of� N
â

P
� chr# omosomes� is generatedE . This pr" ocedure�

inv
�

olves� propo" rtionat� e! selection,� where- first
N

the
�

numbeD r�
of� copies# mad� e! of� each! chr# omosome� is

�
equal! to

�
the
�

inte
�

-
gerE part" of� the

�
valueH of� F Mij� NPO F Qij� R . Here, F Sij� T is the

�
average�

of� the
�

shar� ed! fitness
N

valueH s� of� all� the
�

N
â

P chrom# osomes� in
�

the
�

pop" ulation1 . Additi
 

onal� copi# es! of� the
�

j
� th
�

chr# omosome�
in the

�
i

 th
�

front (to
(

make a� total
�

of� N
â

P in the
�

mating pool)"
are� made� thereafter

�
, using1 a� roulette� wheel- with- probab" il-

�
ity propo" rtional to

�
the
�

fractional part" of� F Uij� VXW F Yij� Z .
8. After the

�
mating poo" l is creat# ed,! crosso# verH takes

�
plac" e! to

�
produce" the

�
newD population" (next

(
generatiE on).�

This ope� ration takes
�

plac" e! at� the
�

chr# omosome� (binary)
(

leve
O

l.
O

T
�

wo- chr# omosomes� are� ran� domly
�

se� lected
O

from
N

the
�

mat� ing
�

poo" l,
O

a� crossi# ngD site� is
�

selected� (randoml
(

yR again� ),
'

and� portions" of� the
�

chrom# osomes� before
F

and� after� the
�

cro# ssing� site� are� excha! nged.D Fo
�

r� example,! for
N

seven-bi� t
�

chr# omosomes� with- crossi# ng site� after� the
�

third
�

binary
F

, the
�

cro# ssover� is descr
�

ibed by
F

the
�

following:E
1 0
[

0
[

| 1 1 1 1 1 0
[

0
[

0
[

1 0
[

0
[[\[\[\[^]

1 1 0
[

| 0
[

1 0
[

0
[

1 1 0
[

1 1 1 1 (19)
�

(old
�

generation)< (new
�

generation)<
While
�

perform" ing cro# ssovers,� only� p* c� Nâ P chromosom# es!
are� crossed# , the

�
remaining� bein

F
gE left

O
untouch1 ed! (

(
p* c� is

�
refer� red� to

�
as� the

�
crosso# verH probabilit" y).R

9.
_

Another operation,� called# mutation, is also� used1 to
�

im
�

prove" the
�

nextD geneE ration.� The
�

mu� tation
�

operato� r�
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B

53
(

changes# a� binary
F

numbeD r� from
N

1 to
�

0
~

or� viceH versaH , with- a�
probabilit" yR p* m* .` This operation� is carried# out� for each! of�
the
�

bits
F

in
�

the
�

pop" ulation,1 again� usin1 gE approp� riate� ran� dom
�

numbers.D The
�

needD for
N

mutation� leads
O

to
�

a� local
O

search�
around� the

�
current# solu� tion

�
and� helps maintain the

�
div
�

er! -
sity� of� the

�
populat" ion.

�
This
�

com# pletes" one� generatiE on� of� NSGA.
I

These
�

se� ts
�

of�
operations� are� carried# out� from one� generatiE on� to

�
the
�

next
until1 the

�
numberD of� generationsE equ! als� the

�
max� imum

�
number, Maxgen, specified� at� the

�
star� ting

�
of� the

�
program"

as� an� input paramete" r.
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